用户名: 密码: 验证码:
盾构螺旋输送机承压输送机理研究及控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
EPB盾构在进行隧道施工时,实现密封舱内土压力根据施工要求及地质条件的变化自动进行动态平衡控制,可有效降低由于盾构施工引起的地表变形,从而降低事故发生的概率。掌握具有地质适应性的EPB盾构密封舱土压力动态平衡控制技术,对提高我国复杂掘进装备控制水平,具有重要的工程实用价值和战略意义,也是未来盾构技术发展的必然趋势。由于缺乏对EPB盾构螺旋输送机在复杂塑性挤出过程中压力与流动之间准确的数学描述,给密封舱土压力动态平衡控制带来困难。因此,EPB盾构螺旋输送机承压输送机理己成为密封舱土压力动态平衡控制亟待解决的重要课题。
     基于上述工程背景,本文针对EPB盾构密封舱土压力动态平衡控制中,螺旋输送机在复杂的塑性挤出过程中所表现出的承压输送特性展开研究。首先通过实验研究了密封舱土压力系统内改性土体的流变特性,实现了密封舱土压力系统工作过程的数值模拟,进而揭示了盾构螺旋输送机承压输送特性及控制参数对密封舱土压力的作用机理等被控系统特性,建立了密封舱土压力系统数学模型,提出一种基于模型参数在线辨识结合最优控制的EPB盾构密封舱土压力动态平衡控制方法。
     本文的主要研究内容包括以下几个方面:
     (1)提出了一种压力相关的Bingham粘塑性非牛顿流体粘度模型。基于自主研发的适合于EPB盾构改性土体流变特性研究的实验装置,对实验室重建的典型改性土体进行流变特性实验,发现了当围压不变时改性砂呈现出剪切稀化的非牛顿流体特性,剪切应力与剪切速率满足经典Bingham粘塑性流体本构关系,获得了典型配比下改性砂的流变参数的范围,并发现粘度系数和屈服应力均随围压的增大而增大,进而提出了一种压力相关的Bingham粘塑性非牛顿流体粘度模型。该模型的提出为密封舱土压力系统工作过程数值仿真研究奠定基础。
     (2)提出了CFD仿真环境下非牛顿流体压力相关的粘度模型及密度模型的自定义方法,实现了对EPB盾构密封舱土压力系统工作过程中改性土体粘-弹-塑性流动行为的数值模拟。与实验结果在压力场分布及流量等方面均具有较好的一致性。该结论为进一步采用数值仿真方法研究螺旋输送机承压输送特性及控制参数对密封舱土压力的作用机理等方面研究工作的展开奠定基础。
     (3)提出了EPB盾构螺旋输送机在复杂的塑性挤出过程中的排土效率计算方法。通过对密封舱土压力系统工作过程的数值仿真并结合理论分析的方法,研究了EPB盾构螺旋输送机进出口压差,所输送介质流变特性及螺旋输送机几何参数对排土效率的影响规律,揭示了螺旋输送机承压输送特性,提出了EPB螺旋输送机在复杂的塑性挤出过程中的排土效率计算方法。解决了建立密封舱土压力系统数学模型所涉及的关键问题。为密封舱土压力系统数学模型的建立奠定基础。
     (4)提出了一种基于模型参数在线辨识结合最优控制的密封舱土压力动态平衡控制方法。建立了EPB盾构密封舱土压力系统数学模型,考虑了密封舱内改性渣土的等效切线变形模量E1和螺旋输送机排土效率n与密封舱内土压力的相关性。建立了单独控制螺旋输送机转速与同时控制推进速度和螺旋输送机转速这两种控制模式下,EPB盾构密封舱土压力系统控制方程。基于优化方法根据实际施工数据在线辨识控制方程中参数矢量,解决了控制方程参数矢量受到施工地层地质条件的随机性和密封舱内介质改性处理的不均匀性等因素影响所具有的时变性问题,并取得较好的辨识结果。基于最优化控制策略获得了密封舱土压力系统控制的最优控制律,讨论了比例因子及模型参数矢量取值对控制效果的影响,给出两种控制模式间切换的依据,说明了双控模式下存在最优化的推进速度。在密封舱土压力模拟实验台上取得了较好的控制效果。
During the tunneling of EPB shield, it is realized that the dynamic balance control of working chamber earth pressure of EPB shield according to construction requirements and variations of geological condition, which can effectively control the land deformation and reduce the probability of accident. There is important strategic meaning and important application value for improving control level of complex boring equipment to master the dynamic balance control technologies of working chamber earth pressure of EPB shield. It is also the inevitable trend for the development of the future shield technologies. The mathematical description between pressure and flow for screw conveyor of EPB shield under complex plastic extrusion process is absent, which leads to difficulty for the dynamic balance control of working chamber earth pressure of EPB shield. So the conveying mechanism of screw conveyor of EPB shield under pressure becomes as urgent topic to be resolved for the dynamic balance control of working chamber earth pressure.
     Based on the above engineering backgrounds, aiming at the conveying mechanism of screw conveyor of EPB shield under complex plastic extrusion process for the dynamic balance control of working chamber earth pressure, this paper firstly studies rheological behavior of conditioned soil, then this paper realizes the numerical simulation for the work process of the working chamber earth pressure system. The characteristics of controlled object such as the conveying properties of screw conveyor under certain pressure difference, the effect mechanism between control parameters and earth pressure are exposited. The mathematical model is established. The dynamic balance control method of geological adaptability based on the on-line identification of model parameters and the optimization control for the working chamber earth pressure is proposed.
     The main contents of this dissertation are as follows:
     (1) A new pressure-dependent improved Bingham viscoplastic non-newtonian fluid model is presented. Based on the developed decive which is used to study rheological behavior of conditioned soil of EPB shield, conditioned sands are reproduced and the rheological tests are implemented in the laboratory. When confining pressure constant, conditioned sands exhibit the non-newtonian fluid characteristics of shear thinning, and the relations between shear stress and shear rate correspond with Bingham viscoplastic non-newtonian fluid model. The ranges of viscosity coefficient and yield stress are obtained. Furthermore, the viscoplastic parameters increase with the increase of the confining pressure. A new pressure-dependent improved Bingham viscoplastic non-newtonian fluid model is defined for the CFD numerical simulations. The model provides the basis for the numerical simulation for the work process of the working chamber earth pressure system.
     (2) The pressure dependent viscosity model and density model of viscoplastic non-newtonian fluid is established by user-defined method in CFD simulation environment. The numerical simulation of soil flow characteristics such as viscosity, elasticity and plasticity for the work process of the working chamber earth pressure system is realized. The numerical simulation results of the observed earth pressure field and velocity field distribution in working chamber are compared with experimental results. It provides the basis for further researching on the conveying properties of screw conveyor under certain pressure difference, as well as the effect mechanism between control parameters and earth pressure by the numerical simulation method.
     (3) The discharge efficiency of EPB shield screw conveyor under complex plastic extrusion process is proposed. By theoretical analysis and numerical simulation for the work process of the working chamber earth pressure system, the effects of pressure difference and rheological behaviors of conditioned soils and geometric parameters on discharge efficiency of screw conveyor are studied. The conveying properties of screw conveyor under certain pressure difference are exposited. The problems during establishing mathematical model of the working chamber earth pressure system are solved. It provides the basis for further researching on the dynamic balance control of the working chamber earth pressure system.
     (4) A new dynamic balance control method based on the on-line identification of model parameters and the optimization control for the working chamber earth pressure is proposed. A new mathematical model of the working chamber earth pressure system is established. In the model, the effect of earth pressure in working chamber on equivalent tangent modulus of deformation Et and discharge efficiency of screw conveyor η are considered. The control equations of the working chamber earth pressure system under two kinds of control mode such as the separate control of screw conveyor speed, the combination control of advancing speed and screw conveyor speed are given respectively. Based on optimization method, the on-line identification according to the field construction data of the parameter vector in control equation is realized. By the on-line identification, the time-varying problem of the control equation parameter vector which is caused by the randomness of geological conditions and inhomogeneity of conditioned medium is solved. Based on the optimization control strategy, the optimal control law of the working chamber earth pressure control system is obtained. The influence of the scaling factor and values of the parameter vector on control effect is discussed. The switch basis between two kinds of control mode is given. The optimization of speed under the double control mode is existent.The ideal control effect is obtained on the working chamber earth pressure simulation experiment platform.
引文
[1]FLINT G R. Tunneling using earth pressure balance machine for the boucle spine sewers of the greater cairo wastewater project [J]. Tunneling and Underground Space Technology, 1992,7(4):415-424.
    [2]LEWIS R. The changing face of the TBM [J]. Tunnels & Tunneling,1994, (5):35-37.
    [3]Japan Tunneling Association. Challenges and changes:Japan's tunneling activities in 1988-Partl[J]. Tunneling and Underground Space Technology,1989,2(4):215-223.
    [4]Japan Tunneling Association. Challenges and changes:Japan's tunneling activities in 1988-Part 2[J]. Tunneling and Underground Space Technology,1989(3):337-342.
    [5]董必钦.对我国全断面隧道掘进设备发展的思考[J].中国水利,2005,(22):35—36.
    [6]王洪新,傅德明.土压平衡盾构平衡控制理论及试验研究[J].土木工程学报,2007,40(5):61-68.
    [7]刘仁鹏.土压平衡盾构技术综述[J].世界隧道,2000,(1):1-7.
    [8]易宏伟,孙均.盾构施工对软粘土的扰动机理分析[J].同济大学学报,2000,28(3):277-281.
    [9]张佳,付修华.成都地铁工程施工安全监督管理初探[J].建筑安全,2006,(9):31-34.
    [10]MASHIMO H. State of the road tunnel safety technology in Japan [J]. Tunneling and Underground Space Technology,2002,(17):145-152.
    [11]GRANDORI R, DE B A, BUSILLO A, et al. Turin metro system-operation of EPB-TBMs beyond the limits of this technology [J]. Felsbau,2003,21(6):34-42.
    [12]SHIN H S, KWON Y C, JUNG Y S. Methodology for quantitative hazard assessment for tunnel collapses based on case histories in Korea [J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(6):1072-1087.
    [13]魏康林.土压平衡式盾构施工中“理想状态土体”的探讨[J].城市轨道交通研究,2007,(1):67-70.
    [14]武力.基于离散元仿真的盾构密封舱压力平衡机理研究[D].大连理工大学,2009,7.
    [15]VINAI R, OGGERI C, PEILA D. Soil conditioning of sand for EPB applications:A laboratory research [J]. Tunnelling and Underground Space Technology,2008,23 (3):308-317.
    [16]WILLIAMSON G E, TRAYLOR M T, and HIGUCHI M. Soil conditioning for EPB shield tunnelling on the South Bay Ocean outfall [C]. Proc., RETC 1999:897-925.
    [17]MILLIGAN G. Soil conditioning and lubricating agents in tunnelling and pipe jacking [C]. Proc., Underground Construction, London,2001:105-116.
    [18]KOCHMANOVA N. The effects of soil conditioning agents on fine and coarse grained soils with applications in earth pressure balance machine tunneling [D]. Master Thesis, University of Toronto,2007.
    [19]汪国锋.北京地铁十号线土压平衡盾构土体改良技术应用研究[J].现代隧道技术,2009(4):77-82.
    [20]宋克志,汪波,孔恒,等.无水砂卵石地层土压盾构施工泡沫技术研究[J].岩石力学与工程学报,2005,(13):2237—2239.
    [21]朱伟,郭涛,魏康林.盾构用气泡的性能及对开挖土体改良效果影响[J].地下空间与工程学报,2006(4):571-577.
    [22]魏康林.土压平衡盾构施工中泡沫和膨润土改良土体的微观机理分析[J].现代隧道技术,2007(1):73-77.
    [23]闰鑫,龚秋明,姜厚停.土压平衡盾构施工中泡沫改良砂土的试验研究[J].地下空间与工程学报,2010(3):449-453.
    [24]黄德中.超大直径土压平衡盾构施工土体改良试验研究[J].现代隧道技术,2011(4):65-71.
    [25]韩月旺,钟小春,朱伟,等.压力舱土体改良对盾构开挖面稳定影响研究[J].岩土力学,2007,28(10):516-520.
    [26]中华人民共和国建设部标准定额研究所.GB/T50080-2002普通混凝土拌和物性能试验方法标准[S].北京:中国建筑工业出版社,2003.
    [27]QUEBAUD S, SIBAI M, HENRY J P. Use of chemical foam for improvements in drilling by earth pressure balanced shields in granular soils [J]. Tunnelling and Underground Space Technology,1998,13 (2):173-180.
    [28]WILLIAMSON G E, TRAYLOR M T, HIGUCHI M. Soil conditioning for EPB shield tunneling on the South Bay Ocean Outfall [C]. In:Proceedings of RETC,1999:897-925.
    [29]JANCSECZ S, KRAUSE R, LANGMAACK L. Advantages of soil conditioning in shield tunnelling: experiences of LRTS Izmir [C]. In:Alten, T. et al. (Eds.), Proceedings of International Congress on Challenges for the 21st Century. Balkema, Rotterdam,865-875.
    [30]BOONE S J, ARTIGIANI E, SHIRLAW J N, et al. Use of ground conditioning agents for Earth Pressure Balance machine tunneling [C]. In:AFTES (Ed.), Proceedings of Congress International de Chambery,313-319.
    [31]YOSHIKAWA T. Soil pressure drop of the screw conveyor for shielded machines [C]. Transactions of the Japan Society for Mechanical Engineers,1996, Part C 62 (595): 1197-1203.
    [32]BEZUIJEN A, SCHAMINEE P E L. Model experiments using foam simulation the drilling with an EPB shield [R], GeoDelft Report No. BF 51010. Delft, GeoDelft,2000.
    [33]BEZUIJEN A, SCHAMINEE P E L. Simulation of the EPB-shield TBM in model tests with foam as additive [C]. Proceedings of Congress on Modern Tunnelling Science and Technology, Balkema, Kyoto, Rotterdam,2001,935-940.
    [34]朱克勤.非牛顿流体力学研究的若干进展[J].力学与实践,2006,28(4):1-8.
    [35]SKELLAND A H P. Non-Newtonian flow and heat transfer [M]. New York:John Wiley and Sons Inc,1967.
    [36]刘海燕,庞明军,魏进家.非牛顿流体研究进展及发展趋势[J].应用化工,2010,39(5):740-746.
    [37]张钦哉.流变学及粘度检测技术新发展[J].石油仪器,1997,11l(1):7-11.
    [38]ZISIS T, MITSOULIS E. Visco-plastic flow around a cylinder kept between parallel plates [J]. J Non-Newtonian Fluid Mech,2002,105:1-20.
    [39]BERIS A N, TSAMOPOULOS J A, Armstrong R C, et al. Creeping motion of a sphere through a Bingham plastic [J]. J Fluid Mech,1985,158:219-44.
    [40]顾廷安.综述非牛顿流体的表观粘度[J].北京化纤工学院学报,1986,1:54-61.
    [41]施志钢,张喜明,于立强,等.膏状非牛顿流体的流变特性研究[J].青岛建筑工程学院学报,2001,22(4):31—34.
    [42]韩洪升,崔海清,赵仁宝.非牛顿流体流变特性的测量和回归分析[J].大庆石油学院学报,1993,17(3):19—24.
    [43]施庆珊,王计伟,欧阳友生,等.非牛顿流体粘度测定方法研究进展[J].发酵科技通讯,2011,(2):42-45.
    [44]杨晓璞,曹建文,吴淼.JYX高浓度黏稠物料加压旋转流变仪的研制[J].仪表技术与传感器,2005,(4):8-10.
    [45]杨晓璞,赵学义,金赞,等.高浓度粘稠物料加压旋转流变仪的研制与标定[J].机械工程学报,2005,41(4):59—62.
    [46]沈寿长.泥石流流变特性的试验研究[J].水利学报,1998,9(9):7-13.
    [47]段鸿杰,孙恒虎.高浓度浆体流变参数测定的新方法[J].中国矿业大学学报,2001,30(4):371-374.
    [48]王秋粉,任远,陈良勇,等.压力下水煤浆流变特性的测量[J].南京师范大学学报(工程技术版),2006,6(2):63—67.
    [49]吴淼,陈洁,张娜,等.加压管式流变测试系统的设计[J].仪器仪表学报,2008,29(7):1450—1454.
    [50]王星,赵学义,瞿圆媛,等.高浓度赤泥颗粒特性和流变特性的试验研究[J].金属矿山,2008,379(1):107-110.
    [51]赵国华,段钰锋.一种确定水煤浆流变模型中临界剪切速率的新方法[J].热力发电,2008,(2):32—34.
    [52]刘文鹏,张庆礼,殷绍唐,等.粘度测量方法进展[J].人工晶体学报,2007,36(2):381-384.
    [53]刘宝林,孔珑.水煤浆用改型的细管式粘度计[J].发电设备,1996,9:7-10.
    [54]ATSUSHI T, KUNIO Y. Rheological behavior of coal-solvent slurries [J]. Fuel,1986, 65(7):906-909.
    [55]赵平华.落球法测液体的粘性系数的研究[J].大学物理,2002,21(7):29—33.
    [56]陈育民,刘汉龙,邵国建,等.砂土液化及液化后流动特性试验研究[J].岩土工程学报,2009,31(9):1408-1413.
    [57]杜雪,许元泽,钱人元.非牛顿流体在宽切速率范围内粘度的测量[J].石油勘探与开发,1984,2:64-70.
    [58]陈惠钊.粘度测量.北京:中国计量出版社,1994.
    [59]CLOUGH G W, LECA E. Model and design method-With focus on use of finite element methods for soft ground tunneling [C]. Proceedings of the International Conference on Tunnels and Micro-tunnels Soft Ground:From Field to Theory. Ecole Nationale des Ponts et Chaussees, Paris,1989:531-573.
    [60]MAIR R J, TAYLOR R N. Bored tunneling in the urban environment [C].14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg,1997:2353-2385.
    [61]MIGLIAZZA M, CHIORBOLI M, GIANI G P. Comparison of analytical method,3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground [J]. Computers and Geotechnics,2009,36(2):113-124.
    [62]MROUEH H, SHAHROUR I. A simplified 3D model for tunnel construction using tunnel boring machines [J]. Tunnelling and Underground Space Technology,2008,23(1):38-45.
    [63]秦建设.盾构隧道施工中开挖面失稳事故分析[J].浙江建筑,2005,22(B10):48-50.
    [64]张海波,殷宗泽,朱俊高.地铁隧道盾构法施工过程中地层变位的三维有限元模拟[J].岩石力学与工程学报,2005,24(5):755-760.
    [65]上官子昌,李守巨,等.盾构机开口率对密封舱土压力分布影响的数值模拟[J].铁道建筑,2009,12:60-63.
    [66]DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soil [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1970,96(5):1629-1653.
    [67]杨洪杰,傅德明,葛修润.盾构周围土压力的试验与数值模拟[J].岩石力学与工程学报,2007,29(12):1849-1857.
    [68]张利民,李大勇.盾构掘进过程土体变形特性数值模拟[J].岩土力学,2004,25(9):75—78.
    [69]ERFANGN, YOUSSEFMAH, DAWEIZ, JAMSHIDG. Simulation of front end loader bueket-soil interaction [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2007,31:1147-1162.
    [70]PAUL W C. DEM simulation of industrial Particle flows:case studies of dragline excavators, mixing in tumblers and centrifugal mills [J]. Powder Techoology,2000, 109:83-104.
    [71]SHMULEVICH I, ASAF Z, RUBINSTEIN D. Interaction between soil and a wide cutting blade using the diserete element method [J].Soil&Tillage Researeh,2007,97:37-50.
    [72]HORNER A D, PETERS F J, CARRILLO A. Large scale diserete element method modeling of vehiele-soil inieraction [J]. Journal of Engineering Mechanics,2001,127(10): 1027-1032.
    [73]OIDA A, SCHWANGHART H, OHAKUBO S. Simulation of soil deformation under a track shoe by the DEM [C]//. Proceedings of the 7th European Conference of the International Society of Terrain-Vehicle Systems,1997:155-162.
    [74]徐泳,李红艳,黄文彬.耕作土壤动力学的三维离散元建模和仿真方案策划[J].农业工程学报,2003,2(19):34-38.
    [75]马宗源,廖红建,张骏Bingham型黏性泥石流流体的三维数值模拟[J].西安交通大学学报,2008,42(9):1146-1150.
    [76]赵国华,段钰锋,王秋粉,等.水煤浆管道输送数值模拟研究进展[J].南京师范大学学报(工程技术版),2007,7(2):18-23.
    [77]赵国华,陈良勇,段钰锋.高浓度水煤浆直管内流动的数值模拟[J].锅炉制造,2007,4:28-32.
    [78]陈良勇,段钰锋,蒲文灏,等.水煤浆水平管内流动特性数值模拟[J].中国电机工程学报,2009,29(5):54-60.
    [79]黄雨,郝亮.基于CFD的地震液化研究新进展[J].岩土力学,2008,29(8):2231-2235.
    [80]VYALOV S S. Rheological Fundamentals of Soil Mechanics [M]. Amsterdam, the Netherlands: Elsevier Science Publishing Co. Inc,1986.
    [81]DAVISON J, CALAY R K, SANDS T, ENGLAND M. CFD simulation of soil flow over augers [C]. Proc ASME PVP Conf, Vancouver, Canada,2002.
    [82]KARMAKAR S and KUSHWAHA R L. Development and laboratory evaluation of a rheometer for soil visco-plastic parameters [J]. Journal of Terramechanics,2007,44(2):197-204.
    [83]DAVIDSON M R, KHAN N H, YEOW Y L. Collapse of a cylinder of Bingham fluid [J]. ANZIAM Journal,2000,42:C499-C517.
    [84]DARNELL W H, MOL E A J. Solids conveying in extruders [J]. SPE Journal,1956, 12(4):20-29.
    [85]CHUNG C I. New ideas about solids conveying in screw extruders [J]. SPE Journal,1970, 26(5):32-44.
    [86]YOSHIKAWA T. Soil pressure drop of the screw conveyor for shielded machines [C]. Transactions of the Japan Society for Mechanical Engineers,1996, Part C 62 (595):1197-1203.
    [87]YOSHIKAWA T. Soil pressure drops of various screw conveyor structures for shielded machines [C]. Transactions of the Japan Society for Mechanical Engineers,1996, Part C 62 (599):2927-2930.
    [88]TALMON A M, BEZUIJEN A. Muck discharge by the screw conveyor of an EPB tunnel boring machine [C]//Proceedings of the conference on geotechnical aspects of underground construction in soft ground. Toulouse,2002:89-94.
    [89]BEZUIJEN A, SCHAMINEE P E L. Model experiments using foam simulation the drilling with an EPB shield [R], GeoDelft Report No. BF 51010. Delft, GeoDelft,2000.
    [90]BEZUIJEN A, SCHAMINEE P E L. Simulation of the EPB-shield TBM in model tests with foam as additive [C]. Proceedings of Congress on Modern Tunnelling Science and Technology. Balkema, Kyoto, Rotterdam,2001,935-940.
    [91]MERRITT A S. Conditioning of clay soils for tunneling machine screw conveyors [D]. PhD thesis, University of Cambrige,2004.
    [92]MERRITT A S, MAIR R J. Mechanics of tunnelling machine screw conveyor:model tests [J]. Geotechnique,2006,56 (9):605-615.
    [93]MERRITT A S, MAIR R J. Mechanics of tunnelling machine screw conveyor:a theoretical model [J]. Geotechnique,2008,58(2):79-94.
    [94]江玉生,王春河,陈冬,等.土压平衡盾构螺旋输送机力学模型简析[J].力学与实践,2007,29(05):50-53.
    [95]邱爱红,龚曙光,谢桂兰,等.变径变螺距螺旋轴参数化模型及性能仿真[J].机械工程学报,2008,44(5):131-136.
    [96]ANAGNOSTOU G, KOVARI K. Face stability conditions with earth-Pressure-balanced Shields [J]. Tunnelling and Underground Space Technology,1996,11(2):165-173.
    [97]汪挺.加泥式土压平衡盾构的土压管理[J].铁道建筑,2000,(3):5-8.
    [98]叶康慨,王延民.土压平衡盾构施工土压力的确定[J].隧道建设,2003,23(2):47-51.
    [99]魏建华,丁书福.土压平衡式盾构开外面稳定机理与压力舱土压力控制[J].工程机械,2005,(1):18-19.
    [100]张庭华.土压平衡盾构土舱压力控制技术研究[J].铁道标准设计,2005,8:83-85.
    [101]胡新朋,孙谋,李建华,等.地铁EPB不同地层密封舱压力设置问题研究[J].地下空间与工程学报,2006,2(8):1413-1417.
    [102]乐贵平,江玉生.土压平衡盾构法施工掘进面平衡压力初探[C].中国土木工程学会第11届隧道及地下工程分会第13届年会,北京,2008:30-37.
    [103]SUGIMOTO M, KOETA N, RAMDANI T, et al. Study on the force at face based on in-situ data [C]//Proc. of the 46th Annual Meeting Japan Soc. Civ. Eng., JSCE, Japan, 1991:158-159.
    [104]SUWANSAWAT S. Shield tunneling database management for ground movement evaluation [J]. Tunneling and Underground Space Technology,2004, (19):376-377.
    [105]BEZUIJEN A, TALMON A M, JOUSTRA J F, et al. Pressure gradients at the EPB face [J]. Tunnels and Tunneling,2005,37(12):14-17.
    [106]DANIELE PEILA, CLAUDIO OGGERI, RAFFAELE VINAI. Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operation [J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(12):1622-1625.
    [107]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报,2005,24(增2):5762—5766.
    [108]徐前卫,朱合华,廖少明,等.软土地层土压平衡盾构法施工的模型试验研究[J].岩土工程学报,2007,29(12):1849-1857.
    [109]朱合华,徐前卫,廖少明,等.土压平衡盾构法施工参数的模型试验研究[J].岩土工程学报,2006,28(5):553-557.
    [110]SUGIMOTO M, SRAMOON A. Theoretical model of shield behavior during excavation I: Theory [J]. Journal of Geotechnical and Geoenviron-mental Engineering,2002, 128(2):138-155.
    [111]SRAMOON A, SUGIMOTO M, KAYUKAWA K J. Theoretical model of shield behavior during excavation II:Application [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(2)-.156-165.
    [112]周奇才,冯双昌,李君.盾构智能辅助分析系统中推力研究[J].科技导报,2006,28(21):57-60.
    [113]王洪新,傅德明.土压平衡盾构掘进的数学物理模型及参数间关系研究[J].土木工程学报,2006,39(9):86-90.
    [114]王洪新,陈立生.土压平衡盾构平衡控制的新思路[J].市政与交通,2008,5:18-21.
    [115]李笑,陈振环,陈烘陶,等.盾构土压平衡电液模拟系统的研究[J].机床与液压,2006(7):129-131.
    [116]刘宣宇,邵诚,刘任喜.盾构掘进土压控制模型的建立及仿真[J].煤炭学报,2010,35(4):575-580.
    [117]KOMIYA K, SOGA K, AKAGI H, et al. Finite element modeling of excavation and advancement processes of a shield tunneling machine [J]. Soils Found.,1999,39 (3):37-52.
    [118]KASPER T, MESCHKE G. A 3D finite element simulation model for TBM Tunneling in soft ground [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, (28):1441-1460.
    [119]SUGIMOTO M, SRAMOON A, ASCE M, et al. Simulation of shield tunneling behavior along a curved alignment in a multilayered ground [J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(6):684-694.
    [120]DIEULOT J Y, BORNE P. Composite fuzzy-conventional control applied to Earth pressure balanced shield front pressure stabilization [J]. Studies in Informatics and Control.1994,3 (4):367-372.
    [121]LI X, CHEN Z H. Fuzzy immune control for shield's earth-pressure-balance simulation system [C]//Proceedings-4th International Conference on Natural Computation, Jinan, China,2008:648-652.
    [122]施虎,龚国芳,杨华勇.基于单神经元的盾构推进速度自适应PID控制[J].中国机械工程学报,2009,20(2):138-141.
    [123]施虎,龚国芳,杨华勇.盾构掘进土压平衡控制模型[J].煤炭学报,2008,33(3):343-346.
    [124]I-ChengYeh. Application of neural networks to automatic soil pressure balance control for shield tunneling [J]. Automation in Construction,1997, (5):421-426.
    [125]BENARDOS A G, KALIAMPAKOS D C. Modeling TBM performance with artificial neural networks [J]. Tunneling and Underground Space Technology,2004, (19):597-605.
    [126]胡珉,周文波.基于多级神经网络的盾构法隧道施工参数控制[J].计算机工程,2005,31(8):192-194.
    [127]XING T, GONG G F, YANG H Y. Research into the intelligent control of the cutter head drive system in shield tunneling machine based on the pattern recognition [C]//2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, August 2-5, 2008, Xian, China,2008:1126-1130.
    [128]TATEYAMA K, FUKAGAWA R, TSUCHIYA K. Measurement of the earth pressure acting on a shield machine and its application to automatic advancing control of the shield [C]// Proceedings of the 11th International Symposium on Automation and Robotics in Construction (ISARC), Brighton, United Kingdom, May 24-26,1994:425-432.
    [129]胡国良,龚国芳.土压平衡盾构螺旋输送机排土控制分析[J].工程机械,2008(39):35-38.
    [130]YANG HUAYONG, SHI HU, GONG GUOFANG. Electro-hydraulic proportional control of thrust system for shield tunneling machine [J]. Automation in Construction,2009,18(7): 950-956.
    [131]刘博,李守巨土压平衡盾构机密封舱土压力控制模型[J].隧道建设,2010,30(4):388-391.
    [132]刘博,李守巨.土压平衡盾构机密封舱土压力控制研究[J].哈尔滨工业大学学报,2011,43(增1):262-266.
    [133]上官子昌,李守巨,孙伟,等.土压平衡盾构机密封舱土压力控制方法[J].煤炭学报,2011,35(3):402-405.
    [134]李守巨,屈福政,曹丽娟,等.土压平衡盾构机密封舱压力控制实验研究[J].煤炭学报,2011,36(6):934-937.
    [135]刘东亮.EPB盾构掘进的土压控制[J].铁道工程学报,2005,86(2):45-51.
    [136]JANCSECZ S, KRAUSE R, LANGMAACK L. Advantages of soil conditioning in shield tunnelling:experiences of LRTS Izmir [C]. Proc. International Congress on Challenges for the 21st Century, Alten et al. (eds), Balkema, Rotterdam,1999:865-875.
    [137]EFNARC. Specification and guidelines for the use of specialist products for Mechanized Tunnelling (TBM) in Soft Ground and Hard Rock [R]. Recommendation of European Federation of Producers and Contractors of Specialist Products for Structures,2005.
    [138]PSOMAS S. Properties of foam/sand mixtures for tunnelling applications [D]. A thesis submitted for the degree of Master of Science to the University of Oxford,2001.
    [139]CHHABRA R P, RICHARDSON J F. Non-Newtonian flow in the process industries, fundamentals and engineering applications [M]. Oxford, UK:Butterworth Heinemann Publishing Ltd.:1999.
    [140]ASTM D2573-72. Standard test method for field vane shear test in cohesive soil[S]. 1972.
    [141]王福军,计算流体动力学分析——CFD软件原理与分析[M].北京:清华大学出版社,2004.
    [142]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986.
    [143]章本照,印建安,张宏基.流体力学数值方法[M].北京:机械工业出版社,2003.
    [144]MARSHALL GRAHAM, WOLCOTT DUANE, OLSON DON. Zone fluidics inflow analysis: Potentialities and applications[J]. Analytica Chimica Acta,2003,499(1-2):29-40.
    [145]GONZALEZ C, COLLINS S D, SMITH R L. Fluidic interconnects for modular assembly of chemical Microsystems [J]. Sensors and Actuators B,1998,49(1-2):40-45.
    [146]KONDNER R L. Hyperbolic stress-strain response:cohesive soils [J]. Journal of the Soil Mechanics and Foundations Division, Proceedings of ASCE,1963,89:115-143.
    [147]DUNCAN JM, CHANG C. Nonlinear analysis of stress and strain in soils [J]. Journal of the Soil Mechanics and Foundations Division, Proceedings of ASCE,1970,96: 1629-1653.
    [148]LI SHOU JU, LIU YING XI. Identification of vibration loads on hydro generator by using hybrid genetic algorithm [J]. Acta Mechanica Sinica,2006,22 (6):603-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700