用户名: 密码: 验证码:
具胃毒杀虫活性的球孢白僵菌工程菌剂对甘蓝害虫的整季田间防效和安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于活体细胞的真菌杀虫菌剂时效性较差,限制其商业开发和应用。生防真菌转基因工程菌剂在很大程度能克服杀虫时效性较差的缺点,但绕不开环境安全性的公众疑虑,而目前缺乏转基因真菌杀虫剂田间杀虫效果和安全性评价的实例。本研究以先前构建的超高表达苏云金芽孢杆菌(Bacillus thuringiensis)杀虫蛋白Vip3Aal而对鳞翅目害虫表现高胃毒杀虫活性的球孢白僵菌(Beauveria bassiana)工程菌株BbHV8及其亲本野生株Bb2860(简称WT)为材料,将其高纯度分生孢子粉配制成孢子悬乳剂(emulsifiable formulation),在浙江金华从初夏开始进行了两个独立的各历时35天防治以菜青虫(Pieris rapae)为主、小菜蛾(Plutella xylostella)和桃蚜(Myzus persicae)为辅的田间试验,一是比较两种菌剂与当家化学杀虫剂甲氨基阿维菌素苯甲酸盐(简称甲维盐)在根据虫情四次用菌用药条件下对卷心甘蓝的整季保护效果;二是在试验期间评价了各处理对田间捕食性天敌蜘蛛种群的影响,试验之后数月期间多批次采样评价两种菌剂在释放环境中的存留状况、环境适应性及其对土壤真菌群落的影响,作为其环境安全性的评判依据。在此基础上,探索了利用工程菌中靶基因的引物在实时定量荧光PCR中的特异性,通过制定标准曲线快速定量检测甘蓝叶片上和环境土壤样品中工程菌含量的可能性,为工程菌剂的环境安全性评价和管控提供技术参考。主要结果摘要如下:
     工程菌剂BbHV8对甘蓝的整季保护效果与甲维盐匹敌在夏季由水稻和玉米作物包围的两地块中分别于4月2日和12日移载的甘蓝,很快诱集菜粉蝶等鳞翅目害虫前来产卵,田间菜青虫分别于4月22日和5月5日达到0.94±0.06和0.93±0.05头/株甘蓝(mean±SEM)的虫口密度,大大超过0.5头/株的经济危害阈值,故作为试验1和试验2用菌用药处理的起始日。两试验均包括4个处理,即BbHV8和WT的悬乳剂(1010个孢子/mL)100倍稀释液机动弥雾(用菌量均为1013个孢子/公顷)、5%甲维盐水分散粒剂按标签用量机动弥雾(标准化防)及配制孢子悬乳剂的乳油100倍稀释液机动弥雾(空白对照),每处理4个小区(6×11m),随机区组排列。试验1首次弥雾后间隔10天重复用菌用药,每隔5天抽样调查各处理中菜青虫、小菜蛾及蚜虫密度,第25天对照中菜青虫虫口达16.1±1.0头/株,而BbHV8、WT及甲维盐处理中分别为4.3±0.3、8.2±0.8和1.3±0.2头/株;首次药后20天,在BbHV8、WT、甲维盐和对照中小菜蛾虫口分别0.40±0.08、0.45±0.06、0.75±0.06及1.50±0.15头/株,第35天分别为0.15±0.05、0.28±0.09、1.95±0.64及0.13±0.05头/株。试验1中桃蚜初始密度为12.7±1.1头/株,首次药后15天甲维盐处理区蚜虫数量上升,第35天68.6±3.2头/株,而同期BbHV8处理区仅为10.9±1.5头/株。试验2的虫情与试验1相近,但对照处理菜青虫密度于第10天高达27.7±2.0头/株,于是分别在首次药后第5天和第15天重复用菌用药,最终试验2各处理的控虫效果优于试验1。
     由于两试验中都是暴食性菜青虫主导危害甘蓝,对照叶片损毁十分严重,且被损毁植株上的菜青虫就近转移到可取食的植株,使田间抽样调查的虫口数难以真实反映甘蓝受害状况,故调查时根据每株甘蓝叶片损失率分为5级,作为各处理相对防效和综合保护效果的评价依据。结果表明,试验1中BbHV8、WT和甲维盐历次抽样调查的相对防效分别为65~75%、15~58%和42~85%,平均防效分别为70.5%(±1.2)、30.9%(±6.1)和69.7%(±6.9)。试验2期间上述三处理的相对防效波动范围分别为49~80%、41~70%和51~90%,平均防效分别为74.5%(±4.3)、48.4%(±4.2)和83.5%(±5.5)。两个试验中,工程菌剂BbHV8与甲维盐的总体防效相似或相近,都显著高于WT。后者对害虫有一定的控制作用,但当菜青虫暴发时,难以及时控制虫口数量而对甘蓝予以有效保护。
     在试验2期间补充进行了两种菌剂相同用菌量下对暴食性4龄菜青虫的田间生物测定,测得BbHV8对4龄菜青虫的LT50和LT95分别为1.6(1.2~1.9)和4.5(4.3~4.8)天,而WT的LT50和LT95分别为5.7(5.4~6.0)和11.5(10.6~12.8)天。这一结果说明,BbHV8毒杀4龄菜青虫50%和95%比WT分别快4天和7天。
     工程菌剂BbHV8的生态安全性在田间试验1和2期间的历次抽样调查中,BbHV8和WT菌剂处理对田间蜘蛛种群均未见负面影响,BbHV8由于较好保护了甘蓝,对田间蜘蛛种群有所助增,而甲维盐处理区蜘蛛数量一直低于菌剂处理区。
     在试验1最后一次用菌后次日、30天内每隔10天、半年内每隔一个月采集用菌和对照处理小区的表层土壤(0-5cm),带回实验室分别选择性分离培养球孢白僵菌与腐生丝状真菌并统计每克土样中的菌落形成单位(CFU)数量。结果显示,WT和BbHV8小区喷菌后次日每克土壤(干重)中球孢白僵菌CFU含量分别达3.1(±0.4)×104和2.1(±0.4)×104个,10天后降为4.3(±0.2)×103和3.2(±0.2)×103个,20天后降为3.8(±0.7)×102和4.1(±0.8)×102个,此后低水平徘徊,第120天后分别降至145±59和36±36个,再往后采集的土样中再未分离到球孢白僵菌。对照小区中仅在用菌后第20和30天的每克土样中分离到69±40和34±34个CFU,显示田间雨水等因素可导致白僵菌在地块内的轻微扩散。各批次土样中分离培养的腐生真菌CFU数量虽有季节性变化,但同批次样品中的CFU含量在两菌剂与对照处理间均无显著差异。
     将用菌后30天、60天和90天的球孢白僵菌土壤分离物各选24株共72株,每次来自BbHV8和WT小区的各12株,通过PCR检测它们是否携带杀虫蛋白基因vip3Aal基因。结果显示,来自用菌后30天WT小区的12株菌有2株呈阳性,而源于BbHV8小区的12株菌中也有2株呈阴性;用菌后60天的分离物鉴定结果,来自WT处理小区的白僵菌全为阴性,来自BbHV8小区的仅有1株呈阴性;用菌后90天的土样分离株中,来自BbHV8小区的全为阳性,而来自WT小区的全为阴性。显然,所用菌剂由于雨水泾流等原因在地块内存在扩散或相互串染的现象,但串染率不超过17%,且随着田间存留量的减少,串染比率降低,最后消失。
     用菌后90天BbHV8和WT小区的土壤分离株rHV8和rWT在SDAY平板上培养8天的产孢量分别比BbHV8和WT下降26.5%和32.4%,而且rHV8培养8天的菌落直径比BbHV8小32.2%;rWT虽比WT生长快9.1%,但菌落产孢量大幅下降。环境胁迫试验表明,BbHV8分生孢子耐UV-B辐射和45℃高温的能力分别比WT低19.2%和12.5%,rHV8比BbHV8分别低32.5%和38.9%,rWT比WT分别低39.7%和31.0%。总体看,BbHV8和Bb2860在释放环境中的生态适应能力呈下降趋势,且前者的生态适应能力弱于后者。
     工程菌剂BbHV8在释放环境中存留量的快速定量检测技术探索通过实时荧光定量PCR扩增融解曲线对靶基因vip3Aal引物特异性的分析建立扩增标准曲线,利用靶基因在BbHV8细胞中单拷贝的特性,以含分生孢子的甘蓝叶片和土壤样品的总DNA提取物为模板,探索建立甘蓝和土壤样品中孢子含量的快速检测方法。结果显示,菜叶上孢子的检测精度可达2个孢子/mm2,土壤中也可检出1-2个孢子/mg干土。然而,土壤成份复杂,影响目标DNA的提取效率和PCR扩增效率,样品检测偏差大于甘蓝叶片。
     综上所述,BbHV8转基因工程菌剂对甘蓝主要害虫的防治效果与甲维盐相似或相近,对非靶标的田间蜘蛛和土壤真菌群落无负面影响,其在释放环境中的存留量快速衰减,生态安全风险很低。
Notoriously slow kill action of fungal cell-based insecticides often depresses commercial interest and genetically engineered mycoinsecticides can accelerate the kill action but associated ecological risk is of public concern. Since little effort has been made to assess control efficacy and ecological safety of transgenic mycoinsecticides under real field conditions, this study sought to fill the gap with the data of two35-day field trials performed in Jinhua, Zhejiang Province. Aerial conidia of a transgenic Beauveria bassiana strain (BbHV8) over-expressing a Bacillus thuringiensis vegetative insecticidal protein (Vip3Aal) for acquisition of fast per os virulence to caterpillars and its parental wild-type strain Bb2860(WT) were formulated for repeated sprays against cabbage pest complex, which was dominated by the cabbage butterfly (CBF) Pieris rapae, followed by the diamond-back moth (DBM) Plutella xylostella and the green peach aphid (GPA) Myzus persicae. Their control efficacies were compared with that of emarnectin benzoate (EB), a chemical insecticide commercially recommended for cabbage pest control. Their field fitness and effects on field spider community and native soil fungi were also evaluated during the cabbage growing season and several post-trial months respectively. An effort was made to establish a technical system that is potential for fast quantification of BbHV8conidia in cabbage foliage and soil samples by means of single-copy specificity of the target gene primers in quantitative real-time PCR (qRT-PCR). The results are summarized below.
     High field efficacy of BbHV8formulation competed with the EB efficacy in full-seson cabbage pest control. The two fields surrounded by rice and maize crops were transplanted with cabbage seedlings on April2and12respectively, attacking lepidopteran insects, such as CBF and DBM, for egg deposition. The mean CBF density (±SEM) reached0.94(±0.06) and0.93(±0.05) larvae per plant in the two fields on April22and May5, exceeding an economic injury level of0.5larvae per plant for initiatiing Trials1and2respectively. Each field trial included four treatments of four plots (6x11m), i.e.,100-fold aqueous dilution of emulasifiable BbHV8or WT formulation (1010conidia/ml) sprayed at the rate of1013conidia/ha, aqueous EB dilution sprayed at the labeled rate, and100-fold aqueous dilution of emulsion vector (for fungal formulation) sprayed as blank control (BC). All treatments and plots were arranged in terms of a randomized block design and monitored every5days for pest and spider densities until cabbage heads were ready for harvest. Repeated spray was carried out in Trial1at10-day internval, resulting in the respective CBF densities of16.1±1.01,4.310.3,8.2±0.8and1.3±0.2larvae per plant in the BC, BbHV8, WT and EB treatments on day25. The four treatments were infested with the DBM densities of1.50±0.15,0.40±0.08,0.45±0.06and0.75±0.06larvae per plant on day20and of0.13±0.05,0.15±0.05,0.28±0.09and1.95±0.64larvae per plant on day35respectively. GPA density in Trial1began from12.7±1.1aphids per plant and was consistently suppressed to a very low level by BbHV8throughout the tiral but increased to68.6±3.2aphids per plant in EB plots at the end of the trial. Cabbage plants in Trial2suffered from similar damages by main pest populations as seen in Trial1but the CBF density in BC was up to27.7±2.0larvae per plant on day10. For this reason, repeated sprays in Trial2were scheduled on days5,15and35respectively, resulting in somewhat better best control than that in Trial1.
     Since CBF overwhelmed foliage damage in both field trials and ageing larvae could transfer to adjacent plants from severely damage plants, pest population densities estimated by sampling could not reflect the true damage levels in the fields. Thus, damage of each sampled plant was scaled to five grades in terms of percent foliage loss due to ingestion by CBF larvae and the damge grades were used to compute control efficacy (%) relative to BC. As a result, the control efficacies of BbHV8, WT and EB fell in the respective ranges of65~75%,15~58%and42~85%during Trial1and were averaged as70.5%(±1.2),30.9%(±6.1) and69.7%(±6.9). The efficacies of the three treatments in Trial2spanned from49%to80%,41%to70%and51%to90%, resulting in the overall means of74.5%(±4.3),48.4%(±4.2) and83.5%(±5.5) respectively. In both trials, BbHV8provided a full-season protection from the damage of cabbage pest complex with an overall efficacy similar or close to that achieved by EB application. In contrast, WT showed some degree of control efficacy against the pest complex but the control was insufficient to protect the cabbage from the damage by large CBF population.
     A supplementary experiment was conducted to bioassay the virulence of BbHV8and WT to fourth-instar CBF larvae sprayed at the same rate as the two field trials during Trial2. Under the spray, LT50, LT95and associated95%confidence intervals were estimated as1.6(1.2~1.9) and4.5(4.3~4.8) days for BbHV8and5.7(5.4~6.0) and11.5(10.6~12.8) days for WT. These estimates indicate that BbHV8killed50%and95%of the tested larvae4-and7-day faster than WT.
     Ecological safety of transgenic BbHV8released in the field. During Trials1and2, spiders as nontarget predators of pests appeared on sampled plants were counted in situ and the counts on all sampling occasions revealed no negative effect of both BbHV8and WT on the spider population, which was even augmented by the BbHV8treatment but reduced by the chemical control.
     Surface soil samples were collected back to laboratory from the plots of BbHV8, WT and BC the day after the last spray of Trial1, every10day within the first month post-spray and every month from then on. Colony forming Units (CFUs) of B. bassiana and saprophytic fungi were isolated from the soil samples of each batch using two selective media respectively. As a result, CFU counts per gram of soil sample (dry weight) reached3.1(±0.4)×104and2.1(±0.4)×104in the soi samples taken respectively from WT and BbHV8plots the day after the last spray and declined to4.3(±0.2)×103and3.2(±0.2)×103on day10and to3.8(±0.7)×102and4.1(±0.8)×102on day20. From then on, CFU counts fluctuated at low levels and decreased to only145±59and36±36on day120but became undetectable afterwards. Interestingly, the counts69±40and34±34CFUs/g were found in the BC soil samples taken20and30days after the last spray respectively. Moreover, CFU counts of saprophytic fungi from different batches of soil samples showed seasonal fluctuation but did not differ significantly from one treatment to another within each batch.
     Seventy-two B. bassiana isolates recovered from the soil samples collected in the BbHV8and WT plots30,60and90days after the last spray were detected for the presence or absence of the target gene vip3Aal in their DNA samples. The target gene was present in33of the36isolates recovered from BbHV8plots but only in two of the36isolates recovered from Bb2860. Interestingly, the occasionally crossing presence of the target gene occurred only in the earlier soil samples. Since B. bassiana also occasionally recovered from the BC plots, our data indicated that the cabbage field lacked native B. bassiana strains and that the fungal sprays did cause a low frequency of crossing between treatments perhaps due to frequent light rains during the trial.
     Moreover, conidial yields of rHV8and rWT, two isolates recovered from the soil samples of BbHV8and WT treatments90days after the last spray, were26.5%and32.4%lower than BbHV8and WT, respectively, after8-day incubation on SDAY plates while rHV8grew32.2%slower than BbHV8. In stress assays, BbHV8conidia were19.2%and12.5%less tolerant to UV-B irradiation and wet-heat at45℃than the WT conidia while rHV8and rWT showed the reductions of38.9%and39.7%in conidial UV-B resistance and of32.5%and31.0%in conidial thermotolerance compared to BbHV8and WT respectively. Apparently, post-release ecological fitness was low for both BbHV8and WT and even lower for BbHV8.
     Rapid assessment of transgenic BbHV8conidia in cabbage foliage and soil samples by quantitative real-time PCR (qRT-PCR). High specificity of paired primers Vip3Aal-F/R to the target gene vip3Aal was determined with a melt curve in qRT-PCR, followed by establishing a standard curve for the amplication of vip3Aal from total DNA samples of10-105BbHV8conidia/ml. Since the target gene is signle-copied in each each transgenic cell, the number of transgenic conidia in each sample unit would equal to the number of DNA copies in the total DNA of each sumple unit. Thus, the established standard curve was used to assess conidial denisity in foliage and soil samples to which BbHV8conidia were quantitatively added. As a result, an accuracy of qRT-PCR assessment for the conidial density was2conidia/mm cabbage leave or1~2conidia/mg soil (dry weight). However, percent deviations between assessed and quantified conidial densities in soil samples were larger than those in foliage samples perhaps due to the complexity of soil components, which might affect efficiencies of both target DNA extraction and qRT-PCR amplification.
     Conlusively, the transgenic mycoinsecticide BbHV8not only competed with the chemical insecticide recommended for the control of cobbage insect pests dominated by P. rapae in two independent field trials but also had no adverse effect on nontarget spider population and native soil fungi. Taken together with a rapid decline rate of its residue in the soil of released field, BbHV8could be of little risk for environmental safety if it was commercially released.
引文
陈建武,余健秀,胡晓晖,庞义(2002)苏云金杆菌营养期杀虫蛋白的研究.中国生物工程杂志22:33-36.
    顿玉慧,冯明光,应盛华(2003)新型球孢白僵菌孢子悬乳剂的高效杀蚜活性及其评价方法.微生物学报6:781-787.
    姜渝,冯明光(2006)常用化学杀螨剂对两种生防真菌孢子的相容性测定.应用生态学报7:1264-1268.
    李婧(2008)土壤有机质测定方法综述.分析试验 27:154-156.
    蔳蛰龙,李增智编著(1996)昆虫真菌学.合肥:安徽科学技术出版社
    唐启义,冯明光编著(2002)实用统计分析及其DPS数据处理系统.北京:科学出版社
    应盛华,冯明光(2001)球孢白僵菌分生孢子乳悬剂的配方筛选.植物保护学报28:345-351.
    Ali MI, Luttrell RG (2011) Susceptibility of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) to Vip3a insecticidal protein expressed in VipCot cotton. JInvertebr Pathol 108:76-84.
    Althouse CM, Petersen BE, Mcewen LC (1997) Effects on young american kestrels (Falco sparverius) exposed to Beauveria bassiana bioinsecticide. Bull Environ Contam Toxicol 59:507-512.
    Alves S, Marchini L, Pereira R, Baumgratz L (1996) Effects of some insect pathogens on the africanized honey bee, Apis mellifera L. (Hym., Apidae). JAppl Entomol 120:559-564.
    Andow DA, Lovei GL, Arpaia S (2006) Ecological risk assessment for Bt crops. Nat Biotechnol 24: 749-751
    Arora N, Ahmad T, Rajagopal R, Bhatnagar RK (2003) A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochem Biophy Res Co 307:620-5.
    Arora N, Selvapandiyan A, Agrawal N, Bhatnagar RK (2003) Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis. Biochem Biophy Res Co 310:158-62.
    Ayalew G (2011) Effect of the insect growth regulator novaluron on diamondback moth, Plutella xylostella L. (Lepidoptera:Plutellidae), and its indigenous parasitoids. Crop Prot 30:1087-1090.
    Bai NS, Sasidharan TO, Remadevi OK, Rajan PD, Balachander M (2010) Virulence of Metarhizium isolates against the polyphagous defoliator pest, Spilarctia obliqua (lepidoptera:Arctiidae). J Trop For Sci 22: 74-80.
    Batta YA (2003) Production and testing of novel formulations of the entomopathogenic fungus Metarhizium anisopliae (Metschinkoff sorokin) (Deuteromycotina:Hyphomycetes). Crop Prot 22:415-422.
    Bell AS, Blanford S, Jenkins N, Thomas MB, Read AF (2009) Real-time quantitative PCR for analysis of candidate fungal biopesticides against malaria:Technique validation and first applications. J Invertebr Pathol 100:160-168.
    Bommireddy PL, Leonard BR (2008) Survivorship of Helicoverpa zea and Heliothis virescens on cotton plant structures expressing a Bacillus thuringiensis vegetative insecticidal protein. J Econ Entomol 101: 1244-52.
    Brake J, Faust M, Stein J (2005) Evaluation of transgenic hybrid corn (vip3a) in broiler chickens. Poult Sci 84:503-12.
    Bravo A, Soberon M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26:573-579.
    Brinkman MA, Fuller BW (1999) Influence of Beauveria bassiana strain GHA on nontarget rangeland arthropod populations. Environ Entomol 28:863-867.
    Bruck DJ, Lewis LC (2002) Carpophilus freemani (Coleoptera:Nitidulidae) as a vector of Beauveria bassiana. J Invertebr Pathol 80:188-190.
    Burkness EC, Dively G, Patton T, Morey AC, Hutchison WD (2010) Novel Vip3a Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera:Noctuidae) under field conditions:Implications for resistance management. GM Crops 1:337-343.
    Butters JA, Devi KU, Mohan CM, Sridevi V (2003) Screening for tolerance to bavistin, a benzimidazole fungicide containing methyl benzimidazol-2-yl carbamate (MBC), in Beauveria bassiana:Sequence analysis of the beta-tubulin gene to identify mutations conferring tolerance. Mycol Res 107:260-6.
    Cai J, Xiao L, Yan B, Bin G, Chen Y, Ren G (2006) Vip3a is responsible for the potency of Bacillus thuringiensis 9816c culture supernatant against Helicoverpa armigera and Spodoptera exigua. J Gen Appl Microbiol 52:83-9.
    Carreck NL, Butt TM, Clark SJ, Ibrahim L, Isger EA, Pell JK, Williams IH (2007) Honey bees can disseminate a microbial control agent to more than one inflorescence pest of oilseed rape. Biocontrol Sci Techn 17:179-191.
    Castrillo L, Griggs M, Vandenberg J (2008) Quantitative detection of Beauveria bassiana GHA (Ascomycota:Hypocreales), a potential microbial control agent of the emerald ash borer, by use of real-time PCR. Biol Control 45:163-169.
    Castrillo L, Thomsen L, Juneja P, Hajek A (2007) Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR. Mycol Res 111:324-331.
    Castrillo LA, Griggs MH, Vandenberg JD (2004) Vegetative compatibility groups in indigenous and mass-released strains of the entomopathogenic fungus Beauveria bassiana:Likelihood of recombination in the field. J Invertebr Pathol 86:26-37.
    Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management:An assessment of environmental and regulatory sustatinability. Trends Food Sci Tech 19:275-283.
    Chen J, Yu J, Tang L, Tang M, Shi Y, Pang Y (2003) Comparison of the expression of Bacillus thuringiensis full-length and N-terminally truncated vip3a gene in Escherichia coli. J Appl Microbiol 95:310-316.
    Copping LG (Ed)(2004) The manual of biocontrol agents.3rd ed. Alton:British Crop Protection Council 702.
    Cordero RJ, Bloomquist JR, Kuhar TP (2007) Susceptibility of two diamondback moth parasitoids, Diadegma insulare (Cresson) (Hymenoptera; ichneumonidae) and Oomyzus sokolowskii (Kurdjumov) (Hymenoptera; Eulophidae), to selected commercial insecticides. Biol Control 42:48-54.
    Cory JS, Franklin MT (2012) Evolution and the microbial control of insects. EvolAppl 5:455-569.
    Cossentine JE, Judd GJR, Bissett JD, Lacey LA (2010) Susceptibility of apple clearwing moth larvae, Synanthedon myopaeformis (Lepidoptera:Sesiidae) to Beauveria bassiana and Metarhizium brunneum. Biocontrol Sci Techn 20:703-707.
    Danfa A, Van Der Valk HCHG (1999) Laboratory testing of Metarhizium spp. and Beauveria bassiana on Sahelian non-target arthropods. Biocontrol Sci Techn 9:187-198.
    de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides:A comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237-256.
    De La Rosa W, Segura HR, Barrera JF, Williams T (2000) Laboratory evaluation of the impact of entomopathogenic fungi on Prorops nasuta (Hymenoptera:Bethylidae), a parasitoid of the coffe berry borer. Environ Entomol 29:126-131.
    Devi KU, Sridevi V, Mohan CM, Padmavathi J (2005) Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J Invertebr Pathol 88:181-189.
    Dively GP (2005) Impact of transgenic vip3a×crylAb Lepidopteran-resistant field corn on the nontarget arthropod community. Environ Entomol 34:1267-1291.
    Donegan K, Lighthart B (1989) Effect of several stress factors on the susceptibility of the predatory insect, Chrysoperla carnea (Neuroptera:Chrysopidae), to the fungal pathogen Beauveria bassiana. J Invertebr Pathol 54:79-84.
    Donovan WP, Donovan JC, Engleman JT (2001) Gene knockout demonstrates that vip3a contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J Invertebr Pathol 78:45-51
    Edel-Hermann V, Brenot S, Gautheron N, Aime S, Alabouvette C, Steinberg C (2009) Ecological fitness of the biocontrol agent Fusarium oxysporum Fo47 in soil and its impact on the soil microbial communities. FEMs Microbiol Ecol 68:37-45.
    Ehlers R-U (Ed) (2011a) Regulation of biological control agents. In:Risks of Microbial Biocontrol Agents and Regulation:Are They in Balance? New York:Springer 157-174
    Ehlers R-U (Ed) (201 lb) Regulation of biological control agents. In:Regulation of biological control agents and the EU policy support action REBECA. New York:Springer Press 3-23.
    Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3a, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against Lepidopteran insects. Proc Natl Acad Sci U S A 93:5389-5394.
    Fan Y, Zhang Y, Yang X, Pei X, Guo S, Pei Y (2007) Expression of a Beauveria bassiana chitinase (Bbchitl) in Escherichia coli and Pichia pastoris. Protein Expr Purif 56:93-99.
    Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen Z (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956-61.
    Fang WG, St Leger RJ (2012) Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. Plos One 7:e43069.
    Fang WG, Vega-Rodriguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ (2011) Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331:1074.
    Fang WG, Leng B, Xiao YH, Jin K, Ma JC, Fan YH, Feng J, Yang XY, Zhang YJ, Pei Y (2005) Cloning of Beauveria bassiana chitinase gene Bbchitl and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363-370.
    Fargues J, Goettel MS, Smits N, Ouedraogo A, Rougier M (1997) Effect of temperature on vegetative growth of Beauveria bassiana isolates from different origins. Mycologia 89:383-392. Fargues J, Smits N, Rougier M, Boulard T, Ridray G, Lagier J, Jeannequin B, Fatnassi H, Mermier M (2005)
    Effect of microclimate heterogeneity and ventilation system on entomopathogenic hyphomycete infection of Trialeurodes vaporariorum (Homoptera:Aleyrodidae) in mediterranean greenhouse tomato. Biol Control 32:461-472. Fargues J, Vidal C, Smits N, Rougier M, Boulard T, Mermier M, Nicot P, Reich P, Jeannequin B, Ridray G,
    Lagier J (2003) Climatic factors on entomopathogenic hyphomycetes infection of Trialeurodes vaporariorum (Homoptera:Aleyrodidae) in mediterranean glasshouse tomato. Biol Control 28:320-331. Faria M, Hotchkiss JH, Hajek AE, Wraight SP (2010) Debilitation in conidia of the entomopathogenic fungi
    Beauveria bassiana and Metarhizium anisopliae and implication with respect to viability determinating. and mycopesticide quality assessments. J Invertebr Pathol 105:74-83. Feng MG, Poprawski T, Khachatourians G (1994) Production, formulation and application of the
    entomopathogenic fungus beauveria bassiana for insect control:Current status. Biocontrol Sci Techn 4: 3-34. Feng MG, Chen B, Ying SH (2004a) Trials of Beauveria bassiana, Paecilomyces fiimosoroseus and
    imidacloprid for management of Trialeurodes vaporariorum (Homoptera:Aleyrodidae) on greenhouse grown lettuce. Biocontrol Sci Techn 14:531-544. Feng MG, Pu XY, Ying SH, Wang YG (2004b) Field trials of an oil-based emulsifiable formulation of
    Beauveria bassiana conidia and low application rates of imidacloprid for control of false-eye leafhopper Empoasca vitis on tea in southern china. Crop Prot 23:489-496. Fernandes EKK, Keyser CA, Rangel DEN, Foster RN, Roberts DW (2010) CTC medium:A novel
    dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biol Control 54:197-205. Furlong MJ (2004) Infection of the immature stages of Diadegma semiclausum, an endolarval parasitoid of
    the diamondback moth, by Beauveria bassiana. J Invertebr Pathol 86:52-5. Gao L, Liu XZ (2010) Nutritional requirements of mycelial growth and sporulation of several biocontrol
    fungi in submerged and on solid culture. Microbiology 79:612-619. Gao QA, Jin K, Ying SH, Zhang YJ, Xiao GH, Shang YF, Duan ZB, Hu XA, Xie XQ, Zhou G, Peng GX,
    Luo ZB, Huang W, Wang B, Fang WG, Wang SB, Zhong Y, Ma LJ, St Leger RJ, Zhao GP, Pei Y, Feng MG, Xia YX, Wang CS (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. Acridum. Plos Genetics 7:e1001264
    Gatarayiha MC, Laing MD, Miller RM (2010) Effects of crop type on persistence and control efficacy of Beauveria bassiana against the two spotted spider mite. BioControl 55:767-776.
    Gatarayiha MC, Laing MD, Miller RM (2011) Field evaluation of Beauveria bassiana efficacy for the control of Tetranychus urticae Koch (Acari:Tetranychidae). JAppl Entomol 135:582-592.
    Genthner FJ, Middaugh DP (1992) Effects of Beauveria bassiana on embryos of the inland silverside fish (Menidia beryllina). Appl Environ Microbiol 58:2840-2845.
    Goettel, MS., Johnson, DL (1992) Environmental impact and safety of fungal biocontrol agents. In:Lomer CJ, Prior C. editors. Biological control of locusts and grasshoppers. Wallingford:CAB International, pp 356-361.
    Goettel MS, Jaronski ST (1997) Safety and registration of microbial agents for control of grasshoppers and locusts. Memoirs of the Entomological Society of Canada 171:83-99.
    Guidi V, De Respinis S, Benagli C, Luthy P, Tonolla M (2010) A real-time pcr method to quantify spores carrying the Bacillus thuringiensis var. Israelensis cry4Aa and cry4Ba genes in soil. J Appl Microbiol 109:1209-1217.
    Hatting JL, Wraight SP, Miller RM (2004) Efficacy of Beauveria bassiana (Hyphomycetes) for control of Russian wheat aphid (Homoptera:Aphididae) on resistant wheat under field conditions. Biocontrol Sci Techn 14:459-473.
    Hicks BJ, Watt AD, Cosens D (2001) The potential of Beauveria bassiana (Hyphomycetes:Moniliales) as a biological control agent against the pine beauty moth, Panolis flammea (Lepidoptera:Noctuidae). Forest Ecol Manag 149:275-281.
    Hidalgo E, Moore D, Le Patourel G (1998) The effect of different formulations of Beauveria bassiana on Sitophilus zeamais in stored maize. J Stored Prod Res 34:171-179
    Hofmann C, Vanderbruggen H, Hofte H, Van Rie J, Jansens S, Van Mellaert H (1988) Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A 85:7844-7848.
    Hokkanen HMT, Zeng QQ, Menzler-Hokkanen I (Eds)(2003) Assessing the impacts of Metarhizium and Beauveria on bumblebees. In:Environmental impacts of microbial insecticides. Dordrecht:Kluwer Academic Publishers 63-71.
    Hozzank A, Keller S, Daniel O, Schweizer C (2003) Impact of Beauveria brongniartii and Metarhizium anisopliae (Hyphomycetes) on Lumbricus terrestris (Oligochaeta:Lumbricidae). IOBC/wprs Bulletin 26:31-34.
    Huang BF, Feng MG (2009) Comparative tolerances of various Beauveria bassiana isolates to UV-B irradiation with a description of a modeling method to assess lethal dose. Mycopathologia 168:145-152.
    Hufbauer RA, Roderick GK (2005) Microevolution in biological control:Mechanisms, patterns, and processes. Biol Control 35:227-239.
    Ibrahim L, Butt TM, Beckett A, Clark SJ (1999) The germination of oil-formulated conidia of the insect pathogen, Metarhizium anisopliae. Mycol Res 103:901-907.
    Inglis GD, Goettel M, Johnson D (1995a) Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biol Control 5:581-590.
    Inglis GD, Ivie TJ, Duke GM, Goettel MS (2000) Influence of rain and conidial formulation on persistence of Beauveria bassiana on potato leaves and colorado potato beetle larvae. Biol Control 18:55-64.
    Inglis GD, Johnson DL, Goettel MS (1995b) Effects of simulated rain on the persistence of beauveria-bassiana conidia on leaves of alfalfa and wheat. Biocontrol Science and Technology 5: 365-369.
    Inglis GD, Johnson DL, Goettel MS (1996) Effects of temperature and thermoregulation on mycosis by Beauveria bassiana in grasshoppers. Biol Control 7:131-139.
    Ⅱvie MA, Pollock DA, Gustafson DL, Rasolomandimby J, Ivie LL, Swearingen WD (2002) Field-based evaluation of biopesticide impacts on native biodiversity:Malagasy coleopteran and anti-locust entomopathogenic fungi. JEcon Entomol 95:651-660.
    Jackson MA, Dunlap CA, Jaronski ST (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 55:129-145
    Jackson RE, Marcus MA, Gould F, Bradley JR, Jr., Van Duyn JW (2007) Cross-resistance responses of CrylAc-selected Heliothis virescens (Lepidoptera:Noctuidae) to the Bacillus thuringiensis protein Vip3a. JEcon Entomol 100:180-6.
    Jacobson RJ, Chandler D, Fenlon J, Russell KM (2001) Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudeman (Acarina:Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera:Thipidae) on cucumber plants. Biocontrol Sci Techn 11:391-400.
    James R R, Shaffer BT, Croft B, Lighthart B (1995) Field evaluation of Beauveria bassiana:Its persistence and effects on the pea aphid and a non-target coccinellid in alfalfa. Biocontrol Sci Techn 5:425-437.
    Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. BioControl 55: 159-185.
    Jin K, Zhang YJ, Fang WG, Luo ZB, Zhou YH, Pei Y (2010) Carboxylate transporter gene Jenl from the entomopathogenic fungus Beauveria bassiana is involved in conidiation and virulence. Appl Environ Microb 76:254-263.
    Jin SF, Feng MG, Ying SH, Mu WJ, Chen JQ (2011) Evaluation of alternative rice planthopper control by the combined action of oil-formulated Metarhizium anisopliae and low-rate buprofezin. Pest Manag Sci 67:36-43.
    Johnson DL, Smits JE, Jaronski ST, Weaver DK (2002) Assessment of health and growth of ring-necked pheasants following consumption of infected insects or conidia of entomopathogenic fungi, Metarhizium anisopliae var. acridum and Beauveria bassiana, from Madagascar and north America. J Toxicol Environ Health-Part A 65:2145-2162.
    Joshi L, St Leger RJ, Bidochka MJ (1995) Cloning of a cuticle-degrading protease from the entomopathogenic fungus, Beauveria bassiana. FEMSMicrobiol Lett 125:211-7.
    Juen A, Traugott M (2006) Amplification facilitators and multiplex PCR:Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biol Biochem 38:1872-1879.
    Kabaluk JT, Svircev AM, Goettel MS, Woo SG (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global 99
    Kaur P, Dilawari VK (2011) Inheritance of resistance to bacillus thuringiensis crylAc toxin in Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) from india. Pest Manag Sci 67:1294-1302.
    Kim TG, Knudsen GR (2010) Comparison of real time PCR and microscopy to evaluate sclerotial colonization by a biocontrol fungus. Fungal Biology 115:317-325.
    Kouassi M, Coderre D, Todorova SI (2003) Effect of plant type on the persistence of Beauveria bassiana. Biocontrol Sci Techn 13:415-427.
    Kurtz RW, Mccaffery A, O'reilly D (2007) Insect resistance management for Syngenta's VipCot transgenic cotton. J Invertebr Pathol 95:227-30.
    Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents:Do they have a future? Biol Control 21:230-248.
    Lee MK, Miles P, Chen JS (2006) Brush border membrane binding properties of Bacillus thuringiensis Vip3a toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem Biophys Res Commun 339: 1043-1047.
    Lee MK, Walters FS, Hart H, Palekar N, Chen JS (2003) The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of CrylAb delta-endotoxin. Appl Environ Microbiol 69:4648-4657.
    Lelley T, Balazs E, Tepfer M (Eds) (2003) Ecological impact of GMO dissemination in agro-ecosystems. Austria:Facultas Verlags-und Buchhandels A G.
    Leuber M, Orlik F, Schiffler B, Sickmann A, Benz R (2006) Vegetative insecticidal protein (ViplAc) of Bacillus thuringiensis HD201:Evidence for oligomer and channel formation. Biochemistry 45:283-8.
    Liu Q, Ying SH, Feng MG, Jiang XH (2009) Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress. Anton Leeuw Int G J 95:65-75.
    Llewellyn DJ, Mares CL, Fitt GP (2007) Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hubner) of transgenic cotton expressing the insecticidal protein Vip3a. Agr Forest Entomol 9:93-101
    Long DW, Drummond FA, Groden E (1998) Susceptibility of colorado potato beetle (Leptinotarsa decemlineata) eggs to Beauveria bassiana. J Invertebr Pathol 71:182-3.
    Lopes RB, Pauli G, Mascarin GM. Faria M (2011) Protection of entomopathogenic conidia against chemical fungicides afforded by an oil-based formulation. Biocontrol Sci Techn 21:125-137.
    Lord JC (2001) Response of the wasp Cephalonomia tarsalis (Hymenoptera:Bethylidae) to Beauveria bassiana (Hyphomycetes:Moniliales) as free conidia or infection in its host, the sawtoothed grain beetle, Oryzaephilus surinamensis (Coleoptera:Silvanidae). Biol Control 21:300-304.
    Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects-the achilles'heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365-396.
    Lu DD, Pava-Ripoll M, Li ZZ, Wang CS (2008) Insecticidal evaluation of Beauveria bassiana engineered to express a scorpion neurotoxin and a cuticle degrading protease. Appl Microbiol Biotechnol 81:515-522.
    Ludwig SW, Oetting RD (2001) Susceptibility of natural enemies to infection by Beauveria bassiana and impact of insecticides on Ipheseius degenerans (Acari:Phytoseiidae). J Agr Urban Entomol 18:169-178.
    Ludwig SW, Oetting RD (2002) Efficacy of Beauveria bassiana plus insect attractants for enhanced control of Frankliniella occidentalis (thysanoptera:Thripidae). Fla Entomol 85:270-272.
    Luo X, Keyhani NO, Yu X, He Z, Luo Z, Pei Y, Zhang Y (2012) The MAP kinase Bbslt2 controls growth, conidiation, cell wall integrity, and virulence in the insect pathogenic fungus Beauveria bassiana. Fungal Genet Biol 49:544-55.
    Maltais P, Nuckle J, Leblanc P (1998) Economic threshold for three Lepidopterous larval pests of fresh-market cabbage in Southeastern New Brunswick. JEcon Entomol 91:699-707.
    Marvier M, Mccreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of bt cotton and maize on nontarget invertebrates, science 316:1475-1477.
    Meihls LN, Higdon ML, Siegfried BD, Miller NJ, Sappington TW, Ellersieck MR, Spencer TA, Hibbard BE (2008) Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection. Proc Natl Acad Sci U S A 105:19177-82.
    Meikle WG, Mercadier G, Holst N, Girod V (2008) Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota:Hyphomycetes) conidia on Varroa mites (Acari:Varroidae) and on honeybee (Hymenoptera:Apidae) colony health. Exp Appl Acarol 46:105-117.
    Mesrati LA, Tounsi S,Jaoua S (2005) Characterization of a novel Vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiol Lett 244:353-8.
    Milne R, Liu Y, Gauthier D, Van Frankenhuyzen K (2008) Purification of vip3aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). J Invertebr Pathol 99:166-72.
    Morleydavies J, Moore D, Prior C (1996) Screening of Metarhizium and Beauveria spp conidia with exposure to simulated sunlight and a range of temperatures. My col Res 100:31-38.
    Murphy B, Von Damm-Kattari D, Parrella M (1999) Interaction between fungal pathogens and natural enemies:Implication for combined biocontrol of greenhouse pests. IOBC/wprs Bulletin 22:181-184.
    Navon A (2000) Bacillus thuringiensis insecticides in crop protection-reality and prospects. Crop Prot 19: 669-676.
    Noma T, Strickler K (2000) Effects of Beauveria bassiana on Lygus hesperus (Hemiptera:Miridae) feeding and oviposition. Environ Entomol 29:394-402.
    Nuutinen V, Tyni-Juslin J, Va-nninen I, Vainio A (1991) The effects of four entomopathogenic fungi and an entomoparasitic nematode on the hatching of earthworm (Aporrectodea caliginosa) cocoons in laboratory. J Invertebr Pathol 58:147-149.
    Paraiso O, Kairo MTK, Hight S, Leppla N, Cuda J, Owens M, Olexa M (2012) Opportunities for improving risk communication during the permitting process for entomophagous biological control agents:A review of current systems. BioControl 1:1-15.
    Parker BL, Skinner M, Gouli V, Brownbridge M (1997) Impact of soil applications of Beauveria bassiana and Mariannaea spp. on nontarget forest arthropods. Biol Control 8:203-206.
    Pava-Ripoll M, Posada FJ, Momen B, Wang CS, St Leger R (2008) Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera:Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (Aait) gene. J Invertebr Pathol 99:220-6.
    Pedigo LP, Hutchins SH, Higley LG (1986) Economic injury levels in theory and practice. Annu Rev Entomol 31:341-368.
    Peng D, Chen S, Ruan L, Li L, Yu Z, Sun M (2007) Safety assessment of transgenic Bacillus thuringiensis with Vip insecticidal protein gene by feeding studies. Food Chem Toxicol 45:1179-85.
    Pingel RL, Lewis LC (1996) The fungus Beauveria bassiana (Balsamo) Vuillemin in a corn ecosystem:Its effect on the insect predator Coleomegilla maculate De Geer. Biol Control 6:137-141.
    Poprawski TJ, Legaspi JC, Parker PE (1998) Influence of entomopathogenic fungi on Serangium parcesetosum (Coleoptera:Coccinellidae), an important predator of whiteflies (Homoptera:Aleyrodidae). Environ Entomol 27:785-795.
    Posadas JB, Comerio RM, Mini JI, Nussenbaum AL, Lecuona RE (2012) A novel dodine-free selective medium based on the use of cetyl trimethyl ammonium bromide (CTAB) to isolate Beauveria bassiana, Metarhizium anisopliae sensu lato and Paecilomyces lilacinus from soil. Mycologia DOI:10.3852/11-234
    Pu XY, Feng MG, Shi CH (2005) Impact of three application methods on the field efficacy of a Beauveria bassiana-based mycoinsecticide against the false-eye leafhopper, Empoasca vitis (Homoptera: Cicadellidae) in the tea canopy. Crop Prot 24:167-175.
    Oin Y, Ying SH, Chen Y, Shen ZC, Feng MG (2010) Integration of insecticidal protein Vip3Aal into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per os infection. Appl Environ Microbiol 76:4611-8.
    Ravensberg WJ (Ed)(2011) A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. In:Registration of microbial pest control agents and products and other related regulations. New York:Springer Press 171-233.
    Raybould A, Vlachos D (2011) Non-target organism effects tests on Vip3a and their application to the ecological risk assessment for cultivation of Mir162 maize. Transgenic Res 20:599-611.
    Reddy NP, Khan PaA, Devi KU, Victor JS, Sharma HC (2008) Assessment of the suitability of tinopal as an enhancing adjuvant in formulations of the insect pathogenic fungus Beauveria bassiana (Bals.) Vuillemin. Pest Manag Sci 64:909-915.
    Regal PJ (1994) Scientific principles for ecologically based risk assessment of transgenic organisms. Mol Ecol 3:5-13.
    Riedel W, Steenberg T (1998) Adult polyphagous coleopterans overwintering in cereal boundaries:winter mortality and susceptibility to the entomopathogenic fungus Beauveria bassiana. BioControl 43: 175-188.
    Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MM, Hartley SE, Hellmich RL, Huesing JE, Jepson PC, Layton R, Quemada H, Raybould A, Rose RI, Schiemann J, Sears MK, Shelton AM, Sweet J, Vaituzis Z, Wolt ID (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203-208.
    Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63-71.
    Sabbahi R, Merzouki A, Guertin C (2008) Efficacy of Beauveria bassiana (Bals.) Vuill. against the tarnished plant bug, Lygus lineolaris L., in strawberries. J Appl Entomol 132:124-134.
    Scriber JM (2001) Bt or not Bt:Is that the question? Proc Natl Acad Sci U S A 98:12328-30.
    Selvapandiyan A, Arora N, Rajagopal R, Jalali SK, Venkatesan T, Singh SP, Bhatnagar RK (2001) Toxicity analysis of N-and C-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis. Appl Environ Microbiol 67:5855-8.
    Sevim A, Demir I, Demirbag Z (2010) Molecular characterization and virulence of Beauveria spp. From the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera:Thaumetopoeidae). Mycopathologia 170:269-277.
    Shang Y, Duan Z, Huang W, Gao Q, Wang CS (2012) Improving uv resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. J Invertebr Pathol 109:105-9.
    Sharma H C (Ed) (2009) Biotechnological approaches for pest management and ecological sustainability. London:CRC, Taylor, Francis Group Press 450-521
    Shi WB, Feng MG (2006) Field efficacy of application of Beauveria bassiana formulation and low rate pyridaben for sustainable control of citrus red mite Panonychus citri (Acari:Tetranychidae) in orchards. Biol Control 39:210-217.
    Shi WB, Feng MG, Liu SS (2008a) Sprays of emulsifiable Beauveria bassiana formulation are ovicidal towards Tetranychus urticae (Acari:Tetranychidae) at various regimes of temperature and humidity. Exp Appl Acarol 46:247-257.
    Shi WB, Zhang LL, Feng MG (2008b) Field trials of four formulations of Beauveria bassiana and Metarhizium anisoplae for control of cotton spider mites (Acari:Tetranychidae) in the tarim basin of china. Biol Control 45:48-55.
    Shipp JL, Zhang Y, Hunt DWA, Ferguson G (2003) Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environ Entomol 32:1154-1163.
    Smits N, Fargues J, Rougier M, Goujet R, Itier B (1996) Effects of temperature and solar radiation interactions on the survival of quiescent conidia of the entomopathogenic hyphomycete Paecilomyces fumosoroseus (Wize) Brown and Smith. Mycopathologia 135:163-170.
    Steenberg T, Langer V, Esbjerg P (1995) Entomopathogenic fungi in predatory beetles (Col.:Carabidae and Staphylinidae) from agricultural fields. Entomophaga 40:77-85.
    St Leger R, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA 93:6349-54.
    St Leger RJ, Wang CS (2010) Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Micr.obiol Biot 85:901-907.
    Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ballester V, Granero F, Mensua JL, Ferre J (1997) Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci U S A 94:12780-12785.
    Talekar N, Shelton A (1993) Biology, ecology, and management of the diamondback moth. Anna Rew Entomol 38:275-301.
    Teakle RE (1994) Present use of, and problems with, Bacillusthuringiensis in australia. Agr Ecosyst Environ 49:39-44.
    Tian L, Feng MG (2006) Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Beauveria bassiana with a nereistoxin analogue insecticide. Pest Manag Sci 62:69-76
    Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ (1989) The planned introduction of genetically engineered organisms:Ecological considerations and recommendations. Ecology 70:298-315.
    Todorova SI, Coderre D, Cote JC (2000) Pathogenicity of Beauveria bassiana isolates toward Leptinotarsa decemlineata (Coleoptera:Chrysomelidae), Myzus persicae (Homoptera:Aphididae) and their predator Coleomegilla maculate Lengi (Coleoptera:Coccinellidae). Phytoprotection 81:15-22.
    Todorova SI, Cloutier C, Cote JC, Coderre D (2002) Pathogenicity of six isolates of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina, Hyphomycetes) to Perillus bioculatus (F.) (Hem., Pentatomidae). J Appl Entomol 126:182-185.
    Traugott M, Weissteiner S, Strasser H (2005) Effects of the entomopathogenic fungus Beauveria brongniartii on the non-target predator Poecilus versicolor (Coleoptera:Carabidae). Biol Control 33: 107-112.
    Vandenbergi J (1990) Safety of four entomopathogens for caged adult honey bees (Hymenoptera:Apidae). J Econ Entomol 83:755-759.
    Wang CS, Fan M, Li Z, Butt TM (2004) Molecular monitoring and evaluation of the application of the insect-pathogenic fungus Beauveria bassiana in southeast china. J Appl Microbiol 96:861-70.
    Wang CS, St Leger RJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455-1456.
    Wang J, Zhou G, Ying SH, Feng MG (2013) P-type calcium atpase functions as a core regulator of Beauveria bassiana growth, conidiation and responses to multiple stressful stimuli through cross-talk with signalling networks. Environ Microbiol 15:967-979
    Wang SB, O'brien TR, Pava-Ripoll M, St Leger RJ (2011) Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations. Proc Natl Acad Sci U S A 108:20449-20454.
    Wang Y, Crocker R, Wilson L, Smart G, Wei X, Nailon W, Cobb P (2001) Effect of nematode and fungal treatments on nontarget turfgrass-inhabiting arthropod and nematode populations. Environ Entomol 30: 196-203.
    Wang ZL, Lu JD, Feng MG (2012) Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungus Beauveria bassiana. Environ Microbiol 14: 2139-2150.
    Wang ZL, Ying SH, Feng MG (2013a) Recognition of a core fragment of Beauveria bassiana hydrophobin gene promoter (phydl) and its special use in improving fungal biocontrol potential. Microb Biotechnol 6: 27-35.
    Wang ZL, Zhang LB, Ying SH, Feng MG (2013b) Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ Microbiol 15:409-18.
    Wilhelm J, Pingoud A (2003) Real-time polymerase chain reaction. Chembiochem 4:1120-1128.
    Wojda I, Kowalski P, Jakubowicz T (2009) Humoral immune response of Galleria mellonella larvae after infection by Beauveria bassiana under optimal and heat-shock conditions. J Insect Physiol 55:525-531.
    Wraight SP, Carruthers RI (1999) Production, delivery, and use of mycoinsecticides for control of insect pests on field crops. Method Biotechnol 5:233-269.
    Wraight SP, Ramos ME (2002) Application parameters affecting field efficacy of Beauveria bassiana foliar treatments against colorado potato beetle Leptinotarsa decemlineata, Biol Control 23:164-178.
    Wu J, Luo X, Zhang X, Shi Y, Tian Y (2011) Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts. Transgenic Res 20:963-73.
    Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in china in areas with bt toxin-containing cotton. Science 321:1676-1678.
    Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao GP, Wang CS, Feng MG (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483.
    Xie XQ, Guan Y, Ying SH, Feng MG (2013) Differentiated functions of Rasl and Ras2 proteins in regulating the germination, growth, conidiation, multi-stress tolerance and virulence of Beauveria bassiana. Environ Microbiol 15:447-62.
    Xie XQ, Li F, Ying SH, Feng MG (2012) Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, uv tolerance and virulence of Beauveria bassiana. Plos One 7: e30298.
    Xie XQ, Ying SH, Feng MG (2010) Characterization of a new Cu/Zn-superoxide dismutase from Beauveria bassiana and two site-directed mutations crucial to its antioxidation activity without chaperon. Enzyme Microb Tech 46:217-222.
    Yang ZQ, Wang XY, Wei JR, Qu HR, Qiao XR (2008) Survey of the native insect natural enemies of Hyphantria cunea (Drury) (Lepidoptera:Arctiidae) in china. B Entomol Res 98:293-302.
    Ye SD, Ying SH, Chen C, Feng MG (2006) New solid-state fermentation chamber for bulk production of aerial conidia of fungal biocontrol agents on rice. Biotechnol Lett 28:799-804.
    Ye SD, Dun YH, Feng MG (2005) Time and concentration dependent interactions of Beauveria bassiana with sublethal rates of imidacloprid against the aphid pests Macrosiphoniella sanborni and Myzus persicae. Ann Appl Biol 146:459-468.
    Ying SH, Feng MG (2011a) Integration of escherichia coli thioredoxin (Trxa) into Beauveria bassiana enhances the fungal tolerance to the stresses of oxidation, heat and UV-B irradiation. Biol Control 59: 255-260.
    Ying SH, Feng MG (2011b) A conidial protein (Cp15) of Beauveria bassiana contributes to the conidial tolerance of the entomopathogenic fungus to thermal and oxidative stresses. Appl Microbiol Biotechnol 90:1711-20.
    Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3a lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532-6.
    Zhang L, Wang J, Xie XQ, Keyhani NO, Feng MG, Ying SH (2013) The autophagy gene Bbatg5, involved in the formation of the autophagosome, contributes to cell differentiation and growth but is dispensable for pathogenesis in the entomopathogenic fungus Beauveria bassiana. Microbiol-SGM 159:243-52.
    Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO (2012) Cyp52xl, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. JBiol Chem 287:13477-13486.
    Zhang YJ, Feng MG, Fan YH, Luo ZB, Yang XY, Wu D, Pei Y (2008) A cuticle-degrading protease (Cdep-1) of Beauveria bassiana enhances virulence. Biocontrol Sci Techn 18:551-563.
    Zhou G, Wang J, Qiu L, Feng MG (2012) A group iii histidine kinase (Mhkl) upstream of high-osmolarity glycerol pathway regulates sporulation, multi-stress tolerance and virulence of Metarhizium robertsii, a fungal entomopathogen. Environ Microbiol 14:817-29.
    Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Techn 17:553-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700