用户名: 密码: 验证码:
北京大兴杨树人工林生态系统水分利用效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变暖和淡水资源短缺是世界经济可持续发展所面临的两大主要环境问题。森林生态系统作为陆地上最大的生态系统,对维持全球大气碳水平衡起着重要作用。因此,开展森林生态系统碳水耦合关系及其影响因素的研究,不仅可以提高森林资源的有效利用,同时也为研究森林生态系统对全球气候变化响应,缓解水资源短缺提供重要理论支撑。本研究选择北京市大兴区永定河沿河沙地的杨树(Populus euramericana)人工林生态系统作为研究对象,运用涡度相关(Eddy covariance, EC)开路系统、常规微气象观测系统以及液流方法,并结合生物量调查法,连续测定(2006年-2012年)该生态系统与大气间碳、水和能量交换,通过分析杨树人工林不同时间尺度(瞬时、日、月、年)生态系统碳水通量的变化规律及其影响因素,深入研究杨树人工林生态系统碳固定和水分消耗的生理生态学机理,为杨树人工林经营管理提供理论依据。
     研究结果显示:无论是否受到水分胁迫和人为扰动的影响,杨树人工林生态系统均为碳汇,总生态系统生产力(GEP)和生态系统蒸发散(ET)都显示出较为显著的相关性。杨树人工林生态系统水分利用效率(WUE)日变化呈现双峰型变化趋势,即早晚达到极值,白天WUE较低;日尺度生态系统WUE虽然波动显著,但未显示出较为显著的季节变化趋势。
     较小时间尺度下(日变化),当未受到人为干扰时,影响WUE变化的主要因子为气象因子而非土壤因子;季节变化尺度,WUE主要受到气象因子和土壤水分的影响;WUE年际变化主要与植被自身的生理生态特征有关,与环境因子相关性较小。当相对土壤含水量(REW)<0.1时,GEP和ET受到严重水分胁迫的影响维持在较低水平,各环境因子对GEP、ET和WUE的影响较小;当0.1土壤体积含水量(VWC)的增加而增大,WUE随VWC的增大而减小;REW>0.4时,气象因子是影响碳固定和水分损耗的主要原因,由于ET对气象因子变化的响应较GEP更为敏感,因此,WUE随空气饱和水汽压差(VPD)的增大而减小。沙地土壤保水能力较差,不能保证土壤水分被植物有效利用,因此当VWC处于5.2%-8.8%(0.1     应用3PG+模型对生态系统碳储量和水分蒸发散进行模拟,模拟结果显示,杨树人工林在大规模砍伐和补栽后,仍为碳汇,但由于砍伐及补栽等人为扰动对GEP的影响略大于ET,因此经过人为砍伐补栽后的杨树人工林WUE略有降低。此外,模型模拟发现华北地区沙地杨树人工林在林龄为11-18年期间具有较高的碳储量,WUE在8-11年间显著增加,11年后WUE未呈现出明显年际变化,因此,根据杨树人工林的固碳能力和耗水效率综合情况,选取18年作为华北地区沙地杨树人工林的砍伐林龄。
Global warming and the storage of water resources are two main environmental issues for the sustainable world development. As the largest terrestrial ecosystem, forest ecosystems play a vital role on carbon and water balance. Therefore, studies on relationship between carbon and water flux are helpful to understand and quantify how much water the plants need to assimilate a certain amount of carbon and determine how future climate warming induced hydrological changes will impact carbon budgets of poplar plantation ecosystems. An open path eddy-covariance (EC) system and a microclimate monitor system were employed to continuously measure the carbon, water, and energy exchange between a poplar (Populus euramericana) plantation and the atmosphere in Daxing District of Beijing, China, during2006to2012. The objectives of our study were to quantify the diurnal and seasonal variability of ecosystem water use efficiency (WUE) of poplar plantation, and determine the effects of environmental factors on the ecosystem WUE at different time scales.
     We found that the poplar plantation in Northern China was a strong carbon and there was a significant relationship between gross ecosystem productivity (GEP) and evapotranspiration (ET) under different soil water. Besides, the results show that the WUE changed diurnally which peaked in early morning and reached the minimum at the2pm to3pm because the limitation of photosynthetically active radiation (PAR) and saturated vapor pressure deficit (VPD) regulating stomatal opening and closure. Unlike the diurnal variation, there was apparent day-to-day variation but no substantial seasonal variation of WUE because the influence of both PAR, precipitation and soil water condition.
     We examined the effects of environmental factors influencing WUE under different soil moisture conditions and found that when relative extractable soil water (REW) was less than0.1, both GEP and ET maintained at a low level and did not changed with the variation of environmental factors.GEP and ET increased as soil water contents (VWC) increase, but the greater effect of VWC on ET over GEP resulted in negative correlation between WUE and VWC when0.1     3PG+model was used to simulate carbon, water flux and WUE and the simulative results showed that the poplar plantation in our study was still a strong carbon sink under human disturbance, such as deforestation and replantation. But WUE was lower under human disturbance because the higher effects of deforestation on GEP than ET. Besides, the simulative results of the age-related variation of WUE showed that the carbon sequestration and water loss is always effective for poplar plantation when felling trees at18years old.
引文
[1]陈军.杨树人工林地上生物量和碳储量研究[D],2007,北京:北京林业大学.
    [2]陈军锋,李秀彬.森林植被变化对流域水文影响的争论.自然资源学报,2001.10(5).
    [3]方精云,营诚.日本落叶松模拟种群的生长与密度的关系.植物学报,1991.33(12):949.
    [4]方显瑞,张志强,查同刚,等.永定河沿河沙地杨树人工林生态系统呼吸特征.生态学报,2012.32(8):2400-2409.
    [5]谷加存,王政权,韩有志.采伐干扰对帽几山天然次生林土壤表层水分空间异质性的影响.生态学报,2005.25(8):2001-2009.
    [6]胡中民,于贵瑞,王秋凤,等.生态系统水分利用效率研究进展.生态学报,2009.29(3):1498-1507.
    [7]花利忠.雷州半岛桉树人工林3PG模型的研究,2004,福建农林大学.
    [8]花利忠,徐大平,江希钿,等.桉树人工林3PG模型.福建林学院学报,2004.24(002):140-143.
    [9]孔国辉,莫江明.人为干扰对鼎湖山马尾松林种群动态的影响.热带亚热带植物学报,2002.10(3):193-200.
    [10]李振基,刘初钿.武夷山自然保护区郁闭稳定甜槠林与人为干扰甜槠林物多样性比较.植物生态学报,2000.24(1):64-68.
    [11]彭长连,林植芳,林桂珠,等.人为干扰对亚热带森林木本植物叶片.1998.
    [12]彭镇华,王妍,任海青,等.安庆杨树林生态系统碳通量及其影响因子研究.林业科学研究,2009.22(2):237-242.
    [13]宋霞,于贵瑞,刘允芬,等.亚热带人工林水分利用效率的季节变化及其环境因子的影响.中国科学D辑地球科学,2006.36(增刊Ⅰ):111-118.
    [14]谭炯锐,查同刚,张志强,等.土壤温湿度对北京大兴杨树人工林土壤呼吸的影响.生态环境学报,2009.18(5):2308-2315.
    [15]唐守正.同龄纯林自然稀疏规律的研究.林业科学,1993.29(3):234-241.
    [16]田昆,常凤来,陆梅,等.人为活动对云南纳帕海湿地土壤碳氮变化的影响.土壤学报,2004.41(5):681-686.
    [17]魏远,张旭东,江泽平,等.湖南岳阳地区杨树人工林生态系统净碳交换季节动态研究.林业科学研究,2010.23(5):656-665.
    [18]吴承祯,洪伟.杉木人工林自然稀疏规律研究.林业科学,2000.36(4):97-101.
    [19]徐德应,郭泉水,阎洪.气候变化对中国森林影响研究1997,北京:中国科学技术出版社.
    [20]徐小红.温室效应与气候变化研究综述.陕西气象,1998.3:010.
    [21]薛立,向文静,何跃君,等.不同林地清理方式对杉木林土壤肥力的影响.应用生态学报,2005.16(8):1417-1421.
    [22]叶笃正,黄荣辉.我国长江黄河两流域旱涝规律成因与预测研究的进展,成果与问题.地球科学进展,1991.6(4):24-29.
    [23]尹利伟,郭辉军,盛才余.人为干扰对高黎贡山社区森林树种多样性的影响.
    [24]游水生.不同人为干扰强度对米槠林乔木层组成和物种多样性的影响.林业科学,2009(z1):106-110.
    [25]于贵瑞,王秋凤,于振良.陆地生态系统水—碳耦合循环与过程管理研究.地球科学进展,2004.19(5):831-838.
    [26]张燕.北京地区杨树人工林能量平衡和水量平衡,2010,北京林业大学.
    [27]张永强,沈彦俊,刘昌明,等.华北平原典型农田水、热与CO2通量的测定.地理学报,2002.57(3):333-342.
    [28]赵玉萍.浅析温室效应与气候变化哈尔滨师范大学自然科学学报,1999.15(1).
    [29]周广胜,王玉辉,白莉萍,等.陆地生态系统与全球变化相互作用的研究进展.气象学报,2004.62(5):692-707.
    [30]周广胜,张新时.全球变化的中国气体—植被分类研究.植物学报:英文版,1996.38(1):8-17.
    [31]朱锦懋,姜志林,蒋伟.人为干扰对闽北森林群落物种多样性的影响.生物多样性,1997.5(4):263-270.
    [32]朱治,林一,孙晓敏,等.作物群体CO2通量和水分利用效率的快速测定.应用生态学报,2004.15(9):1684-1686.
    [33]Amichev, B.Y., M. Johnston, K.C.J. Van Rees. Hybrid poplar growth in bioenergy production systems:biomass prediction with a simple process-based model (3PG). biomass and bioenergy, 2010.34(5):687-702.
    [34]Amthor, J.S. Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biology,2006.1(4):243-274.
    [35]Angelov, M., T. Tsonev, A. Uzunova,et al. Cu2+effect upon photosynthesis, chloroplast structure, RNA and protein synthesis of pea plants. Photosynthetica,1993.28(3):341-350.
    [36]Aubinet, M., B. Chermanne, M. Vandenhaute,et al. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology,2001.108(4):293-315.
    [37]Baker, J.B., B. Blackmon. Biomass and nutrient accumulation in a cottonwood plantation-the first growing season. Soil Science Society of America Journal,1977.41(3):632-636.
    [38]Baldocchi, D. A comparative study of mass and energy exchange rates over a closed C3(wheat) and an open C4 (corn) crop:II. CO2 exchange and water use efficiency. Agricultural and Forest Meteorology,1994.67(3):291-321.
    [39]Baldocchi, D., E. Falge, L. GU. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of American Meteorological Society,2001.82(11):2.
    [40]Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future. Global Change Biology,2003.9(4):479-492.
    [41]Ball, J. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in Prog. Photosynthesis Res. Proc. Int. Congress 7th, Providence.10-15 Aug 1986. Vol4. Kluwer, Boston.1987.
    [42]Barford, C.C., S.C. Wofsy, M.L. Goulden,et al. Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science,2001.294(5547):1688-1691.
    [43]Barr, A.G., T. Black, E. Hogg,et al. Climatic controls on the carbon and water balances of a boreal aspen forest,1994-2003. Global Change Biology,2006.13(3):561-576.
    [44]Becerril, J., C. Gonzalez-Murua, A. Munoz-Rueda,et al. Changes induced by cadmium and lead in gas exchange and water relations of clover and lucerne. Plant physiology and biochemistry,1989. 27(6):913-918.
    [45]Berbigier, P., J.M. Bonnefond, P. Mellmann. CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology,2001.108(3):183-197.
    [46]Bernier, P., N. Breda, A. Granier,et al. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements. Forest Ecology and Management,2002.163(1):185-196.
    [47]Cai, T., D.T. Price, A.L. Orchansky,et al. Carbon, Water, and Energy Exchanges of a Hybrid Poplar Plantation During the First Five Years Following Planting. Ecosystems,2011.14(4):658-671.
    [48]Carrara, A., I.A. Janssens, J. Curiel Yuste,et al. Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. Agricultural and Forest Meteorology,2004.126(1):15-31.
    [49]Cavaleri, M.A., S.F. Oberbauer, M.G. Ryan. Wood CO2 efflux in a primary tropical rain forest. Global Change Biology,2006.12(12):2442-2458.
    [50]Chambers, J.Q., J.P. Schimel, A.D. Nobre. Respiration from coarse wood litter in central Amazon forests. Biogeochemistry,2001.52(2):115-131.
    [51]Chapin, F.S., P.A. Matson, P.M. Vitousek. Principles of terrestrial ecosystem ecology2011: Springer.
    [52]Chappell, J. Phytoremediation of TCE using Populusl997:US Environmental Protection Agency, Technology Innovation Office.
    [53]Chen, J., M. Falk, E. Euskirchen,et al. Biophysical controls of carbon flows in three successional Douglas-fir stands based on eddy-covariance measurements. Tree Physiology,2002.22(2-3): 169-177.
    [54]Chen, W., T. Black, P. Yang,et al. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology,1999.5(1):41-53.
    [55]Coops, N., R. Waring, S. Brown,et al. Comparisons of predictions of net primary production and seasonal patterns in water use derived with two forest growth models in Southwestern Oregon. Ecological Modelling,2001.142(1):61-81.
    [56]Currie, D.J. Energy and large-scale patterns of animal-and plant-species richness. American Naturalist,1991:27-49.
    [57]Curtis, P. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell & Environment,2006.19(2):127-137.
    [58]Davidson, E.A., L.V. Verchot, J.H. Cattanio,et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry,2000.48(1):53-69.
    [59]DeWalle, D.R., B.R. Swistock, T.E. Johnson,et al. Potential effects of climate change and urbanization on mean annual streamflow in the United States. Water Resources Research,2000. 36(9):2655-2664.
    [60]Dewar, R.C. A simple model of light and water use evaluated for Pinus radiata. Tree physiology, 1997.17(4):259-265.
    [61]Ellsworth, D. CO2 enrichment in a maturing pine forest:are CO2 exchange and water status in the canopy affected? Plant, Cell & Environment,2002.22(5):461-472.
    [62]Epron, D., Y. Nouvellon, O. Roupsard,et al. Spatial and temporal variations of soil respiration in a< i> Eucalyptus plantation in Congo. Forest Ecology and Management,2004.202(1):149-160.
    [63]Ewers, B.E., R. Oren. Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree physiology,2000.20(9):579-589.
    [64]Ewers, B.E., R. Oren, K.H. Johnsen,et al. Estimating maximum mean canopy stomatal conductance for use in models. Canadian Journal of Forest Research,2001.31(2):198-207.
    [65]Falk, M. Interannual variability of water use efficiency in an old-growth forest under drought conditions. in 27th Conference on Agricultural and Forest Meteorology.2006.
    [66]Fan, S.M., M. Goulden, J. Munger,et al. Environmental controls on the photosynthesis and respiration of a boreal lichen woodland:a growing season of whole-ecosystem exchange measurements by eddy correlation. Oecologia,1995.102(4):443-452.
    [67]Farley, K.A., E.G. Jobbagy, R.B. Jackson. Effects of afforestation on water yield:a global synthesis with implications for policy. Global Change Biology,2005.11(10):1565-1576.
    [68]Farquhar, G.D., M. O'leary, J. Berry. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology,1982.9(2): 121-137.
    [69]Feikema, P., J. Morris, C. Beverly,et al. Using 3PG+ to simulate longterm growth and transpiration in Eucalyptus regnans forests, in International Environmental Modelling and Software Society 2010 International Congress on Environmental Modelling and Software, D.A. Swayne, W. Yang, A.A. Voinov, et al, Editors.2010:Ottawa, Canada.
    [70]Ferretti, D., E. Pendall, J. Morgan,et al. Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes:Seasonal variations and ecosystem implications of elevated atmospheric CO 2. Plant and Soil,2003.254(2):291-303.
    [71]Foken, T., M. Goockede, M. Mauder,et al, Post-field data quality control, in Handbook of micrometeorology:A Guide for Surface Flux Measurement and Analysis, X. Lee, Massman, W. J., and Law, B., Editor 2004, Kluwer:Dordrecht.181-208.
    [72]Freedman, J.M., D.R. Fitzjarrald, K.E. Moore,et al. Boundary layer clouds and vegetation-atmosphere feedbacks. Journal of Climate,2001.14(2):180-197.
    [73]Gordon, M., N. Choe, J. Duffy,et al. Phytoremediation of trichloroethylene with hybrid poplars. Environmental Health Perspectives,1998.106(Suppl 4):1001-1004.
    [74]Goudriaan, J., P.E. Waggoner. Simulating both aerial microclimate and soil temperature from observations above the foliar canopy. Neth. J. Agric. Sci,1972.20:104-124.
    [75]Goulden, M.L., B.C. Daube, S.M. Fan,et al. Physiological responses of a black spruce forest to weather. Journal of Geophysical Research,1997.103:28-28.
    [76]Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree physiology,1987.3(4):309-320.
    [77]Granier, A., N. Breda, P. Biron,et al. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecological Modelling,1999.116(2):269-283.
    [78]Granier, A., M. Reichstein, N. Breda,et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year:2003. Agricultural and Forest Meteorology,2007.143(1):123-145.
    [79]Gu, J., Z. Wang, Y. Han,et al. Effects of harvesting on spatial heterogeneity of soil moisture in secondary forests of Maoershan region. Acta Ecologica Sinica,2005.25(8):2001-2009.
    [80]Gu, L., D. Baldocchi, S.B. Verma,et al. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of geophysical research,2002.107(D6):4050.
    [81]Guidi, W., E. Piccioni, E. Bonari. Evapotranspiration and crop coefficient of poplar and willow short-rotation coppice used as vegetation filter. Bioresource Technology,2008.99(11):4832-4840.
    [82]Hall, R.L. Aerodynamic resistance of coppiced poplar. Agricultural and forest meteorology,2002. 114(1):83-102.
    [83]Heilman, P.E., G. Ekuan, D. Fogle. Above-and below-ground biomass and fine roots of 4-year-old hybrids of Populus trichocarpax Populus deltoides and parental species in short-rotation culture. Canadian Journal of Forest Research,1994.24(6):1186-1192.
    [84]Hobbs, R. Disturbance of a precursor to weed invasion in native vegetation [Australia; review].[Conference paper]. Plant Protection Quarterly,1991.6.
    [85]Hobbs, R., L. Atkins. Effect of disturbance and nutrient addition on native and introduced annuals in plant communities in the Western Australian wheatbelt. Australian Journal of Ecology,2006. 13(2):171-179.
    [86]Hobbs, R.J., L.F. Huenneke. Disturbance, diversity, and invasion:implications for conservation. Conservation biology,1992.6(3):324-337.
    [87]Hollinger, D., J. Aber, B. Dail,et al. Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biology,2004.10(10):1689-1706.
    [88]Hsieh, C.I., G. Katul, T. Chi. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Advances in Water Resources,2000.23(7): 765-772.
    [89]Hu, Z., G. Yu, Y. Fu,et al. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Global Change Biology,2008.14(7):1609-1619.
    [90]Huber, S.C., H.H. Rogers, F.L. Mowry. Effects of water stress on photosynthesis and carbon partitioning in soybean (Glycine max [L.] Merr.) plants grown in the field at different CO2 levels. Plant Physiology,1984.76(1):244-249.
    [91]Hui, D., Y. Luo, W. Cheng,et al. Canopy radiation-and water-use efficiencies as affected by elevated [CO2]. Global Change Biology,2001.7(1):75-91.
    [92]Huxman, T.E., M.D. Smith, P.A. Fay,et al. Convergence across biomes to a common rain-use efficiency. Nature,2004.429(6992):651-654.
    [93]Imanuel, N.M. Desert ecosystems:environment and producers. Annual review of ecology and systematics,1973:25-51.
    [94]Jackson, R., O. Sala, C. Field,et al. CO 2 alters water use, carbon gain, and yield for the dominant species in a natural grassland. Oecologia,1994.98(3):257-262.
    [95]Jarvis, P., P. Jarvis. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,1976.273(927):593-610.
    [96]Kostner, B., E.D. Schulze, F. Kelliher,et al. Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus:an analysis of xylem sap flow and eddy correlation measurements. Oecologia,1992.91(3):350-359.
    [97]Kato, T., R. Kimura, M. Kamichika. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model. Agricultural Water Management,2004.65(3):173-191.
    [98]Knapp, A.K., E.P. Hamerlynck, J.M. Ham,et al. Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form. Plant Ecology,1996.125(1):31-41.
    [99]Knohl, A., D.D. Baldocchi. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of geophysical research,2008.113(G2):G02023.
    [100]Kuglitsch, F., M. Reichstein, C. Beer,et al. Characterisation of ecosystem water-use efficiency of European forests from eddy covariance measurements. Biogeosciences Discuss,2008.5: 4481-4519.
    [101]Lajtha, K., J. Getz. Photosynthesis and water-use efficiency in pinyon-juniper communities along an elevation gradient in northern New Mexico. Oecologia,1993.94(1):95-101.
    [102]Landsberg, J., R. Waring. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management,1997. 95(3):209-228.
    [103]Lauenroth, W., J. Bradford. Ecohydrology and the partitioning AET between transpiration and evaporation in a semiarid steppe. Ecosystems,2006.9(5):756-767.
    [104]Law, B., P. Anthoni, J. Aber. Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Global Change Biology,2000.6(2):155-168.
    [105]Law, B., E. Falge, L. Gu,et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology,2002.113(1):97-120.
    [106]Le Houerou, H.N. Rain use efficiency:a unifying concept in arid-land ecology. Journal of Arid Environments,1984.7(3):213-247.
    [107]Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment,1995.18(4):339-355.
    [108]Li, H., J. Reynolds. On definition and quantification of heterogeneity. Oikos,1995:280-284.
    [109]Liang, N., K. Maruyama. Interactive effects of CO2 enrichment and drought stress on gas exchange and water-use efficiency in Alnus firma. Environmental and Experimental Botany,1995. 35(3):353-361.
    [110]Lindroth, A., E. Cienciala. Water use efficiency of short-rotation Salix viminalis at leaf, tree and stand scales. Tree physiology,1996.16(1-2):257-262.
    [111]Liu, C., X. Zhang, Y. Zhang. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agricultural and Forest Meteorology,2002.111(2):109-120.
    [112]Liu, W., W. Gao, Z. Gao,et al. Impacts of land use and climate change on the net primary productivity in Xinjiang based on remote sensing. in Geoinformatics 2008 and Joint Conference on GIS and Built Environment:Monitoring and Assessment of Natural Resources and Environments. 2008. International Society for Optics and Photonics.
    [113]Lloyd, J., J. Taylor. On the temperature dependence of soil respiration. Functional ecology,1994. 8:315-323.
    [114]Luyssaert, S., I. Inglima, M. Jung,et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology,2007.13(12):2509-2537.
    [115]Mahrt, L., D. Vickers. Relationship of area-averaged carbon dioxide and water vapour fluxes to atmospheric variables. Agricultural and Forest Meteorology,2002.112(3):195-202.
    [116]Massman, W., X. Lee. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology,2002.113(1):121-144.
    [117]McNulty, S.G., J.M. Vose, W.T. Swank. Potential climate change effects on loblolly pine forest productivity and drainage across the southern United States. Ambio,1996:449-453.
    [118]Medlyn, B.E., A.P. Robinson, R. Clement,et al. On the validation of models of forest CO2 exchange using eddy covariance data:some perils and pitfalls. Tree Physiology,2005.25(7): 839-857.
    [119]Menon, M., S. Hermle, M.S. Gunthardt-Goerg,et al. Effects of heavy metal soil pollution and acid rain on growth and water use efficiency of a young model forest ecosystem. Plant and Soil,2007. 297(1):171-183.
    [120]Migliavacca, M., M. Meroni, G. Manca,et al. Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agricultural and Forest Meteorology,2009.149(9):1460-1476.
    [121]Mo, J., S. Peng, S. Brown,et al. Nutrient dynamics in response to harvesting practices in a pine forest of subtropical China. Acta Phytoecol Sin,2004.28:810-822.
    [122]Mohanty, B., J. Famiglietti, T. Skaggs. Evolution of soil moisture spatial structure in a mixed vegetation pixel during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resources Research,2000.36(12):3675-3686.
    [123]Monteith, J. Evaporation and environment. Symposia of the Society for Experimental Biology, 1965.19:205-234.
    [124]Monteith, J.L., Steps in climatology, in Dryland Farming, Amarillo/Bushland, P.W. Unger, Jordan, W.R., Sneed, T.V., Jensen R.W.,, Editor 1989:Texas A&M University, College Station, TX.
    [125]Moren, A.S., A. Lindroth, A. Grelle. Water-use efficiency as a means of modelling net assimilation in boreal forests. Trees-Structure and Function,2001.15(2):67-74.
    [126]Morecroft, M., J. Roberts. Photosynthesis and stomatal conductance of mature canopy oak (Quercus robur) and sycamore (Acer pseudoplatanus) trees throughout the growing season. Functional Ecology,2002.13(3):332-342.
    [127]Morris, J., J. Collopy. Validating plantation water use predictions from the 3PG forest growth model. in Proceedings of the MODSIM 2001 international congress on modelling and simulation, Canberra.2001.
    [128]Moustakas, M., G. Ouzounidou, L. Symeonidis,et al. Field study of the effects of excess copper on wheat photosynthesis and productivity. Soil science and plant nutrition,1997.43(3):531-539.
    [129]Neilson, R.P. A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications,1995.5(2):362-385.
    [130]Nijs, I., I. Impens, T. Behaeghe. Effects of long-term elevated atmospheric CO2 concentration on Lolium perenne and Trifolium repens canopies in the course of a terminal drought stress period. Canadian journal of botany,1989.67(9):2720-2725.
    [131]Nogueira, A., C. Martinez, L. Ferreira,et al. Photosynthesis and water use efficiency in twenty tropical tree species of differing succession status in a Brazilian reforestation. Photosynthetica, 2004.42(3):351-356.
    [132]Noormets, A., J. Chen, T.R. Crow. Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA. Ecosystems,2007.10(2):187-203.
    [133]Noormets, A., A. Desai, B. Cook,et al. Moisture sensitivity of ecosystem respiration:comparison of 14 forest ecosystems in the Upper Great Lakes Region, USA. Agricultural and Forest Meteorology,2008.148(2):216-230.
    [134]Oke, T.R., J. Crowther, K. McNaughton,et al. The micrometeorology of the urban forest [and discussion]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1989.324(1223):335-349.
    [135]Oren, R., J. Sperry, G. Katul,et al. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment,1999.22(12): 1515-1526.
    [136]Palmroth, S., C.A. Maier, H.R. McCarthy,et al. Contrasting responses to drought of forest floor CO2 efflux in a loblolly pine plantation and a nearby oak-hickory forest. Global Change Biology, 2005.11(3):421-434.
    [137]Peter, J.D. Modelling growth and water use in four Pinus patula stands with the 3-PG model. South African Forestry Journal,2001.191:53-64.
    [138]Phillips, N., R. Oren. A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors. Annals of Forest Science,1998.55:217-235.
    [139]Ponton, S., L.B. Flanagan, K.P. Alstad,et al. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology,2006.12(2):294-310.
    [140]Prentice, I.C., W. Cramer, S.P. Harrison,et al. Special paper:a global biome model based on plant physiology and dominance, soil properties and climate. Journal of biogeography,1992:117-134.
    [141]Price, D., T. Black. Effects of short-term variation in weather on diurnal canopy CO2 flux and evapotranspiration of a juvenile Douglas-fir stand. Agricultural and Forest Meteorology,1990. 50(3):139-158.
    [142]Reichstein, M., J. Tenhunen, O. Roupsard,et al. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests:drought effects and decomposition dynamics. Functional ecology, 2002.16(1):27-39.
    [143]Rouphael, Y., G. Colla. Radiation and water use efficiencies of greenhouse zucchini squash in relation to different climate parameters. European journal of agronomy,2005.23(2):183-194.
    [144]Sala, O.E., W. Parton, L. Joyce,et al. Primary production of the central grassland region of the United States. Ecology,1988.69(1):40-45.
    [145]Salimon, C., E. Davidson, R. Victoria,et al. CO2 flux from soil in pastures and forests in southwestern Amazonia. Global Change Biology,2004.10(5):833-843.
    [146]Scanlon, T.M., J.D. Albertson. Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa. Global Change Biology,2003.10(3):329-341.
    [147]Schmid, H., H.-B. Su, C. Vogel,et al. Ecosystem-atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. Journal of Geophysical Research,2003. 108(D14):4417.
    [148]Schulze, E.D., A.D. Hall, Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments, in Encyclopedia of Plant Physiology, Lange O L, Nobel PS, Osmond CB, et al, Editors.1982, Springer:Berlin.181-230.
    [149]Sellers, P., L. Bounoua, G. Collatz,et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. SCIENCE-NEW YORK THEN WASHINGTON-,1996: 1402-1405.
    [150]Silva, C.E.M., J.F.C. Goncalves, T.R. Feldpausch. Water-use efficiency of tree species following calcium and phosphorus application on an abandoned pasture, central Amazonia, Brazil. Environmental and Experimental Botany,2008.64(2):189-195.
    [151]Steduto, P., T.C. Hsiao, E. Fereres. On the conservative behavior of biomass water productivity. Irrigation Science,2007.25(3):189-207.
    [152]Sun, G., A. Noormets, J. Chen,et al. Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in Northern Wisconsin, USA. agricultural and forest meteorology,2008.148(2):257-267.
    [153]Tang, J., P.V. Bolstad, B.E. Ewers,et al. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. Journal of geophysical research,2006.111(G2):G02009.
    [154]Teskey, R., H. Gholz, W. Cropper. Influence of climate and fertilization on net photosynthesis of mature slash pine. Tree physiology,1994.14(11):1215-1227.
    [155]Tong, X.J., J. Li, Q. Yu,et al. Ecosystem water use efficiency in an irrigated cropland in the North China Plain. Journal of Hydrology,2009.374(3):329-337.
    [156]Turner, D.P., S. Urbanski, D. Bremer,et al. A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biology,2003.9(3):383-395.
    [157]Vorosmarty, C.J., P. Green, J. Salisbury,et al. Global water resources:vulnerability from climate change and population growth, science,2000.289(5477):284-288.
    [158]Van Wijk, M., W. Bouten, J. Verstraten. Comparison of different modelling strategies for simulating gas exchange of a Douglas-fir forest. Ecological modelling,2002.158(1):63-81.
    [159]Veron, S.R., M. Oesterheld, J.M. Paruelo. Production as a function of resource availability:slopes and efficiencies are different. Journal of Vegetation Science,2009.36(3):351-354.
    [160]Veron, S.R., J.M. Paruelo, O.E. Sala,et al. Environmental controls of primary production in agricultural systems of the Argentine Pampas. Ecosystems,2002.5(7):625-635.
    [161]Waggoner, P.E., W.E. Reifsnyder. Simulation of the temperature, humidity and evaporation profiles in a leaf canopy. Journal of Applied Meteorology,1968.7(3):400-409.
    [162]Waring, R. A process model analysis of environmental limitations on the growth of Sitka spruce plantations in Great Britain. Forestry,2000.73(1):65-79.
    [163]Waring, R., J. Landsberg, M. Williams. Net primary production of forests:a constant fraction of gross primary production? Tree Physiology,1998.18(2):129-134.
    [164]Webb, E.K., G.I. Pearman, R. Leuning. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society,1980. 106(447):85-100.
    [165]Wen, X.F., G.R. Yu, X.M. Sun,et al. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agricultural and Forest Meteorology,2006.137(3):166-175.
    [166]Wilson, K.B., D.D. Baldocchi. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology, 2000.100(1):1-18.
    [167]Wilson, K.B., D.D. Baldocchi, P.J. Hanson. Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiology,2000.20(12):787-797.
    [168]Wullschleger, S.D., C. Gunderson, P. Hanson,et al. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration-interacting variables and perspectives of scale. New Phytologist,2002.153(3):485-496.
    [169]Yoda, K., T. Kira, H. Ogawa. Self-thinning in overcrowded pure stands under cultivated and natural conditions. Biol Osaya City Univ,1963.14:107-129.
    [170]Yu, G., X. Song, Q. Wang,et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist,2008.177(4):927-937.
    [171]Yu, G.R., Q.F. Wang, J. Zhuang. Modeling the water use efficiency of soybean and maize plants under environmental stresses:application of a synthetic model of photosynthesis-transpiration based on stomatal behavior. Journal of Plant Physiology,2004.161(3):303-318.
    [172]Yuste, J.C., I. Janssens, A. Carrara,et al. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree physiology,2003.23(18):1263-1270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700