用户名: 密码: 验证码:
黄土高原地区土壤养分的空间分布及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重的水土流失、土壤肥力和生产力下降、土地退化和荒漠化等一系列生态环境问题威胁着黄土高原地区自然、社会和经济的可持续发展。土地利用调整、植被恢复以及水土保持工程的大力开展是实现该区生态恢复和重建的根本途径。在土壤贫瘠的黄土高原,土壤养分是制约植被生长和土地生产力的重要因素,同土壤水分一起影响着该区土地利用和植被类型的空间分布。从区域尺度上,系统而科学地认识整个黄土高原地区土壤养分资源空间分布特征及其影响因素,是各项生态重建工程有效实施的有力保障,对区域宏观决策具有重要的指导意义。
     本论文以整个黄土高原地区为研究区域,旨在摸清现阶段主要土壤养分的含量及储量水平,明晰其空间变异特征及空间分布格局,并揭示不同尺度下土壤养分与相关环境因素之间的关系。研究团队于2008年在黄土高原地区开展了大规模、高密度的野外试验,在382个代表性采样点上共采集表层0-20cm和20-40cm以及深层0-100cm和100-200cm土壤混合样品共1528个;表层0-20cm和20-40cm原装土壤样品764个;同时获取了各采样点经纬度、海拔高度、坡向、坡位、坡度、土地利用、植被类型等相关信息。室内统一测定的指标有土壤有机碳、土壤全氮、土壤全磷、土壤全钾、土壤pH值、土壤机械组成(美国制分级)、土壤容重等。使用经典统计学(相关分析、线性回归、方差分析、多重比较等)、地质统计学(半方差函数、克里格插值、因子克里格分析)、状态空间模拟等方法,对各土壤养分指标的空间变异特征、空间插值及预测、不同空间尺度下的主要影响因素进行了分析,主要研究结果如下:
     (1)黄土高原地区表层土壤有机碳浓度变化在0.38-54.03g kg~(-1)之间,0-20cm和20-40cm土层中的均值分别为10.34g kg~(-1)和6.78g kg~(-1);表层0-20cm和0-40cm土壤中有机碳密度分别为2.64kg m~(-2)和4.57kg m~(-2),相应深度的有机碳总储量分别为1.64Pg和2.86Pg (1Pg=10~(15)g)。深层0-100cm和0-200cm土壤有机碳密度分别为7.70kg m~(-2)和12.45kg m~(-2),相应深度的有机碳总储量分别为4.78Pg和5.85Pg。黄土高原地区0-20cm和0-100cm深度土壤有机碳总储量分别占世界总储量的0.36%和0.31%,占我国土壤有机碳总储量的8.21%和5.32%。表层土壤有机碳浓度和密度的变异系数表明,它们在区域范围内均表现为中等程度变异。皮尔逊相关分析结果表明表层土壤有机碳浓度与相关环境因素之间存在显著(p<0.05)相关关系,其中与土壤全氮、土壤pH值以及粘粒含量关系最为密切。多元逐步线性回归(p<0.05)结果表明,土壤全氮、粘粒含量、土壤pH值、海拔高度以及气温对土壤有机碳浓度具有显著影响。方差分析(p<0.05)结果表明,气温、降雨、海拔高度、土壤细颗粒(<20μm)以及土地利用类型对土壤有机碳储量影响显著。区域尺度上,农地中土壤有机碳含量显著高于林地和草地。地质统计学结果表明,表层土壤有机碳浓度(0-20cm和20-40cm)和密度(0-40cm)的最大空间相关距离分别为384km、393km和339km。块金基台比分别为0.52,0.50和0.45,表明土壤有机碳在区域尺度上表现为中等程度空间依赖性。使用克里格插值方法绘制了整个黄土高原地区表层土壤有机碳浓度和密度的空间分布图。总体而言,整个区域中心有一个土壤有机碳含量相当低的区域,它被由中心向区域边界发散的含量递增的同心圆包围着。这种分布特点与区域尺度上大地形区的分布相对应,同时也影响着土地利用类型的分布:黄土高原的四周边界上分布有山地;河谷平原区主要分布在中部地区;鄂尔多斯风沙台地位于整个区域的中部。
     (2)不同土地利用类型下,表层0-20cm土层中土壤全氮和全磷浓度均值变化在0.58-0.81g kg~(-1)和0.50-0.73g kg~(-1)之间;20-40cm深度土层中,土壤全氮和全磷浓度均值的变化范围分别为0.46-0.60g kg~(-1)和0.48-0.61g kg~(-1);0-40cm深度土壤全氮和全磷密度均值变化范围分别为0.27-0.39kg m-2和0.27-0.38kg m-2。黄土高原地区0-40cm深度土壤全氮和全磷的总储量为0.217Pg和0.205Pg,占到我国总储量的5.4%和7.3%。变异系数表明,不同土地利用类型下土壤全氮和全磷含量均表现为中等程度变异。方差分析(p<0.05)结果表明,气温、降雨以及土地利用类型对表层土壤全氮和全磷含量具有显著影响。降雨和气温的影响在不同土地利用类型下不同,土地利用类型的影响在不同降雨和气温区内也表现出不同的特点。总体而言,农地中土壤全氮和全磷含量高于林地和草地;具有较多降雨和较高气温的地区土壤全氮和全磷含量更高。相关和线性回归结果表明,土壤全氮和全磷与相关环境因素,如土壤有机碳、降雨、气温、海拔高度、经纬度、坡度、粘粒和粉粒含量以及土壤pH值之间存在显著的相关关系,而它们之间的关系随土地利用类型的变化而不同。针对不同土地利用类型,建立了土壤全氮和全磷的线性预测方程。区域尺度上,土壤全氮和全磷浓度和密度的块金基台比表明,它们具有中等程度空间依赖性,最大空间相关距离分别在374-461km以及546-664km之间。通过克里格插值绘制了黄土高原地区表层0-40cm深度土壤全氮和全磷密度的空间分布图。
     (3)土壤全钾浓度在表层0-20cm和20-40cm土层中变化范围分别为10.07-30.97gkg~(-1)和12.82-32.39g kg~(-1),均值分别为19.25g kg~(-1)和19.10g kg~(-1);变异系数分别为31.7%和26.9%,表现为中等程度变异;块金基台比分别为31.7%和26.9%,在最大相关距离546km和564km范围内表现出中等程度空间依赖性。使用经典线性回归和状态空间模拟方法分析了表层0-20cm土壤全钾含量与土壤容重、粘粒和粉粒含量、土壤pH值、降雨、气温以及海拔高度之间的相互关系。最优状态空间方程能够解释97%的土壤全钾总变异,而最优线性回归模型仅能解释26%的总变异。使用相同变量,所有的状态空间方程在预测土壤全钾含量时均优于对应的线性回归方程。气温、容重以及粘粒含量被认为是影响土壤全钾局地变异的最重要因素,因为它们均出现在最优状态空间方程中。结果表明,空间状态方程可以作为有效的工具很好地模拟区域尺度上土壤养分的局地空间变异。
     (4)土壤pH值在表层0-20cm土层中变化范围为6.06-10.76,均值为8.49,中位数为8.48。土地利用类型对土壤pH值具有显著(p<0.05)影响,草地土壤pH值显著高于农地和林地。区域尺度上,土壤pH值表现出较弱程度的变异和较强的空间依赖性,其变异系数为5%,块金基台比为0.243。以土壤pH值为研究对象,分析了四种空间插值方法,即反距离法、样条函数法、普通克里格法和协克里格法及其相关参数对空间插值精度的影响。交叉检验结果表明,克里格方法相对于反距离法和样条函数法具有更高的精度,而使用土壤有机碳作为协变量的协克里格法能够进一步提高插值精度。四种空间插值方法绘制的土壤pH值空间分布图,在整体上具有相似性,在细节上存在不同。整体而言,土壤pH值的相对低值区分布在黄土高原的东南部,可能与该区较多降雨、土壤淋溶以及较高的土壤有机质含量有关。土壤pH值的相对高值区分布在黄土高原的中北部,与该区干旱的环境和不合理灌满以及严重的土壤盐渍化有关。
     (5)经典统计学中的相关分析并没有考虑各变量自身以及相互间的空间位置关系以及它们的区域化特征。使用结合了多元统计和地质统计学的因子克里格方法研究了各土壤性质(土壤有机碳、全氮、全磷、全钾、土壤pH值、容重、粘粒和粉粒含量)与相关环境因素(气温、降雨、海拔高度、土壤类型和土地利用类型)之间的尺度依赖性相关关系。使用含有块金效应和两个球状结构的协同区域化线性模型拟合单变量以及双变量交互的半方差函数,并据此分别研究了块金尺度(<30-50km),短变程尺度(最大相关距离200km)以及长变程尺度(最大相关距离400km)上各变量之间存在的尺度依赖性相关关系。使用了主成分分析以及单位圆投影的方法表达了多变量之间复杂的相关关系。结果表明,各变量之间的相关关系随尺度的变化表现出不同特征。总体而言,土壤有机碳和全氮在块金尺度和长变程尺度上紧密相关,而在短变程尺度相关性不明显。降雨和土壤粘粒含量在块金尺度和长变程尺度上与土壤全磷含量关系密切。土壤全钾在各尺度上与其它变量之间的相关关系均不明显,但其与土壤类型在长变程尺度上关系密切。土壤pH值在块金尺度、短变程尺度以及长变程尺度上分别与土壤容重、土壤类型以及海拔高度密切相关。土壤容重与土地利用类型在各尺度上都具有紧密关系。土壤利用类型和土壤类型被认为是控制短变程尺度上土壤性质空间变异的主要影响因素,而影响长变程尺度土壤变异的主要因素为降雨、气温和海拔高度。
     本论文以大量的野外试验数据为基础,从整体上认识了黄土高原地区土壤有机碳、全氮、全磷、全钾以及土壤pH值的空间变异特征及其与相关环境因素之间的关系。可靠的土壤养分空间数据丰富了黄土高原土壤数据库,为该区土壤养分空间变异及相关研究的深入开展提供了整体框架指导,也为今后该区大尺度上数字土壤制图、碳氮循环模拟、面源污染评估等提供了可靠的数据支持,相关研究结果也将为黄土高原地区各项生态重建工程的宏观决策提供理论和实践指导。
A series of eco-environmental problems, such as severe soil erosion, decreases in soilfertility and productivity, land degradation and desertification, have threatened thesustainable development of the ecosystems and social economy on the Loess Plateau ofChina. Regional and local projects aiming on ecological restoration and reconstructionhave been launched to combat these problems on this area, practically through land useoptimization, vegetation recovery and soil and water conservation. Soils on the LoessPlateau are poverty due to the scarcity of both soil nutrients and water resources. Thesetwo factors together greatly limit plant growth and agricultural production, controlling thespatial variations of land use and vegetation. From regional perspective, systematic andaccurate information on the spatial variations of soil nutrients and the impact factors atdifferent scales is basic and essential for effective applications of these ecological projects,and would be helpful in related macro policy makings.
     The main purposes of this dissertation were to (1) explore the current level and stocksof several main soil nutrients across the entire Loess Plateau region;(2) to reveal thespatial variability of these soil nutrients and illustrate their distribution patterns;(3) toinvestigate the relationships between these soil nutrients and pertinent environmentalfactors at different scales;(4) and to generate accurate prediction models usingeasy-to-measure variables. An intensive soil survey with a sampling interval of about30-50km was accomplished within one year during2008, by investigating382representative sampling sites across the entire Loess Plateau region (62.4×104km2). Atotal of1528composite soil samples were corrected using a handy soil auger (5cm indiameter) from0-20cm and20-40cm topsoil layers, and0-100cm and100-200cm deepsoil layers. Additionally,764undisturbed soil cores were collected with cutting rings (100 cm~3in volume). The environmental conditions of each sampling site were recorded, suchas latitude, longitude, elevation, aspect, slope gradient, slope position, land use type andvegetation type. All the soil samples were taken to the laboratory for measurements of soilorganic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), soil totalpotassium (STK), soil pH, soil mechanical composition and bulk density (BD). Traditionalstatistics methods (correlation analysis, linear regression, ANOVA and post-hoc),geostatistics methods (semivariogram, kriging interpolation, factorial kriging analysis) andstate-space modeling approach were used for spatial analysis and generation of predictionmodels. The main resultes are listed as follows:
     (1) Soil organic carbon concentrations (SOCC) varied within a wide range throughout theregion from0.38g kg~(-1)to54.03g kg~(-1), with mean values of10.34g kg~(-1)and6.78gkg~(-1)for the topsoil (0-20cm) and subsoil (20-40cm), respectively. The mean SOCdensity (SOCD) was2.64kg m~(-2)in the0-20cm soil layer and4.57kg m~(-2)in the0-40cm soil layer, and it was estimated that1.64and2.86Pg (1Pg=10~(15)g) of organiccarbon were stored in these soil layers, respectively. Estimates for deeper soil layersindicated that mean SOCD in the0-100cm and0-200cm layers was7.70and12.45kgm~(-2), respectively, while the total organic carbon stocks amount to4.78Pg (0-100cm)and5.85Pg (0-200cm), respectively. The SOC stocks in the0-20cm and0-100cm ofsoils in the Loess Plateau region contribute0.36%and0.31%to the global SOC storedin these respective layers. In addition, our results indicated that the0-20and0-100cmsoil layers of the Loess Plateau, which covers nearly6.5%of the area of China,currently holds about8.21%and5.32%of the total SOC stocks in these layers in China,respectively. Coefficient of variation values showed moderate variation for both SOCconcentration and density values in both0-20cm and20-40cm soil layers. Significantcorrelations were detected between SOCC and these environmental variables, notablywith soil total nitrogen (STN), soil pH and clay content. Multiple linear regressionanalysis indicated that STN, clay content, soil pH, elevation and temperature hadgreater effects on regional SOCC variability, among all the selected soil and sitevariables. The results of ANOVA showed that precipitation, temperature, elevation,clay plus silt contents and land use showed significant regional impacts on SOCD. Theresults also show that human activities have heavily affected SOC accumulation. Measured SOCD under cropland was relatively higher than under grassland andforestland.
     Geostatistics analysis showed that the maximum autocorrelation ranges were384km,393km and339km for SOCC (0-20cm and20-40cm) and SOCD (0-40km),respectively. Nugget-to-sill ratios were0.52,0.50and0.45, which also indicatedmoderate spatial dependence. The distribution maps of SOCC in both topsoil layers andSOCD in0-40cm soil layers were produced by geostatistical method showed that theoverall spatial pattern was characterized by an area of low SOC content surrounded bybands with higher values that generally increased towards the region’s boundaries. Thedistribution pattern corresponded to that of the major regional landforms, which alsoinfluenced land use, whereby the sandy Ordos Plateau is surrounded by relativelyfertile plains and valleys, where the human population density is highest, and theregional boundary is mountainous.
     (2) In0-20cm soil layers, mean STN concentrations (STNC) and STP concentrations(STPC) ranged from0.58g kg~(-1)to0.81g kg~(-1)and from0.50g kg~(-1)to0.73g kg~(-1),respectively, under different land types. In20-40cm soil layers, mean STNC and STPCranged from0.46g kg~(-1)to0.60g kg~(-1)and from0.48g kg~(-1)to0.61g kg~(-1), respectively.Mean STN and STP densities in0-40cm soil layers ranged from0.27kg m~(-2)to0.39kgm~(-2)and from0.27kg m~(-2)to0.38kg m~(-2), respectively, under different land use types.All the concentrations and densities of STN and STP under different land use typesshowed moderate variations, which was indicated by the values of coefficient ofvariation. We detected significant (p<0.05) effects of land use, precipitation andtemperature on both STN and STP. But the results varied among different precipitationand temperature regions and different land use types. Generally, croplands had higherconcentrations and densities of STN and STP than forestlands and grasslands, andregions with more precipitation and higher temperature had higher STN and STPdensities. Significant correlations were found between STN, or STP, with selectedfactors, i.e. soil organic carbon, precipitation, temperature, elevation, latitude, longitude,slope gradient, clay content, silt content and soil pH. The results were not consistentwithin either the variable or the land use types. We generated land-use specific linearmodels to predict STN and STP using these related variables. Geostatistical analysis showed moderate spatial dependence of both STN and STP, indicated by the values ofnugget to sill ratio. The spatial range of STN and STP ranged from374km to461kmand546km to664km, respectively. This range was much larger than our samplingintervals (30-50km). The distribution maps of STN and STP densities were made withkriging interpolation. Finally, the stock of STN and STP was estimated to be0.217Pgand0.205Pg in the upper0-40cm soil layers, which was about5.4%and7.3%of thetotal nitrogen and phosphorus stocks in China. Our study suggests that it is important totake land use into account when considering variation of STN and STP at regionalscale.
     (3) In0-20cm and20-40cm soil layers, soil total potassium (STK) concentration variedfrom10.07-30.97g kg~(-1)and12.82-32.39g kg~(-1), with mean values of19.25g kg~(-1)and19.10g kg~(-1), respectively. The coefficients of variation for STK were13.4%and13.3%,defined as moderate variation. The spatial ranges of STK were546km and564km.The nugget-to-sill ratios were31.7%and26.9%, showing moderate spatial dependence.Two methods, state-space modeling and classical linear regression, were used toquantify the relationships between STK (0-20cm) and bulk density, clay and siltcontent, soil pH, precipitation, temperature, and elevation. The best state-space modelsexplained more than97%of the STK variation, while the best linear regression modelexplained less than26%of the STK variation. The results showed that all thestate-space models described the spatial variation of STK much better than thecorresponding linear regression models. Temperature, bulk density and clay contentwere identified as important factors that affected localized variation of STK, since theywere connected to the better performance of the state-space models. State-spacemodeling is recommended as a useful tool for quantifying spatial relationships betweensoil properties and other environmental factors in large-scale regions.
     (4) In0-20cm soil layers, soil pH values ranged from6.06to10.76, with a mean of8.49and a median of8.48. Land use type had a significant effect (p <0.01) on soil pH;grassland soils had higher pHs than cropland and forestland soils. From a regionalperspective, soil pH showed weak variation and strong spatial dependence, indicatedby the low values of the coefficient of variation (5%) and the nugget-to-sill ratios(<0.25). Indices of cross-validation, i.e. average error (AE), mean absolute error (MAE), root mean square error (RMSE) and model efficiency coefficient (MEC) wereused to compare the performance of the four different interpolation methods, i.e.inverse distance weighting (IDW), splines, ordinary kriging and cokriging. The resultsshowed that kriging methods interpolated more accurately than IDW and splines.Cokriging performed better than ordinary kriging and the accuracy was improved byusing soil organic carbon as an auxiliary variable. Regional distribution maps of soilpH were produced. The southeastern part of the region had relatively low soil pHvalues, probably due to higher precipitation, leaching, and higher soil organic mattercontents. Areas of high soil pH were located in the north of the central part of theregion, possibly associated with the salinization of sandy soils under inappropriateirrigation practices in an arid climate.
     (5) Traditional statistical analysis of the correlations between spatially distributed variablestakes no account of their regionalized nature. Factorial kriging analysis (FKA) wasapplied to investigate scale-dependent correlations between selected soil properties (i.e.soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), soiltotal potassium (STK), soil pH, bulk density (BD), and clay and silt contents) andenvironmental factors (i.e. elevation, precipitation, temperature, land use type and soiltype). A linear model of coregionalization, including a nugget effect and two sphericalstructures (effective ranges of200and400km), was fitted to the experimental auto andcross-variograms of the variables. Scale-dependent correlations were calculated fornugget effect scale (<30-50km), short-range scale with a range of200km andlong-range scale with a range of400km. Principal component analysis was conductedto clearly illustrate the correlations at each spatial scale. The scale-dependentcorrelations were different from the general correlations and varied at different scales.Generally, SOC and STN were strongly correlated at the nugget effect scale and thelong-range scale, but not at the short-range scale. Precipitation and clay content showedclose correlations with STP at the nugget effect scale and long-range scale. The STKwas weakly correlated with the other variables at each spatial scale, but closelycorrelated with soil type at the long-range scale. Soil pH was closely correlated withBD, soil type and elevation at the nugget effect, short and long spatial scales,respectively. Close correlations were found between BD and land use type at each spatial scale. Land use and soil type were considered to be the important factorscontrolling spatial variation of soil properties at the short-range scale while at thelong-range scale the likely factors were identified as precipitation, temperature andelevation.
     Based on intensive filed sampling and uniform laboratory measurements, our studyprovided an overview on the spatial variation and impact factors of soil organic carbon,soil total nitrogen, soil total phosphorus, soil total potassium and soil pH across the entireLoess Plateau region of China. The reliable spatial data updated the soil database for thestudy region, and can be used as important input layers in regional digital soil mapping,carbon and nitrogen cycle modeling and evaluation of the potential non-point sourcepollution associated with soil erosion. Moreover, the results presented in this dissertationcan serve as an important background for the future studies in related fields, and can beuseful in macro decision making for regional eco-environment restoration on the LoessPlateau.
引文
[1]朱显谟.试论黄土高原的生态环境与“土壤水库”-重塑黄土地的理论依据[J].第四纪研究,2000,20(6):514-520.
    [2]李玉山.重新认识黄土高原[J].水土保持研究,1995,2(4):34-37.
    [3]胡建军,王庆阳,刘煊蛾,等.黄土高原地区生态环境状况与经济社会发展关系研究[J].水土保持学报,2006,13(4):253-255.
    [4]杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992.
    [5]孟庆枚.黄土高原水土保持[M].郑州:黄河水利出版社,1996.
    [6]陈积民,万惠娥.中国黄土高原植被建设与水土保持[M].北京:中国林业出版社,2002.
    [7]黄昌勇.土壤学[M].中国农业出版社.2000.
    [8]王浩,章明奎.有机质积累和酸化对污染土壤重金属释放潜力的影响[J].土壤通报,2009,40(3):538-541.
    [9]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应响[J].土壤学报,2001,38(2):212-218.
    [10] Lal, R. Soil carbon sequestration impacts on global climate change and foodsecurity[J]. Science,2004,304:1623-1627.
    [11] Trumbore, S.E., Chadwick, O.A., Amundson, R. Rapid exchange between soil carbonand atmospheric carbon dioxide driven by temperature change[J]. Science,1996,272:393-396.
    [12] Schindler, D.W. Recent advances in the understanding and management ofeutropication[J]. Limnology and Oceanography.,2006,5:356-363.
    [13] Chen, M., Chen, J., Sun, F.,2008. Agricultural phosphorus flow and its environmentalimpacts in China[J]. Science of the Total Environment,2008,405:140-152.
    [14]中科院黄土高原综合科学考察队.黄土高原地区土壤资源及其合理利用[M].北京:科学出版社,1991.
    [15]魏孝荣,邵明安.黄土高原沟壑区小流域坡地土壤养分分布特征[J].生态学报,2007,27(2):603-612.
    [16]肖波,王庆海,尧水红,等.东北缘退耕坡地土壤养分和容重空间变异特征研究[J].水土保持学报,2009,23(3):92-96.
    [17]高义民,同延安,胡正义,等.黄土区村级农田土壤养分空间变异特征研究[J].土壤通报,2006,37(1):1-6.
    [18] Du F., Shao H., Shan L., et al. Secondary succession and its effects on soil moistureand nutrition in abandoned old-fields of hilly region of Loess Plateau, China[J].Colloids and Surfaces B: Biointerfaces,2007,58:278–285.
    [19] Du F., Liang Z.S., Xu X.X., et al. Spatial heterogeneity of soil nutrients andavovegroud biosmass in abandoned old-fields of Loess Hill region in NorthernShannxi, China[J]. Acta Ecologica Sinica,2008,28(1):13-22.
    [20]张振国,黄建成,焦菊英,等.黄土丘陵沟壑区退耕地人工柠条林土壤养分特征及其空间变异[J].水土保持通报,2007,27(5):114-120.
    [21] Wang, Y.Q., Zhang X.C., Huang C.Q. Spatial variability of soil total nitrogen and soiltotal phosphorus under different land uses in a small watershed on the Loess Plateau,China[J]. Geoderma,2009,150:141-149.
    [22] Wang, Y.Q., Zhang X.C., Zhang J.L. et al. Spatial variability of soil organic carbon ina watershed on the Loess Plateau[J]. Pedosphere,2009,19(4):486-495.
    [23]张春霞,郝明德,王旭刚,等.黄土丘陵沟壑区小流域土壤养分分布特征[J].水土保持研究,2003,10(1):78-80.
    [24]王军,傅伯杰,邱扬,等.黄土高原小流域土壤养分的空间异质性[J].生态学报,2002,22(8):1173-1178.
    [25]邱扬,傅伯杰,王军,等.黄土高原小流域土壤养分的时空变异及其影响因子[J].自然科学进展,2004,14(3):294-299.
    [26] Wang, Y.F., Fu B.J., Lv Y.H., et al. Local-scale spatial variability of soil organiccarbon and its stock in the hilly area of the Loess Plateau, China[J]. QuaternaryResearch,2010,73(1):70-76.
    [27]刘世梁,郭旭东,连纲,等.黄土高原土壤养分空间变异的多尺度分析-以横山县为例[J].水土保持学报,2005,19(5):105-108.
    [28]连纲,郭旭东,傅伯杰,等.黄土高原县域土壤养分空间变异特征及预测-以陕西省横山县为例[J].,2008,45(4):577-584.
    [29]邹青,赵业婷,常庆瑞,等.黄土高原南部耕地土壤养分空间格局分析-以陕西省富县为例[J].干旱地区农业研究,2012,30(3):107-113.
    [30]贾恒义,彭林,彭详林,等.黄土高原地区土壤养分资源分区及其评价[J].水土保持学报,1994,8(3):22-28.
    [31]徐香兰,张科利,徐宪立,等.黄土高原地区土壤有机碳估算及其分布规律分析[J].水土保持学报,2003,17(3):13-15.
    [32] Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology[M]. NewYork: Dover Publications,1941.
    [33] Burrough, P.A. Soil variability: a late20th century view[J]. Soil and Fertilizers,1993,56:529-562.
    [34] Heuvelink, G.B.M., Webster, R. Modelling soil variation: past, present, and future[J].Geoderma,2001,100:269-301.
    [35]胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间变异性研究[J].水科学进展,2006,17(1):74-81.
    [36]郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报,2004,18(3):53-56.
    [37]吕军,俞劲炎.水稻土物理性质空间变异性研究[J].土壤学报,1990,27(1):8-15.
    [38]龚元石,廖超子,李保国.土壤含水量和容重的空间变异及分形特征[J].土壤学报,1998,35(1):10-15.
    [39]汪懋华.精细农业[M].北京:中国农业大学出版社,2011.
    [40] Matheron, G. Principles of geostatistics[J]. Economic Geology,1963,58:1246-1266.
    [41] Burgess, T.M., Webster, R. Optimal interpolation and isarithmic mapping of soilproperties: I. The semi-variogram and punctual kriging[J]. Journal of Soil Science,1980,31:315–331.
    [42] Krige, D.G. A statistical approach to some basic mine valuation problems on theWitwatersrand[J]. Journal of the Chemical, Metallurgical and Mining Society ofSouth Africa,1951,52(6):119-139.
    [43]潘成忠,上官周平.土壤空间变异性研究综述[J].生态环境,2003,12(3):371-375.
    [44]王政权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999,74-96.
    [45]秦耀东.土壤空间变异研究中的定量分析[J].地球科学进展,1992,7(1):44-49.
    [46] Goovaerts, P. Geostatistics in soil science: state-of-the-art and perspectives[J].Geoderma,1999,89:1-45.
    [47] Boucneau, G., Van Meirvenne, M., Thas, O., et al. Integrating properties of soil mapdelineations into ordinary kriging[J]. European Journal of Soil Science,1998,49:213-229.
    [48] Heuvelink, G.B.M. Identification of field attribute error under different models ofspatial variation[J]. International Journal of GIS,1996,10:921–935.
    [49] Goovaerts, P., Journel, A.G. Integrating soil map information in modelling the spatialvariation in continuous soil properties[J]. European Journal of Soil Science,1995,46:397-414.
    [50] Zhu, A.X., Hudson, B., Burt, J.E., et al. Soil mapping using GIS, expert knowledge,and fuzzy logic[J]. Soil Science Society of America Journal,2001,65:1463-1472.
    [51] Burrough, P.A. Fuzzy mathematical methods for soil survey and land evaluation[J].Journal of Soil Science,1989,40:477-492.
    [52] Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J. Spatial prediction of soilproperties from landform attributes derived from a digital elevation model. Geoderma,1994,63:197-214.
    [53] McKenzie, N.J., Ryan, P.J. Spatial prediction of soil properties using environmentalcorrelation[J]. Geoderma,1999,89:67–94.
    [54]张仁铎.空间变异理论及应用[M].北京:科学出版社,2005.
    [55] Nielsen, D.R., Bouma, J. Soil spatial variability[M]. Pudoc: Wageningen,1985.
    [56]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006.
    [57] Yost, R.S., Uehara, G., Fox, R.L. Geostatistical analysis of soil chemical properties oflarge areas: I. Semi-variograms[J]. Soil Science Society of America Journal,1982,46:1028-1032.
    [58] Cambardella, C.A., Moorman, T.B., Novak, J.M. et al. Field-scale variability of soilproperties in Central Iowa soils[J]. Soil Science Society of America Journal,1994,58:1501–1511.
    [59] Yost R.S, Uehara G., Fox R.L. Geostatistical analysis of soil chemical properties oflarge land areas. Ⅱ. Kriging[J]. Soil Science Society of America Journal,1982,46:1033-1037.
    [60] Rezaee, H., Asghari, O., Yamamoto, J.K. On the reduction of the ordinary krigingsmoothing effect[J]. Journal of Mining and Environment,2011,2(2):102-117.
    [61]朱长青.数值计算方法及其应用[M].北京:科学出版社,2006.
    [62]史文娇,岳天翔,石晓丽.土壤连续属性空间插值方法及其精度的研究进展[J].自然资源学报,2012,27(1):163-175.
    [63]李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265.
    [64] Journel, A.G., Kyriakidis, P.C., Mao., S. Correcting the smoothing effect of estim ators:a spectral postprocessor[J]. Mathematical Geology,2000,32(7):787-813.
    [65] Olea, R.A., Pawlowsky, V. Compensating for estimation smoothing in Kriging[J].1996,28(4):407-417.
    [66] Goovaerts, P. Accounting for estimation optimality criteria in simulated annealing[J].Mathematical Geology,1998,30(5):511-534.
    [67] Yamamoto, J.K. Correcting the smooth effect of ordinary Kriging estimates[J].Mathematical Geology,2005,37(11):69-94.
    [68]李启权,王昌全,岳天祥,等.不同输入方式下RBF神经网络对土壤性质空间插值的误差分析[J].土壤学报,2008,45(2):360-365.
    [69] Yue T.X. Surface Modelling: High Accuracy and High Speed Methods[M]. New York:CRC Press,2011.
    [70]徐剑波,宋立生,彭磊,等.土壤养分空间估测方法研究综述[J].生态环境学报,2011,20(8-9):1379-1386.
    [71] Timm, L.C., Reichardt. K., Oliveira, J.C.M. State-Space approach for evaluating thesoil-plant-atmosphere system[R]. Lectures given at the College on Soil Physics,Trieste,2003,3-21.
    [72] Morkoc, F., Biggar, J.W., Nielsen D.R., et al. Analysis of soil water content andtemperature using state-space approach[J]. Soil Science Society of America Journal,1985,49:798-803.
    [73] Shumway, R.H., Biggar, J.W., Morkoc, F.M., et al. Time-and frequency-domainanalyses of field observations[J]. Soil Science,1985,147:286-298.
    [74] Nielsen, D.R., Alemi, M.H. Statistical opportunities for analyzing spatial and temporalheterogeneity of field soils[J]. Plant and Soil,1989,115:285-296.
    [75] Cassel, D.K., Wendroth, O., Nielsen, D.R. Assessing spatial variability in anagricultural experiment station field: opportunities arising from spatial dependence[J].Journal of Agronomy,2000,92:706–714.
    [76] Li, H., Lascano, R.J., Booker, J., et al. Cotton lint yield variability in a heterogeneoussoil at a landscape scale[J]. Soil and Tillage Research,2001,58:245-258.
    [77] Wendroth, O., Reuter, H.I., Kersebaum, K.C. Predicting yield of barley across alandscape: a state-space modeling approach[J]. Journal of Hydrology,2003,272:250-263.
    [78] Timm, L.C., Reichardt, K., Oliveira, J.C.M., et al. Sugarcane production evaluated bythe state-space approach[J]. Journal of Hydrology,2003,272:226-237.
    [79] Stevenson, F.C., Knight, J.D., Wendroth, O., et al. A comparison of two methods topredict the landscape-scale variation of crop yield[J]. Soil and Tillage Research,2001,58:163-181.
    [80] Timm, L.C., Fante, L. Jr. Barbosa, E.P., et al. A study of the interaction soil-plantusing state space approach[J]. Scientia Agricola,2000,57:751-760.
    [81] Joschko, M., Fox, C.A., Lentzsch, P., et al. Spatial analysis of earthworm biodiversityat the regional scale[J]. Agriculture Ecosystem and Environment,2006,112:367-380.
    [82]贾小旭,邵明安,魏孝荣,等.黄土高原北部草地表层土壤水分空间状态模拟[J].农业工程学报,2010,26(10):38-44.
    [83] Mulder, V.L., de Bruin, S., Schaepman, M.P., et al. The use of remote sensing in soiland terrain mapping-A review[J]. Geoderma,2011,162:1-19.
    [84] McBratney, A.B., Mendonca Santos, M.L., Minasny, B. On digital soil mapping[J].Geoderma,2003,117:3-52.
    [85] Western, A.W., Bl chl, G. On the spatial scaling of soil moisture [J]. Journal ofHydrology,1999,217:203-224.
    [86]潘瑜春,刘巧芹,阎波杰,等.采样尺度对土壤养分空间变异分析的影响[J].土壤通报,2010,41(2):257-262.
    [87]雷咏雯,危常州,李俊华,等.不同尺度下土壤养分空间变异特征的研究[J].土壤,2004,36(4):376-381.
    [88]刘庆,孙景宽,陈印平,等.不同采样尺度下土壤重金属的空间变异特征[J].土壤通报,40:1406-1410.
    [89]盛建东,肖华,武红旗,等.不同取样尺度农田土壤速效养分空间变异特征初步研究[J].干旱地区农业研究,2005,23(2):63-67.
    [90]杨奇勇,杨劲松,刘广明.土壤速效养分空间变异的尺度效应[J].应用生态学报,2011,22:431-436.
    [91]胡伟,邵明安,王全九.黄土高原退耕坡地土壤水分空间变异的尺度性研究[J].农业工程学报,2005,21:11-16.
    [92] Gao, L., Shao, M.A. The interpolation accuracy for seven soil properties at varioussampling scales on the Loess Plateau, China[J]. Journal of Soils and Sediments,2012,12:128-142.
    [93] Journel, A.G., Huijbregts, C.J. Mining Geostatistics[M]. Orlando, Florida: AcademicPress,1978.
    [94] Wendroth, O., Pohl, W., Koszinski, S., et al. Spatio-temporal patterns and covariancestructures of soil water status in two Northeast-German field sites[J]. Journal ofHydrology,1999,215:38-58.
    [95] Western, A.W., Bl schl, G., Grayson, R.B. Geostatistical characterisation of soilmoisture patterns in the Tarrawarra Catchment[J]. Journal of Hydrology,1998,205:20-37.
    [96] Garten Jr, C.T., Kang, S., Brice, D.J., et al. Variability in soil properties at differentspatial scales (1m-1km) in a deciduous forest ecosystem[J]. Soil Biology andBiochemistry,2007,39:2621-2627.
    [97] Goovaerts, P. Factorial kriging analysis: a useful tool for exploring the structure ofmultivariate spatial soil information[J]. Journal of Soil Science,1992,43:597-619.
    [98] Webster, R., Atteia, O., Dubois, J.P. Coregionalization of trace metal in the soil in theSwiss Jura[J]. European Journal of Soil Science,1994,45:205-218.
    [99] Bocchi, S., Castrignan, A., Fornarò, F., et al. Application of factorial kriging formapping soil variation at field scale[J]. European Journal of Soil Science,2000,13:295-308.
    [100] Imrie, C.E., Korre, A., Munoz-Melendez, G., et al. Application of factorial kriginganalysis to the FOREGS European topsoil geochemistry database[J]. Science of theTotal Environment,2008,393:96-110.
    [101] Stark, C.H.E., Condron, L.M., Stewart, A., et al. Small-scale spatial variability ofselected soil biological properties[J]. Soil Biology and Biochemistry,2004,36:-608.
    [102] Strenger, R., Priesack, E., Beese, F. Spatial variation of nitrate-N and related soilproperties at the plot-scale[J]. Geoderma,2002,105:259-275.
    [103]许红卫,高克异,王珂,等.稻田土壤养分空间变异与合理取样数研究[J].植物营养与肥料学报,2006,12(1):37-43.
    [104]刘付程,史学正,于东升,等.基于地统计学和GIS的太湖典型土壤属性制图研究-以土壤全氮制图为例[J].土壤学报,2004,41(1):20-27.
    [105]赵彦锋,史学正,于东升,等.小尺度土壤养分的空间变异及其影响因素探讨-以江苏省无锡市典型城乡交错区为例[J].2006,37(2):214-219.
    [106] Cao, S.K., Chen, K.L., Cao, G.C., et al. The analysis of characteristic and spatialvariability for soil organic matter and organic carbon around Qinghai Lake[J].Procedia Environmental Sciences,2011,10:678-684.
    [107] Mabit, L., Bernard, C., Makhlouf, M., et al. Spatial variability of erosion and soilorganic matter content estimated from137Cs measurements and geostatistics[J].Geoderma,2008,145:245-251.
    [108] Boerner, R.E.J., Scherzer, A.J., Brinkman, J.A.,1998. Spatial patterns of inorganic N,P availability, and organic C in relation to soil disturbance: a chronosequenceanalysis[J]. Applied Soil Ecology,1998,7:159-177.
    [109] Rossi, J., Govaerts, A., De Vos, B., et al. Spatial structures of soil organic carbon intropical forests-a case study of Southeastern Tanzania[J]. Catena,2009,77:19-27.
    [110] Tesfahunegn, G.B., Tamene, L., Vlek, P.L.G. Catchment-scale spatial variability ofsoil properties and implications on site-specific soil management in northernEthiopia[J]. Soil and Tillage Research,2011,117:124-139.
    [111] Marchetti, A., Piccini, C., Francaviglia, R., et al. Spatial distribution of soil organicmatter using geostatistics: a key indicator to assess soil degradation status in centralItaly[J]. Pedosphere,2012,22(2):230-242.
    [112]黄绍文,金继运,杨俐苹,等.县级区域粮田土壤养分空间变异与分区管理技术研究[J].土壤学报,2003,40(1):79-88.
    [113]杨艳丽,史学正,于东升,等.区域尺度土壤养分空间变异及其影响因素研究[J].地理科学,2008,28(6):788-792.
    [114] Zhang, X.Y., Sui, Y.Y., Zhao, X.D., et al. Spatial variability of nutrient properties inblack soil of northeast China[J]. Pedosphere,2007,17(1):19-29.
    [115] Couto, E.G., Stein, A., Klamt, E. Large area spatial variability of soil chemicalproperties in central Brazil[J]. Agriculture Ecosystems and Environment,1997,66:139-152.
    [116] Haileslassie, A., Priess, J., Veldkamp, E., et al. Assessment of soil nutrient depletionand its spatial variability on smallholders’ mixed farming systems in Ethiopia usingpartial versus full nutrient balances[J]. Agriculture Ecosystems and Environment,2005,108:1-16.
    [117]甘海华,彭凌云.江门市新会区耕地土壤养分空间变异特征[J].应用生态学报,2005,16(8):1437-1442.
    [118]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异性特征研究-以河北遵化市为例[J].应用生态学报,2000,11(4):557-563.
    [119] Yamashita, N., Ohta, S., Sase, H., et al. Seasonal changes in multi-scale spatialstructure of soil pH and related parameters along a tropical dry evergreen forestslope[J]. Geoderma,2011,165:31-39.
    [120] Rodenburg, J., Stein, A., Van Noordwijk, M., et al. Spatial variability of soil pH andphosphorus in relation to soil run-off following slash-and-burn land clearing inSumatra, Indonesia[J]. Soil and Tillage Research,2003,71:1-14.
    [121] Jalali, M. Spatial variability in potassium release among calcareous soils of westernIran[J]. Geoderma,2007,140:42-51.
    [122] Al-Omran, A.M., Al-Wabel, M.I., El-Maghraby, S.E., et al. Spatial variability forsome properties of the wastewater irrigated soils[J]. Journal of the Saudi Society ofAgricultural Sciences,2013, http://dx.doi.org/10.1016/j.jssas.2012.12.001
    [123] Burgos, P., Madejón, E., Pérez-de-Mora, A., et al. Spatial variability of the chemicalcharacteristics of a trace-element-contaminated soil before and after remediation[J].Geoderma,2006,130:157-175.
    [124] Liu, D.W., Wang Z.M., Zhang B., et al. Spatial distribution of soil organic carbonand analysis of related factors in croplands of the black soil region, NortheastChina[J]. Agriculture Ecosystems and Environment,2006,113:73-81.
    [125] Zhang, C.S., McGrath, D. Geostatistical and GIS analyses on soil organic carbonconcentrations in grassland of southeastern Ireland from two different periods[J].Geoderma,2004,119:261-275.
    [126] Amador, J.A., Wang, Y., Savin, M.C., et al. Fine-scale spatial variability of physicaland biological soil properties in Kingston, Rhode Island[J]. Geoderma,2000,98:83-94.
    [127] Leifeld, J., Bassin, S., Fuhrer, J. Carbon stocks in Swiss agricultural soils predictedby land-use, soil characteristics, and altitude[J]. Agriculture Ecosystems andEnvironment,2005,105:255–266.
    [128] Kravchenko, A.N., Hao, X. Management practice effects on spatial variabilitycharacteristics of surface mineralizable C[J]. Geoderma,2008,144:387-394.
    [129] Conant, R.T., Paustian, K. Spatial variability of soil organic carbon in grasslands:implications for detecting change at different scales[J]. Environmental Pollution,2002,116: S127–S135.
    [130]李明辉,彭少麟,申卫军,等.丘塘景观土壤养分的空间变异[J].生态学报,2004,24(9):1839-1845.
    [131]曹慧,杨浩,孙波,等.太湖流域丘陵地区土壤养分的空间变异[J].土壤,2002,4:201-205.
    [132]刘璐,曾馥平,宋同清,等.喀斯特木论自然保护区土壤养分的空间变异特征[J].应用生态学报,2010,21(7):1667-1673.
    [133] Chen, F.S., Zeng, D.H., He X.Y. Small-scale spatial variability of soil nutrients andvegetation properties in semi-arid north China[J]. Pedosphere,2006,16(6):778-787.
    [134] Qi, Y.C., Dong, Y.S. Jin, Z., et al. Spatial heterogeneity of soil nutrients andrespiration in the desertified grasslands of Inner Mongolia, China[J]. Pedosphere,2010,20(5):655-665.
    [135] Cao, C.Y., Jiang, S.Y., Ying, Z., et al. Spatial variability of soil nutrients andmicrobiological properties after the establishment of leguminous shrub Caraganamicrophylla Lam. plantation on sand dune in the Horqin Sandy Land of NortheastChina[J]. Ecological Engineering,2011,37:1467-1475.
    [136] Huang, B., Sun, W.X., Zhao, Y.C. et al. Temporal and spatial variability of soilorganic matter and total nitrogen in an agricultural ecosystem as affected by farmingpracties[J].Geoderma,2007,139:336-345.
    [137] Outeiro, L., Asperó, F., úbeda, X. Geostatistical methods to study spatial variabilityof soil cations after a prescribed fire and rainfall[J]. Catena,2008,74:310-320.
    [138] Dercon, G., Deckers, J., Govers, G., et al. Spatial variability in soil properties onslow-forming terraces in the Andes region of Ecuador[J]. Soil and Tillage Research,2003,72:31-41.
    [139] Gallardo, A., Paramá, R. Spatial variability of soil elements in two plantcommunities of NW Spain[J]. Geoderma,2007,139:199-208.
    [140] Shrestha, B.M., Williams, S., Easter, M., et al. Modeling soil organic carbon stocksand changes in a Nepalese watershed[J]. Agriculture Ecosystems and Environment,2009,132:91–97.
    [141]李菊梅,李生秀.几种营养元素在土壤中的空间变异[J].干旱地区农业研究,1998,16(2):58-64.
    [142] Delcourt, H., Darius, P.L., de Baerdemaeker, J. The spatial variability of someaspects of topsoil fertility in two Belgian fields[J]. Computers and Electronics inAgriculture,1996,14:179-196.
    [143] Yu, D.S., Zhang, Z.Q. Yang, H., et al. Effect of soil sampling density on detectedspatial variability of soil organic carbon in a red soil region of China[J]. Pedosphere,2011,21(2):207-213.
    [144] Mapa, R.B., Kumaragamage, D. Variability of soil properties in a tropical Alfisolused for shifting cultivation[J]. Soil Technology,1996,9:187-197.
    [145] Sch ning, I., Totsche, K.U., K gel-Knabner, I., et al. Small scale spatial variabilityof organic carbon stocks in litter and solum of a forested Luvisol[J]. Geoderma,2006,136:631-642.
    [146]赵倩倩,赵庚星,姜怀龙,等.县域土壤养分空间变异特征及合理采样数研究[J].自然资源学报,2012,27(8):1382-1391.
    [147]薛正平,杨星卫,段项锁,等.土壤养分空间变异及合理取样数研究[J].农业工程学报,2002,18(4):6-9.
    [148]余新晓,耿玉清,牛丽丽,等.采样尺度对北京山区典型流域森林土壤养分空间变异的影响—以密云潮关西沟流域为例[J].林业科学,2010,46(10):162-166.
    [149] Wei, Y.C., Bai, Y.L., Jin, J.Y., et al. Spatial variability of soil chemical properties inthe reclaiming marine foreland to Yellow Sea of China[J]. Agricultural Sciences inChina,2009,8(9):1103-1111.
    [150]刘吉平,刘佳鑫,于洋,等.不同采样尺度下土壤碱解氮空间变异性研究—以榆树市农田土壤为例[J].水土保持研究,2012,19(2):106-115.
    [151] Prasolova, N.V., Xu, Z.H., Saffigna, P.G., et al. Spatial-temporal variability of soilmoisture, nitrogen availability indices and other chemical properties in hoop pine(Araucaria cunninghamii) plantations of subtropical Australia[J]. Forest Ecology andManagement,2000,136:1-10.
    [152] Di, H.J., Kempand, R.A., Trangmar, B.B., Use of Geostatistics in designing samplingstrategies for soil survey[J]. Soil Science Society of America Journal,1980,53(4):1163-1167..
    [153]史舟,李艳,金辉明.基于方差四叉树法的滨海盐土电导率采样布局研究[J].土壤学报,2007,44(2):294-299.
    [154]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [155]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3:91-101.
    [156]唐克丽.中国水土保持[M].北京:科学出版社,2004.
    [157]胡良军,邵明安,杨文治.黄土高原景观生态特征及其生态恢复的意义[J].天津师范大学学报:自然科学版,2003,23(4):27-31.
    [158] Pan, G.X., Smith, P., Pan, W.N. The role of soil organic matter in maintaining theproductivity and yield stability of cereals in China[J]. Agriculture Ecosystems andEnvironment,2009,129:344-348.
    [159] Tiessen, H., Cuevas, E., Chacon, P. The role of soil organic matter in sustaining soilfertility[J]. Nature,1994,371:783-785.
    [160] Raich, J.W., Potter, C.S. Global patterns of carbon dioxide emission from soils[J].Global Biogeochemistry,1995,9:23-36.
    [161] Knorr, W., Prentice, I.C., House, J.I., et al. Long-term sensitivity of soil carbonturnover to warming[J]. Nature,2005,433:298-301.
    [162] Lal, R. Soil carbon sequestration to mitigate climate change[J]. Geoderma123,1-22.
    [163] Eswaren, H., Vandenberg, E., Reich, P. Organic carbon in soils of the world[J]. SoilScience Society of America Journal,1993,57:192-194.
    [164] Batjes, N.H. Total carbon and nitrogen in the soils of the world[J]. European Journalof Soil Science,1996,47:151-163.
    [165] Batjes, N.H. Management options for reducing CO2-concentrations in theatmosphere by increasing carbon sequestration in the soil. Report410-200-031[R].Netherland, Blithoven: Dutch National Research Programme on the Global AirPollution and Climate Change (also published as: Technical Paper30, InternationalSoil Reference and Information Centre, Wageningen),1999.
    [166] Chevallier, T., Voltz, M., Blanchart, E., et al. Spatial and temporal changes of soil Cafter establishment of a pasture on a long-term cultivated vertisol (Martinique)[J].Geoderma,2000,94:43-58.
    [167] McGrath, D., Zhang, C.S. Spatial distribution of soil organic carbon concentrationsin grassland of Ireland[J]. Applied Geochemistry,2003,18:1629-1639.
    [168] Sombroek, W.G., Nachtergaele, F.O., Hebel, A. Amounts, dynamics and sequesteringof carbon in tropical and sub-tropical soils[J]. Ambio,1993,22:417-426.
    [169] Lacelle, B., Tarnocai, C., Waltman, S. Soil Organic Carbon Map in NorthAmerica[M]. Lincoln, NE: USDA-NRCS/NSSC,1997.
    [170] Batjes, N.H. Effect of mapped variation in soil conditions on estimates of soil carbonand nitrogen stocks for South America[J]. Geoderma,2000,97:135-144.
    [171] Arrouays, D., Deslais, W., Badeau, V. The carbon content of topsoil and itsgeographical distribution in France[J]. Soil Use and Management,2001,17:7-11.
    [172] Batjes, N.H. Carbon and nitrogen stocks in the soils of central and eastern Europe[J].Soil Use and Management,2002,18:324-329.
    [173] Krogh, L., Noergaard, A., Hermanen, M., et al. Preliminary estimates ofcontemporary soil organic carbon stocks in Denmark, using multiple datasets and fourscaling-up methods[J]. Agriculture Ecosystems and Environment,2003,96:19-28.
    [174] Bhattacharyya, T., Pal, D.K., Mandal, C., et al. Organic carbon stock in Indian soilsand their geographical distribution[J]. Current Science,2000,79:655-660.
    [175] Bernoux, M., Carvalho, S., Volkoff, B. Brazil’s soil carbon stocks[J]. Soil ScienceSociety of America Journal,2002,66:888-896.
    [176]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330-332.
    [177]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):534-544.
    [178]金峰,杨浩,蔡祖聪,等.土壤有机碳密度及储量的统计研究[J]土壤学报,2001,38(4):522-528.
    [179] Xie, X.L., Sun, B., Zhou, H.Z., et al. Soil organic carbon stock in China[J].Pedosphere,2004,14:491-500.
    [180] Li, K.R., Wang, S.Q., Cao, M.K. Carbon stock of vegetation and soil in China[J].Science in China, Series D,2003,33:72-80.
    [181] Yu, D.S., Shi, X.Z., Wang, H.J., et al. National scale analysis of soil organic carbonstorage in China based on Chinese soil taxonomy[J]. Pedosphere,2007,17:11-18.
    [182] Yu, D.S., Shi, X.Z., Wang, H.J. et al. Regional patterns of soil organic carbon stocksin China[J]. Journal of Environment Management,2007,85:680-689.
    [183] Zhao, Y.C., Shi, X.Z., Yu, D.S., et al. Map scale effect on soil organic carbon stockestimation in north China[J]. Soil Science Society of America Journal,2006,70:1377-1386.
    [184]李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报,2002,39(3):351-360.
    [185] Zhang, Y., Zhao, Y.C., Shi, X.Z. Variation of soil organic carbon estimates inmountain regions: A case study form Southwest China[J]. Geoderma,2008,146:449-456.
    [186] Zhao, Q.G., Li, Z., Xia, Y.F. Organic carbon storage in soils of southeast China[J].Nutrient Cycling in Agroecosystems,1997,49:229-234.
    [187] Squires, V.R. Dryland soils: their potential as a sink for carbon and as an agent tomitigate climate change[J]. Advances in GeoEcology,1998,31:209-215.
    [188] Ard, J., Olsson, L. Assessment of soil organic carbon in semi-arid Sudan using GISand the CENTURY model[J]. Journal of Arid Environment,2003,54:633-651.
    [189] Dai, W., Huang, Y. Relation of soil organic matter concentration to climate andaltitude in zonal soils of China[J]. Catena,2006,65:87-94.
    [190] Davidson, E.A., Janssens, I.A. Temperature sensitivity of soil carbon decompositionand feedbacks to climate change[J]. Nature,2006,440:165-173.
    [191] Hassink, J. Preservation of plant residues in soils differing in unsaturated protectivecapacity[J]. Soil Science Society of America Journal,1996,60:487-491.
    [192] Heviaa, G.G., Buschiazzoa, D.E., Heppera, E.N. Organic matter in size fractions ofsoils of the semiarid Argentina. Effects of climate, soil texture and management[J].Geoderma,2003,116:265-277.
    [193] Su, Z.Y., Xiong, Y.M., Zhu, J.Y. Soil organic carbon content and distribution in asmall landscape of Dongguan, South China[J]. Pedosphere,2006,16:10–17.
    [194] Sainju, U.M., Senwo, Z.N., Nyakatawa, E.Z., et al. Soil carbon and nitrogensequestration as affected by long-term tillage, cropping systems, and nitrogenfertilizer sources[J]. Agriculture Ecosystems and Environment,2008,127:234–240
    [195]全国土壤普查办公室.中国土壤普查数据[M].北京:中国农业出版社,1997.
    [196] Li, Z., Jiang, X., Pan., X.Z. Organic carbon storage in soils of tropical andsubtropical China[J]. Water Air and Soil Pollution,2001,129:45-60.
    [197] Wang, H.J., Liu, Q.H., Shi, X.Z. Carbon storage and spatial distribution patterns ofpaddy soils in China[J]. Frontiers of Agriculture in China,2007,1,149-154.
    [198] Potter, C.S., Randerson, J.T., Field, B.C., et al. Terrestrial ecosystem production: Aprocess model based on global satellite and surface data[J] Global BiogeochemistryCycles,1993,7:811-841.
    [199] Saxon, K.E., Rawls, W.J. Soil water characteristic estimates by texture and organicmatter for hydrologic solutions[J]. Soil Science Society of America Journal,2006,70:1569-1578.
    [200] Meersmans, J., de Ridder, F., Canters, F., A multiple regression approach to assessthe spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders,Belgium)[J]. Geoderma,2008,143:1-13.
    [201] Wang, J., Fu, B.J., Qiu, Y. Analysis on soil nutrient characteristics for sustainableland use in Danangou catchment of the Loess Plateau, China[J]. Catena,2003,54:17-29.
    [202] Hagedorn, F., Spinnler, D., Siegwolf, R. Increase N deposition retards mineralizationof old soil organic matter[J]. Soil Biology and Biochemistry,2003,35:1683-1692.
    [203] Reeder, J.D., Schumman, G.E., Bowman, R.A. Soil C and N changes on conservationreserve program lands in the Central Great Plains[J]. Soil and Tillage Research,1998,47:339-349.
    [204] Bronson, K., Zobeck, T., Chua, T.T., et al. Carbon and nitrogen pools of southernhigh plains cropland and grassland soils[J]. Soil Science Society of America Journal,2004,68:1695-1704.
    [205] Paterson, E., Midwood, A.J., Millard, P. Through the eye of the needle: a review ofisotope approaches to quantify microbial process mediating soil carbon balance[J].New Phytologist.,2009,184:19-33.
    [206] Zhao, L.P., Sun, Y.J., Zhang, X.P., et al. Soil organic carbon in clay and silt sizedparticles in Chinese mollisols: Relationship to the predicted capacity[J]. Geoderma,2006,132:315-323.
    [207] Kemmitt, S.J., Wright, D., Goulding, K.W.T., et al. pH regulation of carbon andnitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry,2006,38:898-911.
    [208] Curtin, D., Campbell, C.A., Jalil, A. Effects of acidity on mineralization:pH-dependence of organic matter mineralization in weakly acidic soils[J]. SoilBiology and Biochemistry,1996,30:57-64.
    [209] Reichstein, M., Beer, C. Soil respiration across scales: The importance of amodel-data integration framework for data interpretation[J]. Journal of Plant Nutrientand Soil Science,2008,171:344-354.
    [210] Homann, P.S., Sollins, P., Chappell, H.N. Soil organic carbon in a mountainous,forested region: relation to site characteristics[J]. Soil Science Society of AmericaJournal,1995,59:1468-1475.
    [211] Alvarez, R., Lavado, R.S. Climate, organic matter and clay content relationship in thePampa and Chaco soils, Argentina[J]. Geoderma,1998,83:127-141.
    [212] Kenapen, A., Poesen J., de Baets S. Seasonal variations in soil erosion resistanceduring concentrated flow for a loess-derived soil under two contrasting tillagepractices[J]. Soil and Tillage Research,2007,94:425-440.
    [213]中国科学院黄土高原综合科学考察队.黄土高原地区土壤侵蚀区域特征及综合治理途径[M].北京:中国科学技术出版社,1991.
    [214] Townsend, A.R., Vitousek, P.M., Trumbore, S.E. Soil organic-matter dynamics alonggradients in temperature and land-use on the island of Hawaii[J]. Ecology,1995,76:721-733.
    [215] Seneviratne, G., Van Holm, L.H.J., Kulasooriya, S.A. Quality of different mulchmaterials and their decomposition and N release under low moisture regimes[J].Biology and Fertility of Soils,1998,26:136-140.
    [216] Garten, C.T., Post, W.M., Hanson, P.J., et al. Forest soil carbon inventories anddynamics along an elevation gradient in the southern Appalachian Mountains[J].Biogeochemistry,1999,45:115-162.
    [217] Tan, Z.X., Lal, R., Semeck, N.E., et al. Relationships between surface soil organiccarbon pool and site variables[J]. Geoderma,2004,121:187-195.
    [218]赵景波,黄春长,朱显谟.黄土高原的形成和发展[J]中国沙漠,1999,19(4):333-337.
    [219] Li, Y.Y., Shao, M.A., Zheng, J.Y., et al. Spatial-temporal changes of soil organiccarbon during vegetation recovery at Ziwuling, China[J]. Pedosphere,2005,15:601-610
    [220] Chen L.D., Gong, J., Fu, B.J., et al. Effect of land use conversion on soil organiccarbon sequestration in the loess hilly area, loess plateau of China[J]. EcologicalResearch,2007,22:641-648
    [221] Post, W.M., Kwon, K.C. Soil carbon sequestration and land-use change: processesand potential[J]. Global Change Biology,2000,6:317-327.
    [222] Glendining, M.J., Powlson, D.S., Poulton, P.R., et al. The effects of long-termapplications of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk wheatexperiment[J]. Journal of Agriculture Science,1996,127:347-363.
    [223] Trangmar, B.B., Yost, R.S., Uehara, G. Application of geostatistics to spatial studiesof soil properties[J]. Advances in Agronomy,1986,38:45-94.
    [224] Shepherd, T.G., Saggar, S., Newman, R.H., et al. Tillage induced changes to soilstructure and soil organic carbon fractions in New Zealand soils[J]. Australian Journalof Soil Research,2001,39:465-489.
    [225] Campbell, C.A., Biederbeck, V.O., Zentner, R.P., et al. Effect of crop rotations andcultural practices on soil organic matter, microbial biomass and respiration in a thinBlack Chernozem[J]. Canadian Journal of Soil Science,1991,71:363-376.
    [226] Stenberg, B. Effects of soil sample pretreatments and standardized rewetting asinteracted with sand classed on Vis-NIR predictions of clay and soil organic carbon[J].Geoderma,2010,158:15-22.
    [227] Hati, K.M., Swarup, A., Mishra, B., et al. Impact of long-term application offertilizer, manure and lime under intensive cropping on physical properties andorganic carbon content of an Alfisol[J]. Geoderma,2008,148:173-179.
    [228] Quilchano, C., Mara ón, T., Pérez-Ramos, I.M., et al. Patterns and ecologicalconsequences of abiotic heterogeneity in managed cork oak forests of SouthernSpain[J]. Ecological Research,2008,23:127–139.
    [229] Liu, E., Yan, C., Mei, X., et al. Long-term effect of chemical fertilizer, straw, andmanure on soil chemical and biological properties in northwest China[J]. Geoderma,2010,158:173-180.
    [230] Giesler, R., Pettersson, T., H gberg, P. Phosphorus limitation in boreal forests:effects of aluminum and iron accumulation in the humus layer[J]. Ecosystems,2002,5:300-314.
    [231] Moazed, H., Hoseini, Y., Naseri, A.A., et al. Determining phosphorus adsorptionisotherm in soil and its relation to soil characteristics[J]. International Journal of SoilScience,2010,5:131-139.
    [232] Vitousek, P.M., Cassman, K., Cleveland, C., et al. Towards an ecologicalunderstanding of biological nitrogen fixation[J]. Biogeochemistry,2002,57/58:1-45.
    [233] Chen, M., Chen, J., Sun, F. Agricultural phosphorus flow and its environmentalimpacts in China[J]. Science of the Total Environment,2008,405:140-152.
    [234] Jennings, E., Allott, N., Pierson, D.C., et al. Impact of climate change on phosphorusloading from a grassland catchment: Implication for future management[J]. WaterResearch,2009,43:4316-4326.
    [235] Patil, R.H., Laegdsmand, M., Olesen, J.E., et al. Effect of soil warming and rainfallpatterns on soil N cycling in Northern Europe[J]. Agriculture Ecosystems andEnvironment,2110,139:195-205.
    [236] Lin, J.S., Shi, X.Z., Lu, X.X., et al. Storage and spatial variation of phosphorus inpaddy soils of China[J]. Pedosphere,2009,19:790-798.
    [237] Rezaei, S.A., Gilkes, R.J. The effects of landscape attributes and plant communityon soil chemical properties in rangelands[J]. Geoderma,2005,125:167-176.
    [238] Rodríguez, A., Durán, J., Fernández-Palacios J.M., et al. Spatial pattern and scale ofsoil N and P fractions under the influence of a leguminous shrub in a Pinuscanariensis forest[J]. Geoderma,2009,151:303-310.
    [239] Gami, S.K., Lauren, J.G., Duxbury, J.M. Influence of soil texture and cultivation oncarbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains[J]. Geoderma,2009,153:304-311.
    [240] Ross, D.J., Tate, K.R., Scott, N.A., et al. Land-use change: effects on soil carbon,nitrogen and phosphorus pools and fluxes in three adjacent ecosystems[J]. SoilBiology and Biochemistry,1999,31:803-813.
    [241] Ostwald, M., Chen, D. Land-use change: Impacts of climate variation and policiesamong small-scale farmers in the Loess Plateau, China[J]. Land Use Policy,2006,23:361-371.
    [242] Wang, G.P., Liu, J.S., Wang, J.D., et al. Soil phosphorus forms and their variations indepressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China)[J].Geoderma,2006,132,59-74.
    [243] Shi, H., Shao, M.A. Soil and water loss from the Loess Plateau in China[J]. Journalof Arid Environment,2000,45:9-20.
    [244] Zheng, F., He, X., Gao, X., et al. Effects of erosion patterns on nutrient lossfollowing deforestation on the Loess Plateau of China[J]. Agriculture Ecosystems andEnvironment,2005,108:85-97.
    [245] Liu, G. Soil conservation and sustainable agriculture on the Loess Plateau: challengesand prospects[J]. Ambio,1999,28:663-668.
    [246] Yang, Y.H., Ma, W.H., Mohammat, A., et al. Storage, patterns and controls of soilnitrogen in China[J]. Pedoshpere,2007,17:776-785.
    [247] Zhang, C., Tian, H.Q., Liu, J.Y., et al. Pools and distribution of soil phosphorus inChina[J]. Global Biogeochemistry Cycle,2005, doi:10.1029/2004GB002296.
    [248] Tian, H.Q., Wang, S.Q., Liu, J.Y., et al. Patterns of soil nitrogen storage in China[J].Global Biogeochemistry Cycle,2006, doi:10.1029/2005GB002464.
    [249] Smil, V. Phosphorus in the environment: natural flows and human interferences[J].Annual Review of Energy and the Environment,2000,25:53-58.
    [250] Hageback, J., Sundberg, J., Ostwald, M., et al. Climate variations and land use inDanangou watershed, China-examples of small-scale farmers’ adaptation[J]. ClimaticChange,2005,72:189-212.
    [251] Wang, Y.Q., Shao, M.A., Zhu, Y.J., et al. Impact of land use and plant characteristicson dried soil layers in different climatic regions on the Loess Plateau of China[J].Agricultural and Forest Meteorology,2011,151:437-448.
    [252]王淑平,周广胜,高素华,等.中国东北样带土壤氮的分布特征及其对气候变化的响应[J].应用生态学报,2005,16(2):279-283.
    [253] Post, W.M., Pastor, J., Zinke, P.J., et al. Global patterns of soil nitrogen storage[J].Nature,1985,317:613-616.
    [254] Karhu, K., Fritze, H., Tuomi, M., et al. Temperature sensitivity of organic matterdecomposition in two boreal forest soil profiles[J]. Soil Biology and Biochemistry,2010,42:72-82.
    [255] Shumway, R. H., Stoffer, D. S. An approach to time series smoothing and forecastingusing the EM algorithm[J]. Journal of Time Series Analysis,1982,3(4):253-264.
    [256] Kalman, R. E. A new approach to linear filtering and prediction problems[J].Transaction of ASME, Journal of Basic Engineering,1960,8:35-45.
    [256] Brady, L., Weil, R.R. The Nature and Properties of Soil(13thed)[M]. The Netherlands:Springer,2002, p.249.
    [257] Aciego Pietri, J.C., Brookes, P.C. Relationships between soil pH and microbial andmicrobial properties in a UK arable soil[J]. Soil Biology and Biochemistry,2008,40:1856-1861.
    [258] Fageria, N.K., Baligar, V.C., Donald, L.S. Ameliorating soil acidity of tropicaloxisols by liming for sustainable crop production[J]. Advances in Agronomy,2008,99:345-399.
    [259] Yang, J.Y., Yang, X.E., He, Z.L., et al. Effects of pH, organic acids, and inorganicions on lead desorption from soils[J]. Environmental Pollution,2006,143:9-15.
    [260] Marstorp, H., Guan, X., Gong, P. Relationship between dsDNA, chloroform labile Cand ergosterol in soils of different organic contents and pH[J]. Soil Biology andBiochemistry,2000,32:879-882.
    [261] B th, E., Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradientusing physiological and PLFA-based techniques[J]. Soil Biology and Biochemistry,2003,35:955-963.
    [262] Anderson, T.H. The influence of acid irrigation and liming on the soil microbialbiomass in a Norway spruce (Picea abies[L.]K.) stand[J]. Plant and Soil,1998,199:117-122.
    [263] Kemmitt, S.J., Wright, D., Jones, D.L. Soil acidification used as a managementstrategy to reduce nitrate losses from agriculture land[J]. Soil Biology andBiochemistry,2005,37:867-875.
    [264] Gotway, C.A., Ferguson, R.B., Hergert, G.W., et al. Comparison of kriging andinverse-distance methods for mapping soil parameters[J]. Soil Science Society ofAmerica Journal,1996,60:1237-1247.
    [265] Laslett, G.M., McBratney, A.B., Pahl, P.J., et al. Comparison of several spatialprediction methods for soil pH[J]. Journal of Soil Science,1987,38:325-341.
    [266] Krravchenko, A.N. Influence of spatial structure on accuracy of interpolationmethods[J]. Soil Science Society of America Journal,2003,67:1564-1571.
    [267] Yue, T.X., Du, Z.P., Song, Y.J., et al. A new method of surface modeling and itsapplication to DEM construction[J]. Geomorphology,2007,91(1-2):161-172.
    [268] Shi, W.J., Liu, J.Y., Du, Z.P., et al. Surface modeling of soil pH[J]. Geoderma,2009,150:113-119.
    [269] Wollenhaupt, N.C., Wolkowski, R.P., Clayton, M.K. Mapping soil test phosphorusand potassium for variable-rate fertilizer application[J]. Journal of ProductionAgriculture,1994,7(4):441-447.
    [270] Gao, L., Shao, M.A., Wang, Y.Q. Spatial scaling of saturated hydraulic conductiv ityof soils in a small watershed on the Loess Plateau, China[J]. Journal of Soils andSediments,2012,12:863-875.
    [271] Stone, M. Cross-validation choice and assessment of statistical prediction[J]. Journalof the Royal Statistical Society Series B,1974,36:111-147.
    [272] Nash, J.E., Sutcliffe, J.V. River flow forecasting through conceptual models part Ι–A discussion of principle[J]. Journal of Hydrology,1970,10(3):282-290.
    [273] Sun, B., Zhou, S.L., Zhao, Q.G. Evaluation of spatial and temporal changes of soilquality based on geostatistical analysis in the hill region of subtropical China[J].Geoderma,2003,115:85-99.
    [274] Bai, Y., Wang, Y. Spatial variability of soil chemical properties in a Jujube slope onthe Loess Plateau of China[J]. Soil Science,2011,176:550-558.
    [275]魏孝荣,邵明安.黄土高原沟壑区小流域坡地土壤pH值的空间分布及条件模拟[J].农业工程学报,2009,25(5):61-67.
    [276] Jobbágy, E.G., Jackson, R.B. Patterns and mechanisms of soil acidification in theconversion of grasslands to forests[J]. Biogeochemistry,2003,64:205-229.
    [277] Montagnini, F., Haines, B., Swank, W.T. Soil-solution chemistry in black locust,pine/mixed-hardwoods and oak/hickory forest stands in the southern Appalachians,U.S.A[J]. Forest Ecology and Management,1999,40:199-208.
    [278] Wallace, A. Soil acidification from use of too much fertilizer[J]. Communications inSoil Science and Plant Analysis,1994,25(1-2):87-92.
    [279] Yasrebi, J., Saffari, M., Fathi, H., et al. Evaluation and comparison of ordinarykriging and inverse distance weighting methods for prediction of spatial variability ofsome soil chemical parameters[J]. Res J Biol Sci,2009,4:93-102.
    [280] Thomas, D.S.G., Middleton, N.J. Salinization: new perspectives on a majordesertification issue[J]. Journal of Arid Environment,1993,24(1):95-105.
    [281]石元春.盐碱土改良:诊断、管理、改良[M].北京:农业出版社,1986.
    [282] Ci, L., Yang, X. Desertification and its control in China[M]. Beijing andSpringer-Verlag Berlin Heidelberg: High Education Press,2010, p.274-276.
    [283] Zhao, Y., Mao, F., Yang, X. Soil salinization and its improvement in arid Hetao plain,InnerMongolia: irrigation roles[J]. Chinese Forestry Science and Techology,2010,9(3):21-35.
    [284] Xiong, S., Xiong, Z., Wang, P. Soil salinity in the irrigated area of the Yellow Riverin Ningxia, China[J]. Arid Soil Research and Rehabilitation,1996,10:95-101.
    [285] de Caritat, P., Cooper, M., Wilford, J. The pH of Australian soils: field results from anational survey[J]. Soil Research,2011,49:173-182.
    [286] Gray, J.M., Humphreys, G.S., Deckers, J.A. Relationships in soil distribution asrevealed by a global soil database[J]. Geoderma,2009,150:309-323.
    [287] Rodgers, S.E., Oliver, M.A. A geostatistical analysis of soil, vegetation, and imagedata characterizing land surface variation[J]. Geographical Analysis,2007,39:195-216.
    [288] Xu, S., Tao, S. Coregionalisation analysis of heavy metals in the surface soil of InnerMongolia[J]. Science of the Total Environment,2004,320:73-87.
    [289] Castriganò, A., Goovaerts, P., Lulli, L., et al. A geostatistical approach to estimateprobability of occurrence of Tuber melanosporum in relation to some soilproperties[J]. Geoderma,2000,98:95-113.
    [290] McBratney, A.B., Webster, R. Choosing functions for semivariograms of soilproperties and fitting them to sampling estimates[J]. Journal of Soil Science,1986,37:617-639.
    [291] Pebesma, E.J. Multivariable geostatistics in S: the gstat package[J]. ComputerGeoscience,2004,30:683-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700