用户名: 密码: 验证码:
滚珠型弧面分度凸轮机构的啮合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚珠型弧面分度凸轮机构作为一种新型间隙传动机构,采用滚珠作为传动媒介,实现了“旋转——旋转”变换的滚动传动,因滚珠旋转轴线不受约束,具有适应性强、传动效率高、高速性能好、传动精度高、残余振动小等优点,能够在数控机床等大型设备及自动化生产线上实现高速、高精的分度运动,对于提高我国装备制造业发展水平有重要的现实意义。本文从工程实际出发,以提高机构的分度精度、运动平稳性和啮合效率为目的,研究了机构的啮合特性,分析其结构、受力、预紧、润滑、运动学、啮合效率和疲劳寿命等,研究完善了机构的啮合理论,为机构的实用化和进一步应用奠定了理论基础,也为机构的优化设计和制造提供理论指导,主要开展了如下研究工作:
     对新型机构的具体结构型式进行了研究分析,机构的具体结构型式决定了其传动性能,是性能分析和优化的基础,结构的合理性决定着加工的难易程度和制造成本,结构设计主要包括凸轮工作滚道曲面形状及截形、分度盘和滚珠防脱结构。借鉴滚动轴承和滚珠丝杠的设计使用经验,采用双圆弧截形滚道可以抑制滚动螺旋传动中滚珠的侧向滑移,减少摩擦;应用表明滚道半径和滚珠直径比取值范围为0.51-0.56,此时机构的承载能力强,弹流润滑油膜较厚,摩擦较小;分度盘采用整体式结构,在径向圆柱面加工出球窝,为实现可控点接触,抑制滚珠的侧向滑移,球窝也采用双圆弧截形;滚珠防脱装置采用滚珠保持架,工作可靠。最后应用空间啮合理论和旋转变换张量法推导出双圆弧截形滚道的滚珠型弧面分度凸轮廓面方程和啮合方程,分析了机构的压力角和影响因素,得出了同时参与啮合的几个滚珠与相应凸轮滚道的压力角不同,且压力角随凸轮转角变化,采用不同的运动规律机构压力角不同。
     滚珠与凸轮滚道为点接触,接触应力大,为防止凸轮滚道和滚珠的剧烈磨损与疲劳破坏,在设计时进行接触强度校核,因此对机构的受力展开了分析。安装时机构需要预紧,预紧力施加在滚珠上,传动时工作台和分度盘载荷也施加在滚珠上,滚珠承受两个力的合力。根据力的独立作用原则,首先研究了机构的载荷力分配,即计算每个滚珠承受的载荷力,然后分析了机构的预紧方法、预紧量和预紧力的关系,最后根据力的合成原则合成滚珠总的受力,进行了强度校核。
     为保证传动的连续性和平稳性,机构有一定的重合度,在传动过程中,有多个滚珠同时参与啮合,参与啮合的滚珠数目和受力周期性变化,为精确计算每个滚珠的受力,研究了机构的载荷分配。根据机构的载荷特点,应用赫兹接触理论、机构变形协调条件和力矩平衡原理,推导出载荷在每个参与啮合的滚珠中的分配关系。分析结果表明惯性载荷是机构的主要载荷,受凸轮运动规律中加速度影响变化较大;由于凸轮滚道在不同接触点的法线、切线和主曲率不同,每个参与啮合的滚珠承受的载荷力不同;载荷的分配随凸轮转角变化,并受结构参数和运动规律的影响。
     分析了机构的预紧,滚珠型弧面分度凸轮机构工作在预紧状态下,以提高机构的刚度和承载能力,消除制造和安装误差的影响,实现无间隙啮合传动。分析了机构的预紧方法,表明预紧改变了滚珠和凸轮滚道的接触点,影响机构的啮合特性和啮合效率,甚至让机构产生啮合干涉。应用赫兹接触理论、轴的弯曲变形理论和轴承弹性变形理论,分析了预紧调整量与机构的弹性变形和接触预紧力的关系。计算表明预紧力不仅和预紧量有关,还与机构的几何刚度有关,预紧力和预紧调整量成非线性关系,预紧时凸轮轴和分度盘轴产生的弯曲变形量很小,可以忽略,同时参与啮合的滚珠产生的接触预紧力不同,并随凸轮转角的变化而变化。比较了采用双圆弧截形滚道与单圆弧截形滚道的凸轮机构预紧时的预紧力和预紧后机构的压力角,表明采用双圆弧截形滚道的凸轮机构预紧力更连续,压力角变化更小,机构运动更平稳。
     考虑到滚珠承受载荷力与预紧力的联合作用,进行了接触强度校核,分析了采用修正等速、修正梯形加速度和修正正弦加速度三种运动规律时滚珠和凸轮滚道之间的接触应力在分度期内的变化,结果表明珠与分度盘球窝之间的接触应力小于滚珠与凸轮滚道之间的接触应力,并且接触应力随凸轮转角的变化而变化,因此提出只校核滚珠与凸轮滚道之间的接触应力,并作为失效分析的依据。受惯性载荷的影响,采用不同的运动规律产生的接触应力不同;分度期滚珠和凸轮滚道间的接触应力较大,停歇期接触应力较小。最后采用ANSYS有限元软件分别分析了停歇期和分度期在载荷力、预紧及其联合作用下机构应力云分布,分析了接触应力和接触力随载荷和预紧量的变化规律,证实了载荷分配和预紧分析理论的正确性。
     机构通过滚珠传递运动和动力,滚珠同时与凸轮滚道及分度盘啮合,其运动影响机构的润滑和啮合效率,因此研究了滚珠的运动规律。滚珠中心、滚珠与凸轮滚道的接触点及滚珠与分度盘球窝的接触点相对于凸轮轴线的运动轨迹为空间螺旋线,三螺旋线的螺旋升角和相互间的夹角不同,且随凸轮转角变化,利用滚动螺旋传动理论计算了滚珠的侧向滑移速度。分析结果表明在停歇期侧向滑移速度为0,滚珠不存在侧向滑移,在分度期侧向滑移速度随凸轮转角变化,滚珠球心两侧接触点的侧向滑移速度不同,推理出滚珠存在沿滚道截面的旋转运动。滚珠受凸轮滚道的拖动发生自转和锲紧,自转速度受滚珠与凸轮滚道间的摩擦力和滚珠与分度盘球窝之间的摩擦力相互关系的影响,具有较大的不确定性,假设滚珠发生纯滚动时,计算了滚珠的自转速度。
     为研究机构的高速性能、分度精度和滚珠的运动规律,应用RecurDyn虚拟样机技术进行了机构的运动学仿真。基于Pro/E的滚珠型弧面分度凸轮的3D实体模型和RecurDyn虚拟样机工具,建立了虚拟样机模型,进行了运动学仿真。仿真结果表明受惯性载荷和滚珠与凸轮滚道及分度盘球窝接触碰撞关系的影响在停歇期分度盘的角加速度出现微小波动,即存在残余振动,影响停歇期的定位精度;在分度期分度盘输出的角加速度不连续,存在冲击。通过仿真还求得同时参与啮合的滚珠与凸轮滚道间的接触力,证实机构载荷分配计算理论的正确性,从仿真结果中得出的滚珠运动证实了滚珠侧向滑移和锲紧运动的存在。
     滚珠与凸轮滚道间的润滑属于弹性流体润滑,利用Hamrock-Dowson点接触最小油膜厚度公式和郑绪云点接触中心区油膜厚度公式,推导出滚珠和凸轮滚道之间接触油膜厚度的计算式,采用数值计算方法,分析了机构润滑油膜厚度,分析比较了采用修正等速、修正梯形加速度和修正正弦加速度运动规律时滚珠和凸轮滚道间的油膜厚度。分析结果表明润滑油膜厚度在整个分度期内是变化的,受惯性载荷的影响,前半程油膜较薄,后半程油膜较厚,文中还讨论了凸轮转速、分度盘负载力矩、滚珠直径、分度盘直径等结构参数对油膜厚度的影响,并采用膜厚比参数判断处于边界润滑状态,为分析机构的润滑状态和进行润滑设计提供了理论依据。
     滚珠型弧面分度凸轮机构不仅要高速、精确地完成分度运动,同时还应具有较高的啮合效率,因此分析了机构的啮合效率及其影响因素。因滚珠的运动既有滚动又有滑动,滚动摩擦引起的功率损失占比例很小,在计算中被忽略。从滚珠运动分析出发,计算啮合过程中机构能量损失及分度盘的输出功率,推导出机构的啮合效率计算式。数值计算结果表明啮合效率随啮合点变化,摩擦系数和相对滑动速度是影响传动效率的主要因素,预紧力、滑滚比和不同的凸轮运动规律是次要影响因素。
     采用Lundberg和Palmgren疲劳寿命理论,借鉴滚动轴承和滚珠丝杠副疲劳寿命研究方法及经验数据,进行了疲劳寿命分析,推导出滚珠型弧面分度凸轮机构的额定载荷和额度寿命计算公式,并采用国际标准寿命补偿方法对其疲劳寿命进行补偿。
As a new type of globoidal indexing cam, globoidal indexing cam mechanism with steel ball achieves "rotation to rotation" transmission through rolling steel ball, it can be used in CNC machine and automatic line to achieve high-speed and high-precision indexing motion, because it's spinning axis is not restrained and meshes at controlled point, it has advantages of high transmission efficiency, high speed, high precision and less residual vibration. It is meaningful for improving development level of equipment manufacturing industry of china. Under actual engineering conditions, for the purpose of improve indexing precision, moving stability and meshing efficiency, meshing characteristic of the mechanism is studied, and structure, force, preload, lubrication, kinetics and dynamics and fatigue life are analyzed, the study provides theoretical basis for optimization design, manufacture and application, the main research work done in the paper is as follows:
     Struction of globoidal indexing cam mechanism with steel ball is designed firstly, it is foundation of analyzing feature and optimizing parameters, and affects cost of manufacture and function, it mainly includes the section of raceway, indexing plate and part preventing steel ball separating from indexing plate. Taking example by bearing and ball screw, double-circle arc raceway can prevent lateral slip existing in ball screw drive, the ratio between radius of cam raceway and steel ball diameter is between 0.51 and 0.56, the mechanism can improve bearing capacity, decrease friction and EHL oil film is thicker. Ball seat in indexing plate adopts double-circle arc raceway for meshing at controllable point, retainer is used to prevent steel ball separating from indexing plate. At last, profile equation and meshing equation are deduced by the space meshing theory and rotating matrix operators, and pressure angle and it's influence factor are analyzed, pressure angle changes with cam angle, and with different motion rules the mechanism has different pressure angle.
     It is point contact between steel ball and cam raceway, so contact stress is large, contact strength should be checked in design for preventing intensive wear and fatigue failure, so force of the mechanism is analyzed firstly. Load is applied on steel ball in transmission, and pretightening force is applied on steel ball too because of pretightening, steel ball suffered resultant force. According to principle of independent role of force, force applied on steel ball by load and preload is analyzed firstly, then force of steel ball is composed, contact strength is checked.
     For continuous transmission and stability of motion in the process of working, the mechanism has contact ratio factor, several steel balls participate in meshing together, and the number of meshing steel ball changes periodically. Load is not equally distributed on each steel ball because principal curvature, normal and helix angle of cam raceway are different at different contact point. Applying hertz contact theory, deformation compatibility condition and torque balance principle, relationship of load distribution applied on each steel ball is deduced. It can be acquired by example that load is not equally distributed on each steel ball, and it is affected by structural parameters and cam motion law.
     In order to improve rigidity and bearing capacity of the mechanism, eliminate influence of manufacturing error, achieve transmission without clearance, globiodal indexing cam mechanism with steel ball works under preloading. Preload changes meshing point between steel ball and cam raceway, which changes the meshing character and meshing efficiency, even generates interference. Elastic deformation of the mechanism is generated by preload, and pretightening force has relationship not only with adjusting magnitude of preload, but also with rigidity of the mechanism. Theory of hertz contact, bending deformation of shaft and radial elastic deformation of bearing are used for analyzing the relationship between adjusting magnitude of preload and preload force. The calculation shows that relation between preload force and adjusting magnitude is non-linear, bending deformation of shaft is little enough to be ignored, in indexing period, pretightening force generated at each contact point is different and changes with cam angle. Actual pressure angle changes because preload changes engagement points of the mechanism. Compared with cam with single-circle arc raceway, pretightening force of cam with double-circle arc raceway is more continuous and pressure angle varies less, motion of the mechanism is more stable.
     Load and preload force are composed into resultant force applied on steel ball, then contact strength is checked. Calculation shows that contact stress changes with cam angle, contact stress between steel ball and cam raceway is larger than that between steel ball and ball seat, so it is proposed that contact between steel ball and cam raceway is checked only. Contact stress is analyzed when three kinds of motion law is adopted respectively, affected by inertial load contact stress in indexing period is large, and in dwelling period it is little.
     Globoidal indexing cam mechanism with steel ball transfers movement and power through steel ball, and steel ball meshes with cam and ball seat at the same time, motion of steel ball affects the failure mode, lubrication and meshing efficiency.
     Motion trajectories of steel ball center, contact point between steel ball and cam raceway and contact point between steel ball and ball seat are space spiral curve relative to cam axis, helical angle and intersection angle of the three helical curves are different and change with cam angle. lateral slip speed is calculated based on ball helical transmission theory, it changes with cam angle, and lateral slip speed of two contact point on steel ball is different, which deduces that steel ball rotates along section of cam raceway too. Steel ball dragged by cam raceway self-rotates and is wedged, self-rotation speed is undecided affected by relationship of frictional force between steel ball and cam raceway and that between steel ball and ball seat, self rotation speed is calculated supposing that steel ball rotates purely.
     For the research of high speed capacity, output property of the mechanism and motion of steel ball, kinematics simulation is studied applying virtual prototype technology. Profile surface of globoidal indexing cam with steel ball is undevelopable space surface, process of build of 3D models is complicated, point coordinate data of profile curve is generated by VC++ firstly,3D models is built using Pro/E, model data is imported into RecurDyn through format of Parasolid, and 3D models of other work parts are established in RecurDyn, the mechanism is assembled according to the position relationship, restrictions and loads are applied basing on motion relationship, and virtual prototype model is established, then kinetics simulation is carried out. In dwelling indexing period, angle acceleration of indexing plate waves slightly, which is residual oscillation of indexing plate, which affects indexing precision, in indexing period, the angle acceleration of indexing plate is not continuous, impact exists. Contact forces between steel ball and cam raceway are acquired by simulation, which proves that theory of load distribution is right, simulation also proves that lateral slid and wedge exist in the motion of steel ball.
     Though rolling transmission is achieved through rolling steel ball, friction property also is an important factor affected by lateral slid and wedge existing in ball helix transmission. Friction will leads to attrition and fatigue failure of steel ball and cam raceway, in high speed occasion, temperature raise caused by friction affects indexing precision and friction character, even makes the mechanism stuck. Lubrication between steel ball and cam raceway belongs to EHD, based on Hamrock-Dowson and Zheng Xuyun film thickness calculation formulae, the EHD film thickness formulae of globoidal indexing cam mechanism with steel ball between steel ball and cam raceway is deduced. Applying numerical calculation method, film thickness is analyzed and calculated when the modified constant velocity motion curve, modified trapezoidal acceleration motion curve and modified sine acceleration motion curve are adopted respectively. Analysis shows that oil film thickness varies in indexing period, affected by inertia load oil thickness is thick in former half of indexing period and is thin in latter half of indexing period. The influence of cam speed, load torque, ball diameter, indexing plate diameter and curvature ratio, on film thickness are also discussed, lubrication between steel ball and cam raceway is in boundary lubrication state judging by film thickness ratio, which provides theoretical basis for the lubrication design of globoidal indexing cam mechanism with steel ball.
     Globoidal indexing cam mechanism with steel ball should not only achieves indexing motion precisely and high speed, but also has high meshing efficiency. Based on the motion of steel balls, theoretical calculation equation of meshing efficiency of the mechanism is derived by analyzing power loss of the mechanism and the output power of indexing plate. Based on the features of loads, meshing efficiency and its influencing factors are analyzed, results show that meshing efficiency varies with the positions of contact points, friction coefficient and sliding velocity are primary influencing factors, and pretightening force, slide-roll ratio and cam motion rule are secondary factors. This research has guiding significance for design and manufacture of the mechanism.
     In globoidal indexing cam mechanism with steel ball, it is point contact between steel ball and cam raceway, between steel ball and ball seat in the indexing plate, so contact stress is large, sliding friction and rolling friction exist in working process, steel ball and cam raceway contact periodically, so fatigue life is an important factor in design. Referencing the calculation methods and empirical data of fatigue life of bearing and ball screw, the fatigue life formula of globoidal indexing cam with steel ball was calculated by using the life theory of Lundberg and Palmgren, the rated load and rated fatigue life formula was deduced. Fatigue life of globoidal indexing cam mechanism with steel ball is compensated using the international standards of bearing life on life.
引文
[1]彭国勋,肖正扬.自动机械的凸轮机构设计[M].北京:机械工业出版社,1990
    [2]牧野洋.自动机械机构学[M].日刊工业新闻社,1976
    [3]石永刚,徐振华.凸轮机构设计[M].上海:上海科学技术出版社,1995
    [4]于云满,张敏,张义选.精密间歇机构[M].北京:机械工业出版社,1999
    [5]邹慧君,董师予.凸轮机构的现代设计[M].上海:上海交通大学出版社,1991
    [6]伏尔默.凸轮机构[M].北京:机械工业出版社,1981
    [7]葛荣雨.基于NURBS的空间分度凸轮廓面创成与品质评价技术研究[D],山东大学博士学位论文,2008.4
    [8]张阁,姚燕安,郭为忠.电子凸轮的概念与设计[J].机械设计与研究,2000(增):88-91
    [9]王程,贺炜.基于单片机的电子凸轮系统研究[J].机械设计与制造,2006(11):4-6
    [10]Kanzaki,K.,Kobayashi,Nobuaki,Output of Cam Curve by Dc Servo Motor and High Speed Positioning[J].Proc.of the Fifth World Congress on Theory of Machines and Mechanisms,1995,pp:793-743
    [11]姚燕安.凸轮机构的主动控制[D].天津大学博士学位论文,1999.5
    [12]姜明.数控凸轮[J].无锡轻工大学学报,1999,18(4):21-24
    [13]王富东.数字化凸轮及其实现[J].机械设计,2003,20(4):31-33
    [14]Mike, Woelfel. Introduction to electronic cam[J]. Assembly Automation, 1999,19(1):17-24
    [15]Leslie Langlauf. Using electronic cams for motion control[J]. Power Transmission Design,1996(6),39-41
    [16]Ambardekar,M.N.Gupta,K.N. Stochastic Optimal Control of Vibration of A High-Speed Cam—Driven Mechanism[J]. Mechanism and Machine Theory,1990, 1(25):59-67
    [17]Chew,M., Plan.M. Application of learning Control Theory to Mechanism[J]. Part 1 Inverse Kinematics and Parametric Error Compensation; Part 2:Reduction of Residual Vibrations in High—Speed Electro-Mechanical Bonding Machines Proc[J]. Of the 23rd ASME Mechanisms Conference, Minnerapolis MN, Sept.1994
    [18]吴义忠,张小国,李广安.圆锥滚子蜗杆凸轮机构的工作轮廓设计[J].东南大学学报,1998,2(1):55-61
    [19]大伟,王其超.有滚动齿的锥面包络蜗杆分度凸轮机构[J].科学与技术,2000,19(6):938-940
    [20]葛荣雨,冯显英,褚良敏等.圆锥滚子摆动从动件圆锥凸轮机构的廓面构建[J].机械设计,2006,23(6):35-37
    [21]尹明富,褚金奎,吕传毅.鼓形滚子弧面分度凸轮机构廓面设计[J].机械设计,2002(2):50-52
    [22]曹巨江,张文林,赵雪妮.点啮合球锥滚子弧面凸轮机构的研究[J].机械设计与研究,2002(增):145-148
    [23]赵雪妮,张文林,曹巨江等.球锥滚子弧面分度凸轮机构及其可控点啮合的实现[J].机械设计,2002(7):15-18
    [24]王其超.点接触式高速弧面分度凸轮机构的设计[J].大连轻工业学院学报,1992,11(3):85-89
    [25]王其超,马骊敏,肖正扬.新型点啮合式弧面分度凸轮机构的设计与制造[J].机械科学与技术,1996,15(2):203-206
    [26]苗苗.双半球形滚子齿式弧面凸轮分度机构动态特性分析[D].大连轻工业学院硕士学位论文,2003.5
    [27]西北工业大学机械原理及机械零件教研组.机械设计(上册)[M].北京:人民教育出版社,1978.
    [28]Kuehnle M R. Toroidgetriebe Urkunde uber die Erteilung des deutschen[P]. Patents 1 301682,1966
    [29]KuehnleM R, PeekenH,TroederC, etal. The Toroidal Drive[J].Mechanical Engineering,1981(2):32-39.
    [30]畏谷川敬.劲力傅勤装1C[P].日本李利:A-73331-3J,656 2-246644,1987
    [31]郑家骏.一种新设想的传动齿轮—滚珠蜗杆副齿轮[J].齿轮,1982(2):43-46
    [32]毛梦云,路懿.滚珠环面蜗杆的回珠曲线[J].东北重型机械学院学报,1987(1):21-25
    [33]路懿,毛梦云.滚珠环面蜗杆传动装置的效率[J].东北重型机械学院学报,1989,13(2):20-24
    [34]李承志,胡来,王容等.滚珠环面蜗杆副的传动特性[J].湖北工学院学报,1998,13(4):38-40
    [35]路懿,毛梦云.滚珠环面蜗杆传动的运动受力分析和强度分析[J].东北重型机械学院学报,1988,12(4):52-59
    [36]路懿,毛梦云.滚珠弧面蜗杆加工原理及探[J].机械设计,1989,(3):39-42
    [37]毛梦云,路懿.滚珠弧面蜗杆传动的加工和啮合分析[J].机械工程学报,1989,25(2):42-49
    [38]路懿.滚珠蜗杆传动的研究[D].东北重型机械学院工学硕士学位论文,1984.5
    [39]沈蕴方,容尔谦等.空间啮合原理及SG-71型蜗轮副[M].北京:冶金工业出版社,1983
    [40]殷李森.球面包络弧面蜗杆传动的初步探讨[J].冶金设备,1983(3):1-5
    [41]谭建平,张光辉.球面二次包络弧面蜗杆传动的理论研究[J].重庆大学学报,1988(1):42-46
    [42]刘鹄然.钢球包络环面蜗杆传动[J].机械传动,1997(9):52-55
    [43]刘鹄然.钢球包络环面蜗杆传动的结构设计与加工[J].机械传动,1998(8):38-39
    [44]王其超,陶学恒,肖正扬等.新型球面包络蜗杆分度凸轮机构的研究[J].机械科学与技术,1999,18(2):252-254
    [45]曹西京,葛正浩,曹巨江.超薄型弧面凸轮钢球减速机的设计与研究[J].机械制造,2001(9):17-19
    [46]曹西京,杨芙莲,曹巨江.一种全新型弧面球包络凸轮分度机构的研究机械设计与研究[J].2003,19(1):36-38
    [47]李海霞.钢球滚子弧面分度凸轮机构CAD/CAM系统研究[D].山东大学硕士论文,2006.5
    [48]田普建,曹巨江,曹西京.一种新型钢球滚子分度机构的设计与研究机械设计与制造[J].2007(5):44-45
    [49]Masao Nishioka. Modular structure of spatial cam-linkage mechanism[J]. Mechanism and Machine Theory.1996,31(6):445-467.
    [50]Tsay, D. M, and Hwang,G. S. The Synthesis of Follower Motions of Camoids Using Nonparametric B—splines[J], ASME journal of Mechanical Design,1996,118: 138-143.
    [51]Rong Shean Lee, Chela-Hua She. Tool Path Generation and Error Control Method for Multi—Axis NC Machining of Spatial CAM[J]. Tools Manufacture,1997,38(4): 277-290
    [52]D M Tsay, H C Ho. Consideration of manufacturing parameters in the design of grooved globoidal cam indexing mechanisms[J]. Proelnstn MechEngrs,2001,215(1) 95-103
    [53]Y. H. Jung, D. W. Lee, J. s. Kim, H. S. Mok. NC post-processor for 5-axis milling machine of table-mtating/tiltingtype[J]. Journal of Materials Processing Technology,2002,641-646.
    [54]J. Lampinen. Cam shape optimisation by genetic algorithm[J]. Computer-Aided Design,2003,35(1):727-737.
    [55]Radoslav Rakic. The influence of lubricants on cam failure[J]. Tribology International 2004,37(1):365-373.
    [56]Wang. W. H., C. H. Tseng and C. B. Tsay. Surface Contact Analysis for a Spatial Cam Mechanism[J]. Journal of Mechanical Design,1997,19(1):169-177.
    [57]Chen F Y. Mechanics and design of cam mechanism[M].New York:Pergamon Press,1982.
    [58]Tesar D, Mathew G K. The dynamic synthesis, analysis, and design of modeled cam system[M]. Lexington Books,1976.
    [59]葛正浩,冯涛,彭国勋.可以任意增加局部控制条件的凸轮机构通用多项式运动规律[J].机械科学与技术,1998,17(6):986-987
    [60]J Angeles. Synthesis of plane curves with prescribed local geometric properties using periodic splines[J]. Computer Aided Design,1983,15(3):147-155
    [61]D M Tsay, C O Huey Jr. Cam motion synthesis using spline functions[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1988,110(2):161-165
    [62]D M Tsay, C O Huey Jr. Spline functions applied to the synthesis and analysis of nonrigid cam-follower systems [J]. Journal of Mechanisms, Transmissions, and Automation in Design,1989,111 (12):561-569
    [63]E Sandgren, R L West. Shape optimization of cam profiles using a B-spline representation [J]. Journal of Mechanisms, Transmissions and Automation in Design, 1989,111(6):195-201
    [64]K. Yoon, S S Rao. Cam motion synthesis using cubic splines[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1993,115(9):441-446
    [65]M. Neamtu, H. Pottmann, L. L. Schumaker. Designing NURBS cam profiles using trigonometric splines [J]. Journal of Mechanical Design,1998,120(6):175-180
    [66]Der Min Tsay, Guan Shyong Hwang. The Synthesis of Follower Motions of Camoids Using Nonparametric B-splines [J]. Journal of Mechanical Design,1996,118(1): 138-143
    [67]Tsay D M, Lin B J. Improving the Geometry Design of Cylindrical Cams Using Nonparametric Rational B-splines [J]. Computer Aided Design,1996,28(1):5-15
    [68]Tsay D M, Huey C O Jr. Application of Rational B-splines to the Synthesis of Cam-follower Motion Programs [J]. Journal of Mechanical Design,1993,115(4): 621-626
    [69]葛荣雨.柔性凸轮曲线的NURBS表达与多目标遗传算法优化[J].农业机械学报,2008,39(2):155-158
    [70]熊晓航,温锦海,尚锐.圆柱凸轮廓面方程的研究[J].辽宁工学院学报,1998,18(3):60-63
    [71]刘昌祺,牧野洋,曹西京.凸轮机构设计[M].北京:机械工业出版社,2005
    [72]曹巨江,彭国勋.各类凸轮机构统一数学模型的研究[J].西北轻工业学院学报,1992,(2):1-10.
    [73]沈蕴方.空间啮合原理及SG-71型蜗轮副[M],冶金工业出版社,1983
    [74]C K Chen, S T Chiou, Z H Fong, et al. Mathematical Model of Curvature Analysis for Conjugate Surfaces with Generalized Motion in Three Dimensions[J]. Journal of Mechanical Engineering Science,2001,215(C4):487-502
    [75]F L Litvin, N X Chen, J S Chen. Computerized determination of curvature relations and contact ellipse for conjugate surfaces [J]. Computer Methods in Applied Mechanics and Engineering,1995,125(2):151-170
    [76]王其超,肖正杨,彭国勋.弧面分度凸轮机构啮合特性研究[J].机械设计,1993,10(5):34-38.
    [77]H S. Yan, W T Cheng, Curvature analysis of spatial cam-follower mechanisms[J]. Mechanism and Machine Theory,1999,34(2):319-339
    [78]H S Yan, H.H. Chen. Geometry design of globoidal cams with generalized meshing turret-rollers[J]. Journal of Mechanical Design,1996,118(2):243-249
    [79]H S Yan, H H Chen. Geometry design of roller gear cams with hyperboloid rollers[J]. International Journal of Mathematical and Computer Modeling,1995,22(8):107-117
    [80]M Tsay, H M Wei. Design and machining of cylindrical cams with translating conical followers[J]. Computer Aided Design,1993,25(10):655-661
    [81]M Tsay, G S Hwang. Application of the Theory of Envelope to the Determination of Camoid Profiles With Translating Followers [J]. Journal of Mechanical Design,1994, 116(1):320-325
    [82]M Tsay, H M Wei. A general approach to the determination of planar and spatial cam profiles [J]. Journal of Mechanical Design,1996,118(1):259-265
    [83]M Tsay, H C Ho. Consideration of manufacturing parameters in the design of grooved globoidal cam indexing mechanisms[J]. Journal of Mechanical Engineering Science, 2001,215(1):95-103
    [84]张紫平.滚珠型弧面凸轮连续传动机构啮合特性分析与动力学研究[D].山东大学硕士论文,2010.5
    [85]程金石.弧面凸轮单侧加工原理初探[J]. 大连轻工业学院院报,1998,17(2):35-39
    [86]何有钧,邹慧君,郭为忠.圆柱滚子从动件凸轮廓面的等距曲面设计方法[J].上海交通大学学报,2000,34(10):1334-1337.
    [87]梁锦华.蜗杆凸轮机构的预紧干涉[J].合肥工业大学学报,1982(2):75-83
    [88]杨玉琥,陆锡年,梦彩芳.蜗杆凸轮机构的精确度分析[J].天津大学学报,1995,28(1):61-67
    [89]杨玉琥,张策,陆锡年等.弧面分度凸轮机构凸轮廓线修形研究[J].天津大学学报,1995,28(4):497-502
    [90]张高峰,谭援强.弧面分度凸轮的修形研究[J].现代机械,2006(5):50-53
    [91]张高峰,谭援强,杨世平.一种全新的弧面凸轮廓面修形方法[J].中国机械工程,2007,18(8),891-894
    [92]尹明富,褚金奎,吕传毅.蜗形凸轮接触特性分析及廓面修形技术的研究[J].机械 传动,2001(10):33-34
    [93]陈立群. NT-XK5001专用数控立式铣床的研制、安装调试及其应用软件的开发[D].陕西科技大学硕士学位论文,1992
    [94]曹巨江,赵云龙.弧面凸轮加工专用数控铣床设计[J].制造技术与机床,2003,(12):26-28
    [95]赵云龙.弧面凸轮加工专用数控铣床设计[D].陕西科技大学硕士学位论文,2003
    [96]田新成,常宏敏,孙丰.弧面分度凸轮的CAM系统[J].农业机械学报,1994,25(S1):25-27
    [97]陈立群,王海军,刘兴国.弧面凸轮加工方法研究[J].制造技术与机床,2002,(2):24-27
    [98]陈立群,王海军,刘兴国.大中心距弧面凸轮的数控加工[J].西北轻工业学院学报,2001,19(1):4-5
    [99]彭国勋.弧面凸轮精密磨削装置研制成功[J].轻工机械,1995,(3):25
    [100]刘华群,常宏敏,金作成.空间分度凸轮数控磨削及其控制[C].吉林工业大学学报,凸轮与机械专辑,2000
    [101]常宏敏,左文泉.空间分度凸轮数控磨削系统研究[J].组合机床与自动化加工技术,2003,(5):54-55
    [102]H S Yan, H H Chen. Geometry design and machining of Roller gear cams with cylindrical rollers [J]. Mechanism and Machine Theory,1994,29(6):803-812
    [103]何有钧.空间凸轮廓面的等距曲面设计理论及两重包络加工方法的研究[D].上海交通大学博士论文,2000.5
    [104]西岡雅夫.円筒カムの工具径補正と補正誤差[J].日本機械学会論文集(C编),2003,69(12):263-269
    [105]Zhang Yitong, Lu Ling, Yin Mingfu. Optimal control principle of profile errors for machining of cylinder cam[J]. Chinese Journal of Mechanical Engineering,1997, 10(3):176-181,194
    [106]葛荣雨,冯显英,宋现春等.空间凸轮廓面侧铣加工及最小二乘优化刀位方法[J].中国机械工程,2007,18(15):1842-1845
    [107]Zihua Hu, X. Yi, Ju Long Yuan. Profile Error Synthetic Prediction Model for One-Side Milling of Spatial Cams[J]. Key Engineering Materials,2010,455(12): 565-570
    [108]Yin Mingfu, Wang Xiaoliang. Theory Research and Error Analysis of Globoidal Indexing Cam[C].Digital Manufacturing and Automation (ICDMA),2010 International Conference on:2010,12:840-842
    [109]Lei li, Xianying Feng, Ziping Zhang etal.3D modeling and simulation of a new type of globoidal indexing cam mechanism[J]. Applied mechanics and materials,2010,26(28):931-935
    [110]李龙刚,曹巨江,李士玉,白银科.基于MATLAB和Pro/E的弧面分度凸轮三维实体建模[J].机械设计,2010(9):33-36
    [111]葛荣雨,李涛远.基于Pro/E的球形滚子弧面凸轮分度机构的建模与仿真机械设计[J].2011,28(1):63-65
    [112]徐锋,徐年富,贺炜.基于CATIA和ADAMS的弧面分度凸轮机构的建模和仿真[J].机械传动,2009(5):42-43
    [113]曹巨江,李龙刚,吕凯归等.基于UGNX6.0的弧面分度凸轮三维实体建模与仿真加[J].机械设计与制造,2011(1):169-171
    [114]曹巨江,李龙.基于ANSYS软件的弧面凸轮分度箱输出轴的模态分析[J].轻工机械,2010,28(3):41-44
    [115]付振山,冯显英,李蕾等.滚珠型弧面凸轮滚道设计及性能分析[J].沈阳工业大学学报,2011,33(4)
    [116]绕振岗,王勇卫.滚珠丝杠副及自锁装置[M].北京:国防工业出版社.1990
    [117]程光仁,施祖康.滚珠螺旋传动设计基础[M].北京:机械工业出版社(第1版),1987
    [118]刘剑.高速滚珠丝杠副综合性能的试验研究[D].山东大学硕士论文,2005.5
    [119]葛继承,二宫瑞穗.滚珠丝杠的摩擦和温升[J].机床,1981(3):26-30
    [120]成大先.机械设计手册(单行本)机械传动[M].北京:化学工业出版社,2004:17-20.
    [121]邓四二,贾群义,王燕霜.滚动轴承设计原理[M].北京:中国标准出版社,2008:39-40.
    [122]陈厚军.蒙日曲面共扼原理与环面蜗杆珠轮传动技术的研究[D].大连理工大学博士论文,2009.4
    [123]邹慧君,殷鸿梁.间隙运动机构设计与应用创新[M].北京:机械工业出版社,2008.
    [124]王其超,肖正扬,马丽敏等.弧面分度凸轮啮合特性的研究[J],农业机械学报,1994,25(增):1-7
    [125]石永刚,吴央芳.凸轮机构设计与应用创新[M].北京:机械工业出版社,2007
    [126]方代正.钢球滚子弧面凸轮分度机构的压力角计算[J].机械工程师,2006(6):69-73
    [127]Lei Li, Xiangying Feng,Ziping Zhang etal. Profile surface construction and press angle analysis of a new type of globoidal indexing cam[J]. Applied Mechanics and Material.2010,29(32):1608-1614
    [128]郭为忠,邹慧君.空间凸轮机构压力角自动求解的一种新方法[J].机械科学与技术,2001(1):5卜52
    [129]付振山,冯显英,李蕾等.钢球滚子弧面分度凸轮载荷分布[J].农业机械学报,2011,42(5):231-234
    [130]贾群义,刘彦信.滚动轴承的设计原理与应用技术[M].西安:西北工业大学出版社,1991
    [131]张佐营.高速滚珠丝杠副动力学性能分析及其实验研究[D].山东大学博士论文,2008.4
    [132]Harris T A. Rolling Bearing Analysis[M]. John Wiley & Sons.2000
    [133]万长森.滚动轴承的分析方法[M].北京:机械工业出版社,1987
    [134]韩兴昌.滚珠型弧面凸轮分度系统动力学建模与分析[D].山东大学硕士论文,2010.4
    [135]吴大任,骆家瞬.齿轮啮合理论[M].北京:科学技术出版社,1985
    [136]杨玉琥,陆锡年,孟彩芳等.蜗杆凸轮机构精确度的分析[J].天津大学学报,1995(1):61-67
    [137]程光仁,施祖康,张超鹏.滚珠螺旋传动设计基础[M].北京,机械工业出版社,1987
    [138]杨传民,祝毓琥.螺环传动啮合理论(一)[J].机械设计,1988(5):44-48
    [139]张佐营.高速滚珠丝杠副动力学性能分析及其实验研究[D].山东大学博士论文,2008.4
    [140]马涛.基于虚拟样机技术的矿用掘进机行走减速器仿真研究[D].太原理工大学硕士论文,2008.5
    [141]孟永帅.某火箭炮发射装置升降机构结构设计与研究[D].南京理工大学硕士论文,2008.5
    [142]周鹏.汽车同步带传动设计方法及传动性能研究[D].长春理工大学硕士论文,2009.3
    [143]王金生.Pro/E Wildfire 4中文版模具设计入门视频教程[M].北京:清华大学出版社,2009.1
    [144]吉继贤.滚动轴承的弹性流体动压润滑设计[J].河南机电高等专科学校学报,2004,12(1):41-42
    [145]李智慧.弹流润滑高速滚动轴承性能分析[D].北京工业大学硕士学位论文,2007
    [146]徐志栋,杨伯原,魏平等.滚动轴承点接触弹流油膜厚度及摩擦力矩的分析计算[J].轴承,2008(4):10-12
    [147]时高伟,王优.强圆弧齿轮等温弹流润滑的多重网格数值分析[J].润滑与密封,2010,35(6):60-63
    [148]鲍培德,谢俊,尹小琴等.马履中内啮合齿轮传动的弹流润滑[J].机械设计与研究,2011,27(4):26-28
    [149]王优强,卞荣.连续波状粗糙度对直齿轮热弹流润滑的影响[J].机械工程学报,2009,45(8):112-118
    [150]张佐营,李志,崔增柱等.精密滚珠丝杠副的弹流润滑分析[J].机械设计与研究,2010(2):69-71.
    [151]O.Reynolds. On the theory of lubrication and its application to Mr.Beauchamp Tower's experiments, including an experiment determination of the viscosity of olive oil[J]. Phil.Trans.Roy.Soc.,A,V.177.1886.
    [152]Cheng H.S., A numerical solution of the elastohydrodynamic film thickness in an elliptical contact[J]. Journal of Lubrication Technology, Trans. ASME.V.92,N.1,1970.
    [153]Hamrock B.J, Dowson D. Isothermal elastohydrodynamic lubrication of point contact, Part Ⅰ---Theoretical formulation[J]. Journal of Lubrication Technology, Trans. ASME, V.98,N.2,1976
    [154]Hamrock B.J, Dowson D. Isothermal elastohydrodynamic lubrication of point contact, Part Ⅱ—Ellipoticity parameter results[J]. Journal of Lubrication Technology, Trans. ASME, V.98,N.3,1976
    [155]Hamrock B.J, Dowson D. Isothermal elastohydrodynamic lubrication of point contact, Part Ⅲ—Full floods results[J]. Journal of Lubrication Technology, Trans. ASME, V.99,N.2,1977
    [156]Hamrock B.J, Dowson D. Isothermal elastohydrodynamic lubrication of point contact, Part Ⅳ—Starvation results[J]. Journal of Lubrication Technology, Trans. ASME, V.99,N.1,1977
    [157]Chittenden R.J., Dowson D., Dunn J.F., etal. A theoretical analysis of the isothermal elastohydrodynamic lubrication of concerned contacts, Ⅰ—Direction of lubrication entrainment coincident with the major acxs of the Hertzian contact ellipse[J]. Proc.Roy.Soc., London.Series A,V.397,1985
    [158]Hou Keping, Zhu Dong,Wen Shizhu, An inverse solution to the point contact EHL problem under heavy load[J]. Journal of Tribology, Trans, ASME, V.109.N.3,1987-2002
    [159]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992
    [160]曹一,杨咸启,常宗瑜.基于点接触的凸轮机构润滑油膜分析[J].润滑与密封,2008(9):62-64.
    [161]Willemain TR, SmartC N, SchwarzH F. A new approach to fore-casting intermittent demand for service parts inventories [J].International Journal of Forecasting,2004, 20(3):375-387.
    [162]B.布尚,葛世荣译.摩擦学导论[M].北京:机械工业出版社.2007
    [163]付振山,冯显英,李蕾等.钢球滚子弧面分度凸轮的弹流润滑分析[J].农业机械学报,2011,42(6):208-212
    [164]付振山,冯显英,李蕾等.滚珠型弧面凸轮分度机构的疲劳寿命分析[J].制造技术与机床,2011(5):138-140
    [165]Wuttkowski J G. SKF新寿命理论及其在轴承选型中的应用[J].国外轴承,1991(3):7-12
    [166]赵葛霄,陈远志.滚动轴承可靠性与寿命预测模型[J].机械设计与制 造,2000(6):3-4
    [167]杨晓蔚,赵韩,金银木Tallian轴承寿命理论解读[J].轴承,2002(8):1-3
    [168]张小明,罗静,杜习波等.滚珠螺旋副额定动负荷公式计算的探究[J].机械传动,2007(6):54-56
    [169]Lundberg G, Palmgren A. Dynamic capacity of rolling bearings[J]. Acta Polytech. Mech. Eng.Ser.1,1947,7(3).10-13
    [170]Tallian T. Weibull Distribution of Rolling Contact Fatigue Life and Deviations Therefrom[J]. ASLE Trans,1962,5(1):183-196
    [171]国家标准局.GB/T6391-95滚动轴承额定动负葆和额定寿命的方法[M].北京:中国标准出版社.1995
    [172]刘红旗,钟国华,梁桂明等.滑动高副的摩擦系数及蜗杆传动效率[J].机械传动.1999(3):29-31.
    [173]刘煜,邴雷刚,刘小君等.大滑滚比工况下弹流摩擦试验研究[J].中国机械工程.2008,19(21):2573-2576

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700