用户名: 密码: 验证码:
微生物燃料电池原位修复地下水硝酸盐污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(MFC)可从废水中回收能量,是一种新兴的环境技术。早期对MFC的研究多集中在如何提高其产电性能方面,随着研究的深入,人们发现MFC的燃料来源广泛,从易降解的葡萄糖、乙酸钠等到难生物降解的苯酚、吡啶等都已被证明可作为其燃料,这提供了一种思路,使得MFC可应用于处理污染废水的领域,但现有研究报道多限于水溶介质中的小试规模,其得到的结论并不适合地下水多孔介质体系。
     目前地下水硝酸盐污染正在变得日益严重,对其进行处理的技术中较好的是原位修复技术,如原位生物修复技术、渗透性反应墙等。基于此,本文思路是设计MFC装置将其用于模拟原位修复受硝酸盐污染的地下水,研究装置在多孔介质条件下的生物修复功能和产电功能。设计了单室和双室两种大体积MFC装置进行原位修复地下水硝酸盐污染的研究,并对这两种装置的运行参数进行了较为系统的研究,包括地下水中的COD浓度,MFC的外接电阻值,以及地下水pH环境等因素对MFC装置脱氮除碳性能和产电性能的影响。论文得到的主要结论有以下几点:
     1、结合将MFC应用于地下水硝酸盐污染原位修复的实际情况,设计了单室和双室两种大体积的MFC模型装置。单室MFC装置使用钛基二氧化铅电极作为阴极,埋置于沙子中的两块碳布作为阳极;双室MFC装置采用盐桥来连接阳极室和阴极室,阴、阳极均采用碳布作为电极材料,并测定了MFC模型装置的相关水理参数。研究结果表明该两种装置(特别是单室MFC装置)用于模拟处理受硝酸盐污染的地下水是有效的,为下一步将MFC应用于实际地下水硝酸盐污染原位修复打下基础。
     2、本研究小组自制的钛基二氧化铅电极,在水溶介质体系的MFC研究中取得了较好的处理硝酸盐废水效果,本文使用多种电化学方法对该电极的电催化性能进行了研究。该电极的循环伏安曲线表明,其自身并没有参与MFC中的反硝化反应,它提高MFC的脱氮和去污能力主要是因为其具有较高的电流响应度;该电极的电化学阻抗谱表明,电极在经过一段反应时间后,其在MFC反应体系里的电化学活性增强,这从机理上解释了MFC要想获得稳定的电压输出,都需要一定启动时间的现象。
     3、单室MFC装置模型运行结果表明,对目标污染物硝酸盐初始浓度为100mg/L的情况下,该装置可以利用废水中的有机物作为燃料(对应的COD浓度分别为1000mg/L和500mg/L),同步去除水中的有机物和硝酸盐,并获得稳定的电压输出。得出了该单室MFC装置在原位修复地下水硝酸盐污染(地下水中硝酸盐浓度为100mg/L)的最佳运行参数为:水中COD浓度为500mg/L,地下水溶液体系的pH值为7.0,MFC的外接电阻值为800Ω。此时该MFC的去污产电性能表现如下:除碳--最终溢流槽出水口的浓度为212mg/L,COD的去除率为57.6%(实验期间部分时间段COD的最大去除率达到76.2%);脱氮--在整个运行周期硝酸盐氮数值始终处于非常低的水平,最大值仅有5.15mg/L,亚硝酸氮没有积累,氨氮浓度较大由于硝酸盐异化反应较多所致,同时与缓冲溶液里添加NH4Cl有关;产电--在整个实验运行期间,对外输出电压都相当平稳,最高电压达413mv,实验结束后的电压仍保持在300mv左右,显示了良好的持续和稳定的电压输出性能;最大功率密度为56.36mW·m-2,相应的电流密度为187.68mA·m-2,表明了该单室MFC装置的脱氮除碳和产电性能得到了最佳的统一。
     4、双室MFC装置在以和单室MFC装置相同的参数运行结果表明,对处理水中目标污染物硝酸盐初始浓度为100mg/L的情况下,该装置去除废水中COD性能和硝酸盐性能较差,同时产电性能也较差。这一方面与该双室MFC运行时间较短有关以外,还说明了该装置的设计和结构尚需进一步的改进。研究了两种装置中硝酸盐浓度随时空的变化关系,为下一步建立实验砂槽装置内地下水体系溶质迁移模型,进行硝酸盐在地下水中迁移机理的理论研究,确定硝酸盐在多孔介质体系中的运移转化规律打下基础。
     5、利用电化学工作站研究电极在两种MFC装置溶液体系里的电化学行为,利用扫描电镜(SEM)观察了碳布电极上附着的活性污泥生物膜的表面形貌,并用聚合酶链式反应(PCR)、变性梯度凝胶电泳(DGGE)技术对其中的细菌群落分布进行了研究。电化学研究表明,单室二氧化铅电极在长期运行后电化学活性会降低,双室阳极碳布电极在实验结束溶液体系里的电化学活性增强;SEM观察到单室碳布表面覆盖了厚厚的生物膜,双室阳极碳布被厚厚的一层盖杆状细菌覆盖,双室阴极碳布上基本没有生物膜;细菌研究表明单室碳布生物膜细菌主要是Fluviicola taffensis,Flavobacteriales bacterium,Moraxellaceae Bacterium,Acinetobacter sp,Flavobacterium sp,Janthinobacterium lividum和Comamonadaceae bacterium;双室碳布生物膜细菌主要是Hyphomicrobium sp,Rhodobacter sp,Thermomonas fusca,Thermomonas fusca,Hirschiabaltica,Arcobacter sp和Rhodobacter。
     研究结果表明,利用MFC装置进行地下水硝酸盐污染原位修复理论上是可行的,只要有性能良好的电极材料和设计合理的装置,MFC技术必将在未来地下水污染原位修复工程实践中发挥重要作用。
Microbial fuel cell technology (MFC) is an emerging environmental technology for energyrecovery from the wastewater. Early studies of MFC mainly focused on how to improve itsperformance of electricity production. The further research indicated that the source of MFC fuelvaried from the easy degradation substance,such as glucose, sodium acetate to refractory organicsubstance,such as phenol, pyridine, etc. Thus an idea was provided that the MFC could be used inthe field of dealing with contaminated wastewater. But present researches were mostly limited tosmall pilot scale in the water-soluble medium, and the conclusions were not suitable for groundwaterin porous media system.
     Nitrate pollution in groundwater is becoming increasingly serious presently. In-situ remediationtechnologies are better among its treatment technologies,such as in-situ bioremediation technologiesand the permeable reactive barrier(PRB). Based on this, the idea is to design MFC devices used tosimulate the in-situ remediation of nitrate contamination in groundwater and the MFC’s performanceof bioremediation and electricity generation in porous media was also investigated. Two differentstructure MFCs were designed for in-situ remediation of nitrate pollution of groundwater, one was asingle-chamber MFC and the other was a dual-chamber MFC. Some factors affecting the MFCperformance of the removal of nitrogen and carbon and electricity production were investigatedsystematicly, including the COD concentration in the groundwater, MFC’s external resistance valueand groundwater pH environment.The main results in the thesis are summarized as follows:
     1.Two large volume MFC devices were construced according to the practical nitrate pollution ingroundwater.The titanium-based lead dioxide electrode was used as the cathode and two carboncloths buried in sand were usd as the anode in the single-chamber MFC device. In the dual-chamberMFC device, cathode and anode material was carbon cloth and the salt bridge was used to connectthe anode chamber and cathode chamber.Before operation,some hydrodynamic parameters of themodel device were determined. The results showed that the two devices (especially thesingle-chamber MFC device) were effective when used to simulate the processing on the nitratepollution in groundwater, and this laid the foundation for MFC’s actual application in the in-situremediation of nitrate pollution in the groundwater.
     2.The self-made titanium-based lead dioxide electrode had been used in MFC for a better effecton treating nitrate wastewater in water-soluble media system.A variety of electrochemical methodswere used to study the electrode catalytic properties in this work.The cyclic voltammograms(CV) ofthe electrode shown that the electrode self was not involved in denitrification in the MFC, itincreased the nitrogen removal and decontamination of the MFC because of its higher current response. And the electrochemical impedance spectroscopy(EIS) shown that the electrode’selectrochemical activity in the MFC reaction system was enhanced after a period of reaction time,which explained the phenomenon mechanicaly that a period of set-up time was requried in order toobtain a stable voltage output from MFC device.
     3.The results of single-chamber MFC device showed that it could take advantage of theorganics in the wastewater as fuel (corresponding to the COD concentration of1000mg/L and500mg/L)and obtain a stable voltage output with simultaneous removal of organic matter and nitratewhen treating the wastewater containing nitrate concentration of100mg/L. And the best operatingparameters were obtained during the period of in-situ remediation of nitrate pollution in groundwater.The reults were as follows: the COD concentration was500mg/L and the pH value was7.0ingroundwater, MFC external resistor value was800. Under this condition, the MFC’s performanceof decontamination and electricity generation was quite good as follows: removal of carbon—CODconcentration in the ultimate overflow tank outlet was212mg/L with the removal efficiency of57.6%(maximum COD removal efficiency of76.2%, part time during the experiment); remomal ofnitrate—Nitrate nitrogen value was very small during the whole period with the maximum value ofonly5.15mg/L, and nitrite nitrogen was not accumulated too. But the ammonia nitrogenconcentration was quite high due to nitrate dissimilation and the NH4Cl addition into the buffersolution; electricity production—During the entire experiment period, the external output voltagewas quite stable.The highest voltage was413mv and the value was still maintained at about300mvat the end of the experiment, which showed the device’s continuious and stable voltage outputperformance.The maximum power density was56.36mW m-2with the corresponding current densityof187.68mA m-2. All the results indicated that the single-chamber MFC device obtained highremoval of nitrogen and carbon with effective power output.
     4.The results of dual-chamber MFC devices running in the same parameters withsingle-chamber MFC devices’ showed that both the performance of decontamination and theelectricity production were poor when dealing with the wastewater containing nitrate concentrationof100mg/L. This may be due to the the short length of the device operation time partialy, but it alsodemonstrated that the design and construction of the device were required further improvement. Thetime and space variation of the nitrate concentration in the two devices was investigated. for the nextstep to establish the solute transport model in groundwater within the experimental sand tank. Andthis would lay the foundation for theoretical study on the migration of nitrate in groundwater anddetermination of nitrate transport in porous media system.
     5.The electrochemical workstation was used to analyse the electrode’s electrochemical behaviorin the solution obtained from the two kinds of MFC devices. The scanning electron microscopy (SEM) was used to observe the surface morphology of the activated sludge biofilm attached to thecarbon cloth electrode. The technology of polymerase chain reaction (PCR) and denaturinggradient gel electrophoresis (DGGE) were used to study the bacteria community distribution of thebiofilm. Electrochemical studies had shown that the lead dioxide electrode(used in thesingle-chamber MFC) electrochemical activity would decrease in the long run, but the anode carboncloth electrode(used in the dual-chamber MFC)electrochemical activity would increase in thesolution obtained at the end of the experiment. A thick layer of biofilm could be observed on thesingle chamber MFC carbon cloth surface, and dual-chamber anode carbon cloth was covered with athick layer of rod-shaped bacteria biofilm, but few bacteria were seen on the dual-chamber cathodecarbon cloth. The domiant species of microbial community composition of the single-chambercarbon cloth biofilm were Fluviicola taffensis, Flavobacteriales bacterium, MoraxellaceaeBacterium, Acinetobacter sp, Flavobacterium sp, Janthinobacterium lividum, Comamonadaceaebacterium; while the domiant species of microbial community composition of the dual-chambercarbon cloth biofilm were Hyphomicrobium sp, Rhodobacter sp, Thermomonas fusca, Thermomonasfusca, Hirschia baltica, Arcobacter sp and Rhodobacter.
     The results show that in-situ remediation of nitrate pollution in groundwater by MFC deviceis theoretically possible. As long as the good performance of the electrode material and reasonabledesign of the device, MFC technology will play an important role in the engineering practice of.in-situ remediation of groundwater pollution.
引文
[1]Alley W M, Healy R W, Baugh J W, et al.Flow and storage in groundwater systems[J].Science,2002,296:985-990.
    [2]吕书君.我国地下水污染分析[J].地下水,2009,31(1):1-5.
    [3]Bernardino Virdis, Korneel Rabaey, Zhiguo Yuan, et al. Microbial fuel cells for simultaneouscarbon and nitrogen removal[J]. Water Research.2008,42(12):3013–3024.
    [4]Bernardino Virdis, Korneel Rabaey, Zhiguo Yuan,et al. Electron fluxes in a microbial fuel cellperforming carbon and nitrogen removal[J]. Environ. Sci. Technol.2009,43(13):5144–5149.
    [5]Bernardino Virdis, Korneel Rabaey, Rene′A.Rozendal,et al. Simultaneous nitrification denitrifi-cation and carbon removal in microbial fuel cells[J].Water research,2010,44(9):2970–2980.
    [6]Jeffrey M. Morris, Paul H. Fallgren, Song Jin. Enhanced denitrification through microbial andsteel fuel-cell generated electron transport[J]. Chemical Engineering Journal,2009,153(1-3):37–42.
    [7]Chontisa Sukkasema,ShoutaoXua,Sunhwa Parka.,etal. Effect of nitrate on the performance ofsingle chamber air cathode microbial fuel cells[J]. Water research.2008,42(19):4743–4750.
    [8]Kim B H, Ikeda T, Park H S, Kim H J, et al. Electrochemical activity of an Fe(Ⅲ)-reducingbacterium, Shewanella putrefaciens IR-I, in the presence of alteractive electronacceptors[J].Biotechnol.Techniques,1999,3(7):475-478.
    [9]Kim B H, Kim H J, Hyun M S, et al. Direct electrode reaction of Fe(Ⅲ)-reducing bacterium,Shewanella putrefacines[J]. J microbial biotechnol,1999,9(2):127-131.
    [10]D.Pant, Gilbert Van Bogaert, Ludo Diels, et al. A review of the substrates used in microbial fuelcells (MFCs) for sustainable energy production[J]. BioresourceTechnology,2010,101(6):1533–1543.
    [11]J.M.Morris, S.Jin. Feasibility of using microbial fuel cell technology in bioremediation ofhydrocarbons in groundwater, J.Environ.Sci.Health,PartA:Environ. Sci.Eng.2008,43(1):18–23.
    [12]Zhang X-C, Halme A. Modeling of a microbial fuel cell process[J]. Biotechnol Lett,1995,17:809–14.
    [13]Picioreanu C, Head I M, Katuri K P, van Loosdrecht MCM,ScottK. A computational model forbiofilm-based microbial fuel cells[J]. Water Research,2007,41:2921–40.
    [14]Torres C, Kato MarcusA, Rittmann B. Kinetics of consumption of fermentation products byanode-respiring bacteria[J]. Applied Microbiology and Biotechnology,2007,77(3):689–697.
    [15]郭坤,张京京,李浩然等.微生物电解电池制氢[J].化学进展,2010.22(4):748-753.
    [16]Sung T.Oh, Jung Rae Kim, Giuliano C. Premier, et al. Sustainable wastewater treatment: Howmight microbial fuel cells contribute[J]. Biotechnology Advances,2010,28(6):871–881.
    [17]Jung Rae Kim, Sok Hee Jung, John M. Regan, Bruce E. Logan. Electricity generation andmicrobial community analysis of alcohol powered microbial fuel cells[J]. BioresourceTechnology,2007,98(13):2568–2577.
    [18]Liping Huang, Raymond J. Zeng, Irini Angelidaki. Electricity production from xylose using amediator-less microbial fuel cell[J].Bioresource Technology,2008,99(10):4178–4184.
    [19]Hong Liu, Shaoan Cheng, and Bruce E. Logan. Production of electricity from acetate or butyrateusing a single-chamber microbial fuel cell[J]. Environ. Sci. Technol.2005,39(2):658–662.
    [20]Hyunsoo Moon, In Seop Chang, Byung Hong Kim. Continuous electricity production fromartificial wastewater using a mediator-less microbial fuel cell[J]. Bioresource Technology,2006,97(4):621–627.
    [21]Hong Liu and Bruce E. Logan. Electricity generation using an air-cathode single chambermicrobial fuel cell in the presence and absence of a proton exchange membrane[J]. Environ. Sci.Technol.2004,38(14):4040-4046.
    [22]Chaudhuri S. K., Lovley, D. R. Electricity generation by direct oxidation of glucose inmediatorless microbial fuel cells [J]. Nat.Biotechnol,2003,21:1229-1232.
    [23]Rabaey K.,Lissens G.,Siciliano S.D., et al. A microbial fuel cell capable of converting glucose toelectricity at high rate and efficiency[J]. Biotechnol.Lett.2003,25:1531-1535.
    [24]Na Lu,Shun-gui Zhou,Li Zhuang,et al. Electricity generation from starch processing wastewaterusing microbial fuel cell technology[J]. Biochemical Engineering Journal,2009,43(3):246–251.
    [25]Park H.S., Kim B.H.,KimH.S., et al. A novel electrochemically active and Fe(III)-reducing bact-erium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell[J].Anaerobe,2001,7:297-306.
    [26]Gil G.C.,Chang I.S., Kim B.H.,et al. Operational parameters affecting the performance of a med-iatorless microbial fuel cell[J]. Biosens.Bioelectron,2003,18:327-338.
    [27]Kim H.J.,Park H.S.,Hyun M.S.,et al. A mediatorless microbial fuel cell using a metal reducingbacterium, Shewanella putrefacians[J]. Enzyme Microbiol. Technol.,2002,30:145-152.
    [28]Park D.H.,Zeikus J.G. Impact of electrode compositionon electricity generation in a singlecompartment fuel cell using Shewanella putrefaciens[J]. Appl.Microbiol.Biotechnol.,2002,59(1):58-61.
    [29]Kim B.H.,ParkD.H.,Shin P.K.,et al. Mediatorless biofuel cell. U.S.Patent5976719,1999.
    [30]Park D.H.,Zeikus J.G. Improved fuel cell and electrode designs for producing electricity frommicrobial degradation[J]. Biotechnol.Bioeng,2003,81(3):348-355.
    [31]Min B.,Ramnarayanan, R., Logan,B.E.Electricity production in salt bridge and membranemicrobial fuel cells.228th National Meeting of the American-Chemical-Society, Philadelphia,PA. Abstracts of papers of the American Chemical Society,228: U622-U622.
    [32]Bond D.R.,HolmesD.E., Tender L.M. et al. Electrode-reducing microorganisms that harvestenergy from marine sediments[J]. Science,2002,295:483-485.
    [33]Mi-Sun Kim,Yu-jin Lee. Optimization of culture conditions and electricity generation using geo-bacter sulfur reducens in a dual-chambered microbial fuel-cell[J]. International Journal ofHydrogen Energy,2010,35(23):13028-13034.
    [34]温青,刘智敏,陈野等.空气阴极生物燃料电池电化学性能[J].物理化学学报,2008,24(6):1063-1067.
    [35]Bond D R, Lovley D R.Electricity production by Geobacter sulfur reducens attached toelectrodes[J]. Appl.Environ.Microbiol.2003,69:1548–1555.
    [36]Park D H, Zeikus J G.Improved fuel cell and electrode designs for producing electricity frommicrobial degradation[J]. Biotechnol.Bioeng.2003,81:348–355.
    [37]Zhiyong Ren, Thomas E. Ward,and John M. Rfgan. Electricity production from cellulose in amicrobial fuel cell using a defined binary culture[J]. Environ. Sci. Technol.2007,41(13),4781-4786.
    [38]Haiping Luo, Guangli Liu, Renduo Zhang, Song Jin. Phenol degradation in microbial fuelcells[J]. Chemical Engineering Journal2009,147(2-3):259–264.
    [39]骆海萍,刘广立,张仁铎,等.高浓度苯酚的MFC降解及产电性能[J].环境科学学报,2008,28(11):2181-2185
    [40]骆海萍,刘广立,张仁铎,等.以苯酚为燃料的微生物燃料电池产电特性[J].环境科学学报,2008,28(7):1279-1283
    [41]汪家权,夏雪兰,丁巍巍.微生物燃料电池处理苯酚废水运行条件研究[J].环境科学学报,2010,30(4):735–741
    [42]Tunc Catal, Shoutao Xu, Kaichang Li, Hakan Bermek, Hong Liu. Electricity generation frompolyalcohols in single-chamber microbial fuel cells[J].Biosensors and Bioelectronics2008,24(4):849–854.
    [43]Cuiping Zhang, Mingchen Li, Guangli Liu, Haiping Luo, Renduo Zhang. Pyridine degradationin the microbial fuel cells[J]. Journal of Hazardous Materials2009,172(1):465–471.
    [44]Yong Luo,Renduo Zhang,Guangli Liu.Electricity generation from indole and microbialcommunity analysis in the microbial fuel cell[J]. Journal of Hazardous Materials,2010,176(1-3):759–764
    [45]张翠萍,刘广立,张仁铎,等.2010.喹啉和吡啶共存条件下的MFC产电特性研究[J].环境科学学报,30(7):1372-1376
    [46]张翠萍,王志强,刘广立等.降解喹啉的微生物燃料电池的产电特性研究[J].环境科学学报,2009,29(4):740–746.
    [47]S. Venkata Mohan, G. Mohanakrishna, B. Purushotham Reddy, R. Saravanan, P.N. Sarma.Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbialfuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilicmicroenvironment[J]. Biochemical Engineering Journal2008,39(1):121–130.
    [48]Booki Min, JungRae Kim, SangEun Oh, JohnM. Regana,, Bruce E. Logan. Electricitygeneration from swine wastewater using microbial fuel cells[J]. Water Research2005,39(20):4961–4968.
    [49]Sunil A. Patil, Venkata Prasad Surakasi, Sandeep Koul, Shrikant Ijmulwar, Amar Vivek,Y.S.Shouche, B.P. Kapadnis. Electricity generation using chocolate industry wastewater and itstreatment in activated sludge based microbial fuel cell and analysis of developed microbialcommunity in the anode chamber[J]. Bioresource Technology2009,100(21):5132–5139.
    [50]Hong Liu, Ramanathan Ramnarayanay, and Bruce E. Logan. Production of electricity duringwastewater treatment using a single chamber microbial fuel cell[J]. Environ. Sci. Technol.2004,38(7),2281–2285.
    [51]Qing Wen, Ying Wu,Lixin Zhao,et al. Production of electricity from the treatment of continuousbrewery wastewater using a microbial fuel cell[J]. Fuel,2010,89(7):1381–1385
    [52]G. Mohanakrishna, S.Venkata Mohan, P.N.Sarma. Bio-electrochemical treatment of distillerywastewater in microbial fuel cell facilitating decolorization and desalination along with powergeneration[J]. Journal of Hazardous Materials,2010,177(1-3):487–494.
    [53]Mirella Di Lorenzob,Keith Scottb,Tom P.Curtisa et al. Effect of increasing anode surface area onthe performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal,2010,156(1):40–48.
    [54]Georgia Antonopouloua,Katerina Stamatelatoua,Symeon Bebelis et al. Electricity generationfrom synthetic substrates and cheese whey using a two chamber microbial fuel cell[J].Biochemical Engineering Journal,2010,50(1-2):10–15
    [55]Jeffrey M. Morris, Song Jin. Enhanced biodegradation of hydrocarbon-contaminated sedimentsusing microbial fuel cells[J]. Journal of Hazardous Materials,,2012,213–214:474–477.
    [56]Carmen Fuentes-Albarra′n,Alexa Del Razo,Katty Juarez,et al.Influence of NaCl,Na2SO4and O2on power generation from microbial fuel cells with non-catalyzed carbon electrodes and naturalinocula[J]. Solar Energy,2012,86(4):1099–1107.
    [57]Feng Zhao, Nelli Rahunen, John R. Varcoe, et al.Activated carbon cloth as anode for sulfateremoval in a microbial fuel cell[J]. Environ. Sci. Technol.2008,42(13):4971–4976.
    [58]K. Scott, G. A. Rimbu, K. P. Katuri, K. K. Prasad and M. Head. Application of modified carbonanodes in microbial fuel cells[J]. Trans IChemE, Part B, Process Safety and EnvironmentalProtection,2007,85(B5):481–488.
    [59]Mirella Di Lorenzo, Keith Scott, Tom P. Curtis,et al. Effect of increasing anode surface area onthe performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal,2009,156(1):40-48.
    [60]Daqian Jiang, Baikun Li. Granular activated carbon single-chamber microbial fuel cells(GAC-SCMFCs): A design suitable for large-scale wastewater treatment processes[J].Biochemical Engineering Journal2009,47(1-3):31–37.
    [61]Shaoan Cheng, Hong Liu, Bruce E. Logan. Increased performance of single-chamber microbialfuel cells using an improved cathode structure[J]. Electrochemistry Communications2006,8(3)489–494.
    [62]Jefrey M. Morris, Song Jin, Jiaquan Wang,et al. Lead dioxide as an alternative catalyst toplatinum in microbial fuel cells[J]. Electrochemistry Communications2007,9(7):1730–1734.
    [63]Partha Sarathi Jana,Manaswini Behera, M.M.Ghangrekar.Performance comparison of up-flowmicrobial fuel cells fabricated using proton exchange membrane and earthen cylinder[J].International Journal of Hydrogenenergy,2010,35(11):5681-5686.
    [64]孙瑾华,刘建好,黄呈珠等.二氧化锰为阴极催化剂的微生物燃料电池[J].电源技术,2008,132(12):838-844.
    [65]Mirella Di Lorenzob,Keith Scottb,Tom P.Curtisa et al. Effect of increasing anode surface area onthe performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal,2010,156(1):40–48.
    [66]Mi-Sun Kim,Yu-jin Lee. Optimization of culture conditions and electricity generation usinggeobacter sulfur reducens in a dual-chambered microbial fuel-cell[J]. International Journal ofHydrogen Energy,2010,35(23):13028-13034.
    [67]Minghua Zhou, Meiling Chi, Hongyu Wang, et al. Anode modification by electrochemicaloxidation: A new practical method to improve the performance of microbialfuel cells[J]. Biochemical Engineering Journal,2012,60:151–155.
    [68]Liu,J.,Qiao,Y., Guo, C.X., et al.Graphene/carbon cloth anode for high-performance mediatorlessmicrobial fuel cells[J].Bioresource Technology,2012,doi:10.1016/j.biortech.2012.02.116.
    [69]Mostafa Ghasemi, Samaneh Shahgaldi, Manal Ismail,et al. New generation of carbonnanocomposite proton exchange membranes in microbial fuel cell systems[J]. ChemicalEngineering Journal,2012,184:82–89.
    [70]Carlo Santoro, Yu Lei, Baikun Li,et al. Power generation from wastewater using single chambermicrobial fuel cells(MFCs) with platinum-free cathodes and pre-colonized anodes[J].Biochemical Engineering Journal,2012,62:8–16.
    [71]Feng Zhao, Falk Harnisch, Uwe Schro¨der, et al. Application of pyrolysed iron(II)phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbialfuel cells[J]. Electrochemistry Communications,2005,7(12):1405–1410.
    [72]Li Zhuang, Shungui Zhou, YueqiangWang, Chengshuai Liu, Shu Geng. Membrane-less clothcathode assembly (CCA) for scalable microbial fuel cells[J]. Biosensors and Bioelectronics,2009,24(12):3652–3656.
    [73]Li Zhuang, Chunhua Feng,Shungui Zhoua, et al. Comparison of membrane-and cloth-cathodeassembly for scalable microbial fuel cells: construction, performance and cost[J]. ProcessBiochemistry,2010,45(6):929–934.
    [74]崔康平,金松.新型单室无质子膜微生物燃料电池性能研究[J].环境科学研究,2008,21(5):1-5.
    [75]Zhen He, Norbert Wagner,Shelley D. Minteer, and Largus T. Angenent. An upflow microbialfuel cell with an interior cathode: assessment of the internal resistance by impedancespectroscopy[J]. Environ. Sci. Technol.2006,40(17),5212–5217.
    [76]Booki Min and Bruce E. Logan. Continuous electricity generation from domestic wastewaterand organic substrates in a flat plate microbial fuel cell[J]. Environ. Sci. Technol.2004,38(21),5809–5814.
    [77]Zhen He, Shelley D. Minteer, and Largus T. Angenent. Electricity generation from artificialwastewater using an upflow microbial fuel cell[J]. Environ. Sci. Technol.2005,39(14):5262–5267.
    [78]Zhen He, Jinhun Kan, Yanbing Wang, Yuelong Huang, Florian Mansfeld,and Kenneth H.Nealson. Electricity production coupled to ammonium in a microbial fuel cell[J]. Environ. Sci.Technol.2009,43(9):3391–3397.
    [79]Zhiqiang Hu. Electricity generation by a baffle-chamber membraneless microbial fuel cell[J].Journal of Power Sources,2008,179(1):27–33.
    [80]Du Zhuwei, Li Qinghai, Tong Meng, Li Shaohua and Li Haoran. Electricity Generation UsingMembrane-less Microbial Fuel Cell during Wastewater Treatment[J].Chinese Journal ofChemical Engineering,2008,16(5):772-777.
    [81]Junyeong An, Daehee Kim,Youngpil Chun,Soo-Jin Lee, How Y. Ng,and In SeopChang.Floating-Type microbial fuel cell (FT-MFC) for treating organic-contaminated water[J].Environ. Sci. Technol.,2009,43(5):1642–1647.
    [82]I. Ieropoulos, J. Greenman, C. Melhuish. Improved energy output levels from small-scaleMicrobial Fuel Cells[J]. Bioelectrochemistry,2009,78(1):44-50.
    [83]Min Sun, Guo-Ping Sheng, Zhe-Xuan Mu, Xian-Wei Liu,Yong-Zhen Chen, Hua-LinWang,Han-Qing Yu. Manipulating the hydrogen production from acetate in a microbial electrolysiscell–microbial fuel cell-coupled system[J]. Journal of Power Sources,2009,191(2):338–343.
    [84]Qian Deng, Xinyang Li, Jiane. Zuo, Alison Ling, Bruce E. Logan. Power generation using anactivated carbon fiber felt cathode in an upflow microbial fuel cell[J]. Journal of Power Sources,2010,195:1130–1135.
    [85]Mirella Di Lorenzob,Keith Scottb,Tom P.Curtisa et al. Effect of increasing anode surface area onthe performance of a single chamber microbial fuel cell[J]. Chemical Engineering Journal,2010,156(1):40–48.
    [86]梁鹏,黄霞,范明志,曹效鑫,崔岳.双筒型微生物燃料电池产电及污水净化特性的研究[J].环境科学,2009,30(2):616-620.
    [87]曹效鑫,梁鹏,黄霞.三合一微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257
    [88]Guodong Zhang,Qingliang Zhao,Yan Jiao,et al. Efficient electricity generation from sewagesludge using biocathode microbial fuel cell[J]. Water Research,2012,46(1):43-52.
    [89]Li Zhuang,Yu Zheng,Shungui Zhou,et al. Scalable microbial fuel cell(MFC) stack forcontinuous real wastewater treatment[J]. Bioresource Technology,2012,106:82–88.
    [90]Justin C. Biffinger, Jeremy Pietron, Ricky Ray b, Brenda Little b, Bradley R. Ringeisen. Abiofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10and oxygenreduction cathodes[J]. Biosensors and Bioelectronics,2007,22(8):1672–1679.
    [91]Jung Rae Kim, Sok Hee Jung, John M. Regan, Bruce E. Logan. Electricity generation andmicrobial community analysis of alcohol powered microbial fuel cells[J]. BioresourceTechnology,2007,98(13):2568–2577.
    [92]Bruce E. Logan, Cassandro Muranob, Keith Scott,Neil D. Grayc, Ian M. Head. Electricitygeneration from cysteine in a microbial fuel cell[J]. Water Research,2005,39(5):942–952.
    [93]Bor Chyan Jong, Byung Hong Kim, In Seop Chang, Pauline Woan Ying Liew,Yeng Fung Choo,and Gi Su Kang. Enrichment, performance, and microbial diversity of a thermophilicmediatorless microbial fuel cell[J]. Environ. Sci. Technol.2006,40(20):6449–6454.
    [94]Bradley R. Ringeisen, Emily Henderson, Peter K. Wu, Jeremy Pietron, Ricky Ray, Brenda Little,Justin C. Biffinger, and Joanne M. Jones-Meehan. High power density from a miniaturemicrobial fuel cell using shewanella oneidensis DSP10[J]. Environ. Sci. Technol.2006,40(8):2629–2634.
    [95]Abhijeet P. Borole, Choo Y. Hamilton, Tatiana Vishnivetskaya, David Leak, Calin Andras.Improving power production in acetate-fed microbial fuel cells via enrichment ofexoelectrogenic organisms in flow-through systems[J]. Biochemical Engineering Journal,2009,48(1):71-80.
    [96]Abhijeet P. Borole, Choo Y. Hamilton, Tatiana A. Vishnivetskaya, David Leak,Calin Andras,Jennifer Morrell-Falvey, Martin Keller, Brian Davison. Integrating engineering designimprovements with exoelectrogen enrichment process to increase power output from microbialfuel cells[J]. Journal of Power Sources,2009,191(2):520–527.
    [97]Phuc Thi Ha, Beomseok Tae, and In Seop Chang. Performance and bacterial consortium ofmicrobial fuel cell fed with formate[J]. Energy&Fuels,2008,22:164–168.
    [98]骆海萍,刘广立,张仁铎,曹理想.1株产电假单胞菌(Pseudomonas sp.) RE7的分离及特性研究[J].环境科学,2009,30(7):2118-2123.
    [99]李登兰,许玫英,孙国萍.微生物燃料电池中脱色希瓦氏菌S12的产电特性研究[J].微生物学通报,2008,35(5):777-781.
    [100]Zhang,Y., Angelidaki,I. Innovative self-powered submersible microbial electrolysis cell(SMEC)for biohydrogen production from anaerobic reactors[J]. Water Research,2012,doi:10.1016/j.watres.2012.02.038
    [101]Bin Hou, Yongyou Hu, Jian Sun. Performance and microbial diversity of microbial fuel cellscoupled with different cathode types during simultaneous azo dye decolorization and electricitygeneration[J]. Bioresource Technology,2012,111:105–110.
    [102]Biffinger,J.C., Pietron. J. A biofilm enhanced miniature microbial fuel cell using Shewanellaoneidensis DSP10and oxygen reduction cathodes[J]. Biosensors&Bioelectronics,2007,22(8):1672-1679.
    [103]Reguera G,Mccarthy K.D., Mehta T,et al. Extracellular electron transfer via microbialnanowires[J].Nature,2005,435(43):1098-1101.
    [104]Rabaey k.,Boon N., Hofte M., et al. Microbical phenazine production enhances electrontransfer in biofuel cells[J].Enviorn. Sci. Technol.,2005,39(9):3402-3408.
    [105]罗勇,张仁铎,李婕,等.以吲哚为燃料的微生物燃料电池降解和产电特性[J].中国环境科学,2010,30(6):770-774.
    [106]Sun Jian,Hu Yongyou,Bi Zhe,et al. Simultaneous decolorization of azo dye and bioelectricitygeneration using a microfiltration membrane air-cathode single-chamber microbial fuelcell[J].Bioresource Technology,2009,100(13):3185-3192.
    [107]Manaswini B., Partha S J,Tanaji T M, et al. Rice mill wastewater treatment in microbial fuelcells fabricated using proton exchange membrane and earthen pot at different pH[J].Bioelectrochemistry,2010,79(2):228-233.
    [108]Rodrigo M A, Nizares P C, Lobato J, et al. Production of electricity from the treatment of urbanwastewater using a microbial fuel cell[J].Journal of Power Sources,2007,169(1):198-204.
    [109]Clauwaert P, Rabaey K, Aelterman P,et al. Biological denitrification in microbial fuelcells[J].Environ. Sci. Technol.,2007,41(9):3354-3360.
    [110]Thauer R, Jungermann K, Decker K, et al. Conservation in chemotrophic anaerobicbacteria[J].Bacteriol. Rev.,1977,41(1):100-180.
    [111]赵立新,孔凡英,王宣,等.微生物燃料电池处理含铬废水并同步产电[J].现代化工,2009,11(11):37-39.
    [112]Li Yan, Lu Anhuai, Ding Hongrui, et al.Cr(VI) reduction at rutile-catalyzed cathode inmicrobial fuel cells[J].Electrochemistry Communications,2009,11(7):1496-1499.
    [113]Cao Xiaoxin, Huang Xia, Liang Peng, et al. A new method for water desalination usingmicrobial desalination cells[J].Environ. Sci. Technol.,2009,43(18):7148-7152.
    [114]Luo Haiping, Peter J, Ren Zhiyong. Concurrent desalination and hydrogen generation usingmicrobial electrolysis and desalination cells[J].Environ. Sci. Technol.,2011,45(1):340-344.
    [115]Jeffery M M, Song Jin, Barbara C, et al. Microbial fuel cell in enhancing anaerobicbiodegradation of diesel[J].Chemical Engineering Journal,2009,146(2):161-167.
    [116]Robertson W D, Ptacek C J, Brown S J. Geochemical and Hydrogeological Impacts of a WoodParticle Barrier Treating Nitrate and Perchlorate in Ground Water[J].Ground Water Monitoring&Remediation,2007,27(2):85-95.
    [117]Spalding R F, Exner M E. Occurrence of nitrate in groundwater-A review[J]. Journal ofEnvironmental Quality,1993,22(3):392–402.
    [118]张燕.催化还原去除地下水中硝酸盐的研究[D].杭州:浙江大学,2003:20-30.
    [119]吴雨华.欧美国家地下水硝酸盐污染防治研究进展[J].中国农学通报,2011,27(8):284-290.
    [120]徐芳香,陆雍森.我国地下水中硝酸盐污染防治及水源保护区划分[J].1999,12(1):20-23.
    [121]陈建耀,王亚,张洪波等.地下水硝酸盐污染研究综述[J].地理科学进展,2006,25(1):34-44.
    [122]Clark I D, Fritz P. Environmental isotopes in hydrogeology. Lewis Publishers, BocaRaton,1997,148~154;172~186.
    [123]阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究[J].河海大学学报,1996,24(2):51-55.
    [124]吴耀国.地下水环境中反硝化作用[J].环境污染治理技术与设备,2002,3(3):27-31.
    [125]Shearer G, D H. Kohl and S H Chien. The nitrogen-15abundance in a wide variety ofsoils[J].Soil Sci Soc AM. J.,1982,42:899-902.
    [126]Linn D M,J W Doran. Effect of water-filled pore sapce on CO2and N2O production in tilledand nontilled soils[J]. Soil Sci Soc AM. J.,1982,48:1267-1272.
    [127]Xuhui Mao, James Wang, Ali Ciblak,et al. Electrokinetic-enhanced bioaugmentationfor remediation of chlorinated solvents contaminated clay[J]. Journal of Hazardous Materials,2012,213–214:311–317.
    [128]谢丽娅,朱亮,段祥宝.土壤及地下水有机污染原位电化学动力修复技术进展[J].水资源保护,2009,25(4):23-27.
    [129]KrishnaR.Reddy,JeffreyA.Adams.Effectof groundwater flow on remediation of dissolved-phase VOC contamination using air sparging[J].Journal of Hazardous Materials,2000,72(2-3):147–165.
    [130]Michael L.Benner, Rabi H.Mohtar, Linda S. Lee. Factors affecting air sparging remediationsystems using field data and numerical simulations[J]. Journal of Hazardous Materials,2002,B95:305–329.
    [131]Michael Schubert, Axel Schmidt, Kai Müller, et al. Using radon-222as indicator for theevaluation of the efficiency of groundwater remediation by in situ air sparging[J]. Journal ofEnvironmental Radioactivity,102(2011):193-199.
    [132]齐硕,张蕾,张耀为.地下水土石油类污染修复技术途径[J].世界地质,2008,3:319-322.
    [133]Carsten,V.,Albin,A.,Helmut,L.,et al..Bioremediation of chlorobenzene-contaminatedgroundwater in an in-situ reactor mediated byhydrogen peroxide[J]. Journal of ContaminantHydrology,2004,68:121–141.
    [134]Gandhi,S.,Oh,B.T.,Schnoor,et al..Degradation of TCE,Cr(VI),sulfate,and nitrate mixtures bygranular iron in flow through columns under different microbial conditions[J]. Water Research,2002,36:1973–1982.
    [135]Hunter,W.J. Injection of innocuous oils to create reactive barriers for bioremediation:laboratory studies[J]. Journal of Contaminant Hydrology,2005,80:31–48.
    [136]Rasmussen,G., Fremmersvik,G., Olsen,R.A.Treatment of creosote-contaminated groundwater ina peat/sand permeable barrier-a column study[J]. Journal of Hazardous Materials,2002,93:285–306.
    [137]Wilkin,R.T.,Puls,R.W.,Sewell,G.W. Long-term performance of permeable reactive barriersusing zero-valent iron: geochemical and microbiological effects[J]. Ground Water,2003,41:493–503.
    [138]R.Thiruvenkatachari, S.Vigneswaran, R.Naidu. Permeable reactive barrier for groundwaterremediation[J]. Journal of Industrial and Engineering Chemistry,2008,14(2):145–156.
    [139]Tasuma Suzuki, Yukinori Oyama, Mai Moribe,et al. An electrokinetic/Fe0permeable reactivebarrier system for the treatment of nitrate-contaminated subsurface soils[J]. Water research,2012,46(3):772-778.
    [140]Chunming Su, Robert W.Puls. Removal of added nitrate in the single, binary, and ternarysystems of cotton burr compost, zero valent iron, and sediment: Implications for groundwaternitrate remediation using permeable reactive barriers[J]. Chemosphere,2007,67(8):1653–1662.
    [141]钱家忠.地下水污染控制[M].合肥,合肥工业大学出版社,2009,8:200-202.
    [142]薛禹群,张幼宽.地下水污染防治在我国水体污染控制与治理中的双重意义[J].环境科学学报,2009,29(3):474–481.
    [143]申哲民,雷阳明,贾金平等.PbO_2电极氧化有机废水的研究[J].高校化学工程学报,2004,18(1):105-110.
    [144]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M]。北京,中国环境科学出版社,2002,12.
    [145]黄霞,范明志,梁鹏等.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007,23(3):8-13.
    [146]You S J, Zhao Q L, Zhang J N, etal. A microbial fuel cell using permanganate as thecathodic electron acceptor[J]. Journal of Power Sources,2006,162(2):1409-1415.
    [147]Ramaraja P. Ramasamy, Venkataramana Gadhamshetty, Lloyd J.Nadeau,etal.Impedance Spectroscopy as a Tool for Non-Intrusive Detection of ExtracellularMediators in Microbial Fuel Cells[J].Biotechnology and Bioengineering,2009,104(5):882-891.
    [148]Aswin K. Manohar, Orianna Bretschger, Kenneth H. Nealson, Florian Mansfeld. Thepolarization behavior of the anode in a microbial fuel cell[J]. Electrochimica Acta,2008,53(9):3508–3513.
    [149]A.Czerwinski,M.Zelazowska,M.Grden,et al.Electrochemical behavior of lead in sulfuric acidsolutions. Journal of Power Sources,2000,85(1):49–55.
    [150]P. Simon, N.Bui, N. Pebere,et al.Characterization by electrochemical impedance spectroscopyof passive layers formed on lead-tin alloys, in tetraborate and sulfuric acid solutions. Journal ofPower Sources,1995,55(1):63-71.
    [151]T.Mahalingam,S.Velumani,M.Raja,et al. Electrosynthesis and characterization of lead oxidethin films. Materials Characterization,2007,58(8-9):817–822.
    [152]E.E.Abd, El Aal. Cyclic voltammetric behavior of the lead electrode in Sodium sulfatesolutions. Journal of Power Sources,2001,102(2):233–241.
    [153]L.A.Yolshina,V.B.Malkov,A.N.Yolshin. The influence of formation conditions on theelectrochemical behavior of lead Oxide in sulfuric acid solution. Journal of Power Sources,2009,191(1):36–41.
    [154]Guoting Li,HoYinYip,Kin Hang Wong,et al. Photoelectrochemical degradation of MethyleneBlue with β-PbO_2electrodes Driven by visible light irradiation. Journal of EnvironmentalSciences2011,23(6):998–1003.
    [155]U.Casellato,S.Cattarin,M.Musiani.Preparation of porous PbO_2electrodes by electrochemicaldeposition Of composites. Electrochimica Acta,2003,48(27):3991–3998.
    [156]Shaohua Chen, Jiaquan Wang, Xuelan Xia. et al. Preparation of a titanium-based lead dioxidecathode used in the microbial fuel cell and its electrochemical behavior. Asian Journal ofChemistry,2012,24(9),in press.
    [157]汪家权,李晨,谭茜.二氧化铅阴极单室微生物燃料电池处理有机废水研究[J].水处理技术,2009,9:84-86.
    [158]汪家权,夏雪兰,陈少华等.两类微生物燃料电池治理硝酸盐废水的实验研究[J].环境科学学报,2011,31(2):254-259.
    [159]薛禹群.地下水动力学原理[M].北京,地质出版社,1986:282-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700