用户名: 密码: 验证码:
大型降落伞开伞过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回收着陆过程对航天器回收系统的安全性和可靠性提出了很高的要求。降落伞作为回收系统的重要组成部分,在设计时必须对其工作性能进行全面的分析与评定。本文以航天器回收系统降落伞为研究对象,针对大型伞充气过程及伞舱盖弹射分离后拉伞包过程进行研究,主要研究内容如下:
     针对大型伞空投试验地面录像的特点,提出了一种模块化的录像分析方法。通过分析,得到了大型伞拉直过程伞绳伞衣非直线的运动特征,明确了伞衣拉出过程中的“无控”状态以及伞包与返回舱之间较大的速度差是拉直结束后伞衣顶部出现剧烈横向运动的主要原因。采用录像分析方法,首次得到了大型伞拉直结束后伞衣顶部运动信息,大型伞充气过程伞衣投影面积变化曲线以及物伞系统姿态变化信息,为大型伞开伞过程的理论研究及工程设计改进提供了重要的数据。
     针对空投试验舱上录像特点,提出一种通过伞衣外部轮廓求解投影面积的录像分析方法。在对伞衣轮廓中受遮挡及缺失部分进行识别并恢复后,采用封闭轮廓计算录像中伞衣区域投影面积。利用该方法得到了大型伞充气过程伞衣投影面积变化曲线及物伞之间相对运动信息,弥补了试验测量手段的不足。
     基于录像分析结果对大型伞充气过程进行了深入研究。提出了大型伞充气过程阻力面积及附加质量计算方法,分析了充气过程中开伞力各主要影响因素的变化规律,研究了质量比与开伞力之间的关系。研究表明,附加质量及其变化率对开伞力有着重要影响,而一定的质量比则是大型伞解除收口过程出现两个开伞力峰值的重要原因。与其他文献方法的对比表明,基于录像分析建立的物伞系统动力学模型充气阶段的仿真精度得以全面提高。
     地面弹盖试验中曾观察到伞舱盖弹出后伞包追赶伞舱盖的现象,但目前尚无文献能够对其进行合理解释。针对这一问题,建立了伞舱盖弹射分离拉伞包过程动力学模型,复现了试验中观察到的伞包追赶伞舱盖现象,比较了地面静止弹盖条件及飞行条件下拉伞包过程的异同,分析了主要设计参数对拉伞包过程的影响。研究表明,对于伞舱盖与伞包之间采用连接绳连接的弹盖系统,追赶现象必然出现。该部分研究为伞包追赶伞舱盖现象的机理分析提供了理论依据,具有重要的工程应用价值。
     推导了空间绳索动力学方程,提出一种能够分析应力波在绳索间断面反射透射问题的数值方法,分析了应力波在两段具有不同广义波阻抗的相连绳索中传播的特点和规律。在此基础上,将伞包连接绳与伞包视为相互连接绳索,建立了伞舱盖弹射分离后拉伞包过程连续模型,研究了冲击载荷作用对拉伞包过程的影响。仿真结果表明,由于冲击加载较小,应力波在伞包连接绳及伞包中的反射透射对拉伞包过程的影响有限。
The process of recovery and landing makes great demands on the safety andreliability of the spacecraft recovery system. As an important part of the recoverysystem, the parachute’s operational performance must be analyzed and evaluatedentirely in the design phase. The dissertation studies on the opening process of the largeparachute and the phenomenon of the pulled-out parachute pack chasing the parachutecontainer cover. The main contents and conclusions are listed as follows:
     According to the features of the videos from ground-based cameras, a modularimage processing method is proposed. The non-linear motion characteristics of thecanopy and the ropes are analyzed via the videos, and uncontrolled state of the canopyand the velocity difference between the pack and the spacecraft in deployment areshowed to be the principal cause of the canopy vent’s rapidly swing after deployment.By using the image processing method, the motion information of the canopy vent afterdeployment, the projection area of the canopy and the attitude of the parachute areacquired for the first time in our nation. The experimental data from the videos isnecessary for the large parachutes’ theoretical research and engineering designimprovement.
     Considering the features of the videos from on-board cameras, an image processingwhich is used to measure the canopy’s projection area via its contour in the video isproposed. The missing and occluded part of the contour could be identified and berepaired, and then the projection area could be calculated. By using this method, theprojection area of the canopy and the relative motion information between the canopyand the spacecraft are acquired. The results could make up for the traditionalmeasurement limitation.
     Based on the video analysis, the inflation process of the large parachutes is studiedintensively. Formula and algorithms for calculating the drag area and added mass aregiven. The changing characteristics of the main influencing factors of the opening forceare analyzed, and the relationship between mass ratio and opening shock are discussed.The research shows that the added mass has an important effect on the opening force,and the specific mass ratio is the major cause of double force pulse during disreefing.Comparison with the model in the literature indicates that the new method has higherprecision. The new model has been applied to the spacecraft recovery system simulationsoftware successfully.
     In terms of the lack of research on the phenomenon of the parachute pack chasingthe parachute container cover, a discrete analytical model is established, and thesimulation result could reproduce the chasing phenomenon observed in the tests, thenthe influence of the major design parameters are discussed. The study shows that the chasing phenomenon inevitably appears when the cover separation unit uses an elasticbelt connecting the cover and the pack. The research supplies the theoretical basis forthe mechanism analysis of the phenomenon.
     The dynamic model of a spatial rope is deduced. An approach for analyzing theshock wave reflection and transmission in a rope with discontinuity is provided andvalidated by numerical simulation of simple examples. The features of propagation ofshock wave in two connected ropes with different general wave impedance is analyzed.By taking the belt and the parachute pack as interconnected ropes, a continuous modelof the parachute pack pulling process is established. The results shows that the impactloading has no significant effect on the force and velocity during the parachute pack’spulling process for its low level.
引文
[1]王利荣.降落伞理论与应用[M].北京:宇航出版社,1997.
    [2] Ewing E G, Knacke T W, Bixby H W.回收系统设计指南[M].北京:航空工业出版社,1988.
    [3]《降落伞技术导论》编写组.降落伞技术导论[M].北京:国防工业出版社,1977.
    [4] Knacke T W. Parachute Recovery Systems Design Manual[R]. AD-A247666.
    [5]张宗美.航天故障手册[M].北京:宇航出版社,1994.
    [6]戴维.J.谢勒.载人航天飞行中的事故与灾难[M].背景:中国宇航出版社,2005.
    [7]夏刚,程文科,秦子增.航天器回收中几种主伞失效案例介绍[J].航天返回与遥感,2002,23(4):4-8.
    [8]张育林,郑荣跃,沈力平.载人航天工程基础[M].长沙:国防科技大学出版社,1997.
    [9]戚发轫.载人航天器技术[M].北京:国防工业出版社,2003.
    [10]张红英,童明波,王跃全.某降落伞伞绳断裂仿真分析[J].航天返回与遥感,2004,25(4):15-19.
    [11] Watts G. Space Shuttle Solid Rocket Booster Main Parachute DamageReduction Team Report[R]. NASA TM-4437.
    [12] Morris A L. Simulating New Drop Test Vehicles and Test Techniques for theOrion Cev Parachute Assembly System[R]. AIAA2011-2616.
    [13] Moog R D, F.C. M. Balloon Launched Viking Decelerator Test Program[R].NASA-CR-112288.
    [14] Moog R D. Aerodynamic Line Bowing During Parachute Deployment[R].AIAA75-1381.
    [15] Purvis J W. Prediction of Line Sail During Lines-First Deployment[R]. AIAA83-0370.
    [16] Purvis J W. Improved Prediction of Parachute Line Sail During Lines-FirstDeployment[R]. AIAA84-0786.
    [17]宋旭民,范丽,秦子增.大型降落伞系统建模及抽鞭现象研究[J].航天返回与遥感,2009,30(3):16-21.
    [18]宋旭民.大型降落伞系统动力学建模及抽鞭现象研究[D].长沙:国防科学技术大学博士学位论文,2006.
    [19]王海涛,秦子增,宋旭民等.大型降落伞拉直过程的抽打现象分析[J].国防科技大学学报,2010,32(5):34-39.
    [20]王海涛,秦子增,宋旭民等.牵顶伞对大型降落伞拉直过程的影响分析[J].国防科技大学学报,2010,32(4):49-55.
    [21]王海涛.大型降落伞抽打现象及运动稳定性分析[D].长沙:国防科学技术大学博士学位论文,2011.
    [22]丁娣,程文科.大型伞绳帆和抽打现象连续模型及验证[J].航天返回与遥感,2010,31(5):22-26.
    [23]丁娣.载人飞船大型降落伞回收系统中几个动力学问题研究[D].长沙:国防科学技术大学博士学位论文,2011.
    [24]彭勇.载人飞船回收系统若干动力学问题的研究与应用[D].长沙:国防科学技术大学博士学位论文,2004.
    [25]彭勇,宋旭民,秦子增.降落伞充气过程中尾流再附动力学分析[J].航天返回与遥感,2005,26(2):1-5.
    [26]张青斌.载人飞船降落伞回收系统动力学研究[D].长沙:国防科学技术大学博士学位论文,2003.
    [27] Mitcheltree R, Bruno R, Slimko E, et al. High Altitude Test Program for a MarsSubsonic Parachute[R]. AIAA2005-1659.
    [28] Gonzalez M A, Zapirain F. Integrated Design and Testing Tool[R]. AIAA97-1452.
    [29] Adler D, Baeza M, Northey D. PASDA in Action[R]. AIAA93-1225.
    [30] Adler D, Trogus W, Bachor E, et al. PASDA-A Tool to Design AtmosphericDescent Bodies with Parachutes[J]. Advances in Space Research,1995,16(6):113-116.
    [31] Sundberg W D. Status Report: Parachute System Design, Analysis andSimulation Tool[R]. AIAA93-1208.
    [32] Raiszadeh B. Multibody Parachute Flight Simulations for Plantary EntryTrajectories Using 'Equilibrium Points'[R]. AAS03-163.
    [33] Raiszadeh B, Queen E M. Partial Validation of Multibody Program to OptimizeSimulated Trajectories II(Post II) Parachute Simulation with InteractingForces[R]. NASA/TM-2002-211634.
    [34] Queen E M, Raiszadeh B. Mars Smart Lander Parachute Simulation Model[R].AIAA2002-4616.
    [35] Raiszadeh R, Queen E M. Mars Exploration Rover Terminal Descent MissionModeling and Simulation[R]. AAS04-271.
    [36] Muller S, Wagner O, Sachs G. A Hight-Fidelity Nonlinear MultibodySimulation Model for Parafoil Systems[R]. AIAA2003-2120.
    [37] Cuthbert P A. A Software Simulation of Cargo Drop Tests[R]. AIAA2003-2132.
    [38] Cuthbert P A, Desabrais K J. Validation of a Cargo Airdrop SoftwareSimulation[R]. AIAA2003-2133.
    [39]余莉.降落伞仿真技术与试验研究[D].南京:南京航空航天大学博士学位论文,2006.
    [40]柯鹏.降落伞系统动力学建模与综合仿真[D].北京:北京航空航天大学博士学位论文,2007.
    [41]宋旭民,秦子增,程文科等.航天器回收着陆仿真软件系统(ARLSSS)简介[J].航天返回与遥感,2004,25(3):7-10.
    [42]郭叔伟.载人飞船回收着陆半实物仿真系统及试验研究[D].长沙:国防科学技术大学博士学位论文,2009.
    [43]郭叔伟,董杨彪,秦子增.回收着陆半实物仿真系统程控装置模拟程序设计[J].航天返回与遥感,2007,28(4):1-5.
    [44]郭叔伟,董杨彪,王海涛等.载人航天器回收着陆半实物仿真系统研究[J].系统仿真学报,2010,22(3):621-625.
    [45] Macha J M. A Simple, Approximate Model of Parachute Inflation[R]. AIAA93-1206.
    [46] Toni R A. Theory on the Dynamics of Bag Strip for a Parachute DeploymentAided by a Pilot Chute[R]. AIAA68-925.
    [47] McVey D F, Wolf D F. Analysis of Deployment and Inflation of Large RibbonParachutes[J]. Journal of Aircraft,1974,11(2):96-103.
    [48] Wolf D. A Simplified Dynamic Model of Parachute Inflation[R]. AIAA73-450.
    [49] French K E. A First-Order Theory for the Effects of Line Ties on ParachuteDeployment[R]. AIAA79-0450.
    [50]程文科.一般降落伞-载荷系统动力学及其动稳定性分析[D].长沙:国防科学技术大学博士学位论文,2000.
    [51] HuckinsIII E K. A New Technique for Predicting the Snatch Force GeneratedDuring Lines-First Deployment of an Aerodynamic Decelerator[R]. AIAA70-1171.
    [52] Poole L R, HuckinsIII E K. Evaluation of Massless-Spring Modeling ofSuspension-Line Elasticity During the Parachute Unfurling Process[R]. NASATN D-6671.
    [53] Poole L R, III E K H. Evaluation of Massless-Spring Modeling ofSuspension-Line Elasticity During the Parachute Unfurling Process[R]. NASATN D-6671.
    [54] Wbitlock C H, Poole L R. Postflight Simulation of Parachute DeploymentDynamics of Viking Qualification Flight Tests[R]. NASA TN D-7415.
    [55]徐宏,曹义华,李栋.先拉伞绳法数学模型及拉直力预测[J].航空动力学报,2008,23(4):706-711.
    [56] Sundberg W D. Finite-Element Modeling of Parachute Deployment andInflation[R]. AIAA75-1380.
    [57] Purvis J W. Numerical Prediction of Deployment, Initial Fill, and Inflation ofParachute Canopies[R]. AIAA84-0787.
    [58] Purvist J W. Improved Prediction of Parachute Line Sail During Lines-FirstDeployment[R]. AIAA84-0786.
    [59] Peterson C W. High Performance Parachutes[J]. Scientific Americans,1990,262(2):108-116.
    [60]张青斌,程文科,彭勇等.降落伞拉直过程的多刚体模型[J].中国空间科学技术,2003,23(2):45-50.
    [61]张青斌,彭勇,程文科等.系绳力对降落伞拉直过程的影响[J].航天返回与遥感,2002,23(2):9-14.
    [62]张青斌,彭勇,程文科等.降落伞拉直过程的质量阻尼弹簧模型[J].弹道学报,2003,15(1):31-35.
    [63] Berndt R J, Deweese J H. Filling Time Prediction Approach for Solid ClothType Parachute Canopies[R]. AIAA1966-1503.
    [64] Heinrich H G. The Opening Time of Parachutes under Infinite MassConditions[R]. AIAA1968-12.
    [65] French K E. The Initial Phase of Parachute Inflation[R]. AIAA1968-927.
    [66] Heinrich H G. Analysis of Parachute Opening Dynamics with Supporting WindTunnel Experiments[R]. AIAA1968-924.
    [67] Pepper W B, Reed J F. Parametric Study of Parachute Pressure Distribution byWind Tunnel Testing[R]. AIAA75-1369.
    [68] Popp K A, Jahari H, Lee C K. Wind Tunnel Experiments on Characteristics ofSmall-Scale Parachutes[R]. AIAA99-1748.
    [69] Desabrais K J, Johari H. Reynolds Number and Scale Effects on InflatingParachute Canopies[R]. AIAA99-1736.
    [70] Desabrais K J, Johari H. The Flow in the near Wake of an Inflating ParachuteCanopy[R]. AIAA2001-2009.
    [71] Johari H, Desabrais K J. Scaling for Solid Cloth Parachute[R]. AIAA2001-2007.
    [72] Johari H, Levshin A. Deformation of a Round Parachute Canopy Due to a LineVortex[R]. AIAA2007-2506.
    [73] Cochrane C, Lewandowski M, Koncar V. A Flexible Strain Sensor Based on aConductive Polymer Composite for in Situ Measurement of ParachuteDeformation[J]. Sensors,2010,(10):8291-8303.
    [74] Camey A, Niezrecki C, Niemi E E, et al. Parachute Strain and DeformationMeasurements Using Imaging and Polymer Strain Sensors[R]. AIAA2007-2553.
    [75]张震宇,明晓.七孔探针的神经网络校准与制造偏差分析[J].实验力学,2005,20(3):473-478.
    [76]余莉,明晓,陈丽君.不同透气情况降落伞的流场试验研究[J].空气动力学学报,2008,26(1):19-25.
    [77] Hiraki K, Hinada M, Higuchi H. Flow Measurement around RigidParachute-Like Bodies in Supersonic Free Stream[R]. AIAA97-1529.
    [78] Jones T W, Downey J M, Lunsford C B. Experimental Methods UsingPhotogrammetric Techniques for Parachute Canopy Shape Measurements[R].AIAA2007-2550.
    [79] Lee C K, Li P. Geometric Properties of Parachute Using3-D Laser Scanning[J].Journal of Aircraft,2007,44(2):377-385.
    [80] Ghaem-Maghami E, Desabrais K J, Johari H. Measurement of the Geometry of aParachute Canopy Using Image Correlation Photogrammetry[R]. AIAA2007-2568.
    [81] Yakimenko O A, Berlind R M, Albright C B. Status on Video Data Reductionand Air Delivery Payload Pose Estimation[R]. AIAA2007-2552.
    [82] Lee C K, Lanza J, Buckley J. Experimental Investigation of ClusteredParachutes Inflation[R]. AIAA97-1478.
    [83] Zell P T, Cruz J R, Witkowski A. Structural Testing of Parachutes in theNational Full-Scale Aerodynamics Complex80-by-120-Foot Wind Tunnel atNasa Ames Research Center[R]. AIAA2003-2130.
    [84] Cruz J R, Mineck R E, Keller D F, et al. Wind Tunnel Testing of VariousDisk-Gap-Band Parachutes[R]. AIAA2003-2129.
    [85] Witkowski A, Kandis M, Adams D S. Inflation Characteristics of the Msl DiskGap Band Parachute[R]. AIAA2009-2915.
    [86] Pruett M, Accorsi M. Validation of Computational Structural Dynamics Modelsfor Parachute System[R]. AIAA2009-2934.
    [87] Ray E S, Bretz D R, Morris A L. Photogrammetric Analysis of Cpas MainParachute[R]. AIAA2011-2538.
    [88] GouldingII P W, Rogers C R, Adams D S, et al. Unique Aspects ofAccommodating Two Recent Parachute Tests at the National Full-ScaleAerodynamics Complex[R]. AIAA2011-1261.
    [89] Mcewan A J. An Investigation of Parachute Opening Loads and a NewEngineering Method for Their Dtermination[R]. AIAA70-1168.
    [90]荣伟,陈旭,陈国良.低密度大气中降落伞开伞动载的研究[J].航天返回与遥感,2006,27(4):7-11.
    [91]荣伟,陈旭,陈国良.大气密度对降落伞充气性能的影响[J].航天返回与遥感,2006,27(3):11-16.
    [92]荣伟.火星探测器减速着陆技术研究[D].北京:中国空间技术研究院博士学位论文,2008.
    [93]郭叔伟,董杨彪,王海涛等.降落伞充气环境对充气性能的影响[J].中国空间科学技术,2008,28(6):45-51.
    [94] H.G. Heinrich, Saari D P. Parachute Opening Shock Calculations withExperimentally Established Input Functions[J]. Journal Of.AIRCRAFT,1978,15(2):100-105.
    [95] Jr U F, Dearman J, Morris A L. Proposed Framework for Determining AddedMass of Orion Drogue Parachutes[R]. AIAA2011-2546.
    [96] Cruz J R. Opening Loads Analyses for Various Disk-Gap-Band Parachutes[R].AIAA2003-2131.
    [97] Kidme B A. Parachute Drag Area Using Added Mass as Related to CanopyGeometry[R]. AIAA2009-2942.
    [98] Doherr K-F. Extended Parachute Opening Shock Estimation Method[R]. AIAA2003-2173.
    [99] Potvin J. Simple Description of Airflow Characteristics inside an UnfoldingParachute[J]. Journal of Aircraft,1999,36(5):809-818.
    [100] Potvin J. General Mass Capture Model for Swiftly Opening Parachutes[J].Journal of Aircraft,2008,45(5):1689-1700.
    [101] Potvin J. Momentum-Impulse Balance and Parachute Inflation: Clusters[J].Journal of Aircraft,2007,44(2):687-691.
    [102] Potvin J. Momentum-Impulse Balance and Parachute Inflation: Disreefing[J].Journal of Aircraft,2007,44(2):691-694.
    [103] Potvin J. Momentum-Impulse Balance and Parachute Inflation: Fixed-PointDrops[J]. Journal of Aircraft,2007,44(2):1026-1029.
    [104] Potvin J. Momentum-Impulse Balance and Parachute Inflation:Rocket-Propelled Payloads[J]. Journal of Aircraft,2007,44(3):1039-1042.
    [105] Potvin J. Testing without Load Cells-Can Opening Shock Be Estimated fromVideo Data Only[R]. AIAA2007-2551.
    [106] Potvin J. Updating and Upgrading the World's Database on the Opening ShockFactor Ck[R]. AIAA2009-2905.
    [107] Potvin J. Universality Considerations for Graphing Parachute Opening ShockFactor Versus Mass Ratio[J]. Journal of Aircraft,2007,44(2):528-538.
    [108] Purvis J W. Theoretical Analysis of Parachute Inflation Including FluidKinetics[R]. AIAA81-1925.
    [109] Ibos C, C.Lacroix, L.Chuzet, et al. Sinpa,a Full3d Fluid-Structure Software forParachute Simulation[R]. AIAA97-1508.
    [110] Benney R J, Stein K R, Tezduyar T E. Fluid-Structure Interaction Modeling ofthe U.S. Army Personal Parachute System[R]. AIAA2000-4310.
    [111] Accorsi M L, Leonard J W, Tezduyar T E. Simulation and Modeling of WindEffects on Airdrop Systems[R]. AFRL-SR-B1-TR-01-0448.
    [112] Kalro V, Garrard W, Tezduyar T. Parallel Finite Element Simulation of the FlareManeuver of Large Ram-Air Parachutes[R]. AIAA97-1427.
    [113] Tezduyar T, Kalro V, Garrard W. Advanced Computational Methods for3dSimulation Parafoils[R]. AIAA99-1712.
    [114] Ray S E, Wren G P, Tezduyar T E. Simulation of Compressible Fluid-ElasticSolid Interactions[R]. AIAA97-15870.
    [115] Stein K, Tezduyar T E, Sathe S, et al. Simulation of Parachute Dynamics DuringControl Line Input Operations[R]. AIAA2003-2151.
    [116] Johari H, Stein K, Tezduyar T E. Temporal Evolution of the near Wake of anImpulsively Started Parachute Canopy[R]. AIAA2000-2530.
    [117] Kalro V, Tezduyar T E. A Parallel3d Computational Method Fluid-StructureInteractions in Parachute Systems[J]. Comput. Methods Appl. Mech. Engrg,2000,190(1):321-332.
    [118] Takizawa K, Tezduyar T E. Computational Methods for ParachuteFluid-Structure Interactions[J]. Archieves of Computational Methods inEngineering,2012,(19):125-169.
    [119] Lyalin V V, Morozov V I, Ponomarev A T. Parachute Performance ComputerAnalysis[R]. AIAA2001-2064.
    [120] Zhang W. Parallel Finite Element Methods for the Simulation of ParachuteDynamics and Control[D]. Hartford:University of Connecticut PhD thesis,2003.
    [121] Kumar V. Advanced Computational Techniques for IncompressibleCompressible Fluid-Structure Interactions[D]. Houston:Rice University PhDthesis,2005.
    [122] Taylor A P. Developments in the Application of Ls-Dyna to Fluid StructureInteraction(Fsi) Problems in Recovery System Design and Analysis[C].7thInternational Ls-Dyna Users Conference,2002.
    [123] Tutt B A, Taylor A P. The Use of Ls-Dyna to Simulate the Water LandingCharacteristics of Space Vehicles[C].8th International LS-DYNA UsersConference, Michigan,2004.
    [124] Taylor A P. An Investigation of the Apparent Mass of Parachutes under PostInflation Dynamic Loading through the Use of Fluid Structure InteractionSimulations[R]. AIAA2003-2104.
    [125] Tutt B A, Taylor A P, Berland J C, et al. The Use of Ls-Dyna to Assess thePerformance of Airborne System North America Candidate Atps MainParachutes[R]. AIAA2005-1609.
    [126] Tutt B A, Taylor A P. The Use of Ls-Dyna to Simulated the Inflation of aParachute Canopy[R]. AIAA2005-1608.
    [127] Lingard J S. A Semi-Sepirical Theory to Predict the Load-Time History of anInflation Parachute[R]. AIAA84-0814.
    [128] Coquet Y, Bordenave P. Improvements in Fluid Structure Interaction Simulationof Parachute Using Ls-Dyna[R]. AIAA2011-2590.
    [129]彭勇,张青斌,程文科等.降落伞初始充气阶段数值模拟[J].中国空间科学技术,2003,23(3):7-12.
    [130]彭勇,张青斌,秦子增.降落伞主充气阶段数值模拟[J].国防科技大学学报,2004,26(2):13-16.
    [131]余莉,史献林,明晓.降落伞充气过程的数值模拟[J].航空学报,2007,28(1):52-57.
    [132] Yu L, Ming X. Study on Transient Aerodynamic Characteristics of ParachuteOpening Process[J]. ACTA Mechanica Sinica,2007,23(6):627-633.
    [133]张红英,刘卫华,童明波等.降落伞初始充气阶段数值模拟[J].南京航空航天大学学报,2009,41(2):207-211.
    [134]张红英,秦富德,刘卫华等.牵顶伞对主伞充气过程的影响[J].南京航空航天大学学报,2010,42(1):47-51.
    [135]张红英,刘卫华,秦福德等.降落伞充气过程中伞衣外形及流场变化研究[J].空气动力学学报,2011,29(3):288-294.
    [136]潘星,胡利,曹义华.降落伞主充气阶段的动态仿真及流场分析[J].航空动力学报,2008,23(1):87-93.
    [137] Cao Y, Wang K, Yu Z, et al. Numerical Simulation of Parachute Fluid-StructureInteraction and Flow Field Analysis[R]. AIAA2007-2573.
    [138]吴卓,曹义华,宋乾福.锥形降落伞开伞过程流动结构相互作用的数值模拟[J].航空动力学报,2009,24(7):1584-1593.
    [139]王侃,曹义华,于子文等.降落伞流固耦合问题的数值模拟和流场分析[J].北京航空航天大学学报,2007,33(9):1029-1032.
    [140]贾贺,荣伟,陈国良.基于ls-Dyna的降落伞伞衣织物透气性参数仿真验证[J].航天返回与遥感,2009,30(1):15-20.
    [141]贾贺.基于ls-Dyna的降落伞充气过程研究[D].北京:中国空间技术研究院,2009.
    [142] Tory T, Ayres R. Computer Model of a Full Deployed Parachute[J]. Journal ofAircraft,1977,14(7):675-679.
    [143] White F M, Wolf D F. A Theory of Three Dimensional Parachute DynamicStability[J]. Journal of Aircraft,1968,5(1):86-92.
    [144] Doherr K F, Schilling H. Nine-Degree-of-Freedom Simulation of RotatingParachute System[J]. Journal of Aircraft,1992,29(5):774-780.
    [145]金友兵,邵大燮,薛晓中等.鱼雷和伞的空中运动模型[J].弹道学报,1998,10(2):87-92.
    [146]唐乾刚,王昱,张青斌等.伞-弹动力学及运动学在末敏弹目标识别中的应用[J].兵工学报,2007,28(7):796-799.
    [147]唐乾刚,张青斌,张晓今等.伞-弹系统九自由度动力学模型[J].兵工学报,2007,28(4):449-452.
    [148]朱勇,刘莉.基于拉格朗日力学的伞-弹系统动力学模型[J].航空学报,2009,30(7):1208-1213.
    [149]郭叔伟,董杨彪,秦子增.物伞系统动力学模型和讨论[J].航天返回与遥感,2008,29(3):38-44.
    [150] Wolf D F. The Dynamic Stability of a Nonrigid Parachute and PayloadSystem[J]. Journal of Aircraft,1971,8(8):603-609.
    [151] Gulieri G, Quagliotti F B. Validation of a Simulation Model for Planetary EntryCapsule[J]. Journal of Aircraft,2003,40(1):127-136.
    [152]李大耀.物-伞系统运动稳定性判据[J].航天返回与遥感,1994,15(1):8-17.
    [153]李大耀.利用刚体-指点模型法计算物-伞系统运动轨迹的基本方程[J].航天返回与遥感,1995,16(3):4-16.
    [154]李大耀,李大治.物-伞系统运动方程与稳定性判据[J].中国空间科学技术,1994,14(2):43-54.
    [155]李大耀,李大治.物-伞系统运动稳定性初探[J].中国空间科学技术,1996,16(2):58-63.
    [156]李大耀,李大治.物体-双伞系统运动方程与稳定性判据[J].宇航学报,1997,18(4):93-97.
    [157]廖前芳,廖波,程文科等.气动力对伞稳定下降阶段摆动的影响[J].中国空间科学技术,2006,26(5):43-49.
    [158]王海涛,秦子增.物伞回收系统运动稳定性分析[J].导弹与航天运载技术,2009,(6):46-51.
    [159]王海涛,秦子增.降落伞回收系统平面运动稳定性分析[J].系统仿真学报,2009,21(18):5816-5820.
    [160]王海涛,郭叔伟,秦子增.物伞系统空间运动模式分析[J].航天返回与遥感,2009,30(1):21-27.
    [161]王海涛,郭叔伟,秦子增.降落伞特性对物伞系统稳定性的影响[J].航天器工程,2009,18(2):68-74.
    [162]廖前芳,程文科,宋旭民等.风场对舱-伞系统着陆姿态影响的仿真研究[J].航天返回与遥感,2005,26(2):6-10.
    [163] Stein K R, Benney R J, Steeves E C. A Computational Model That CouplesAerodynamic and Structure Dynamic Behavior of Parachutes During theOpening Process[R]. NATICK/TR-93/029.
    [164]蒋崇文,曹义华,苏文翰.轴对称降落伞稳定下降阶段的流场特性[J].航天返回与遥感,2005,26(3):10-15.
    [165]蒋崇文,曹义华,苏文翰.对称面圆周角对轴对称降落伞流场特性的影响[J].北京航空航天大学学报,2006,32(3):271-275.
    [166]刘巍,寇保华,葛健全等.降落伞充满稳定阶段流场数值模拟[J].中国空间科学技术,2007,27(1):61-64.
    [167] Reddy K R, Roberts B W. Inflation of a Multi-Element Parachute Structure[R].AIAA75-1353.
    [168] Meyer J, Purvis J W. Vortex Lattice Theory Applied to Parachute CanopyConfigurations[R]. AIAA84-0787.
    [169] Oler J W, Lawrence J H. Unsteady Loads on Rigid Two-DimensionalParachutes[R]. SAND88-7024.
    [170] Strickland J H. A Vortex Panel Analysis of Circular-Arc Bluff Bodies inUnsteady Flow[R]. AIAA89-0930.
    [171] Strickland J H, Homicz G F, Gossler A A, et al. On the Development of aGridless Inflation Code for Parachute Simulations[R]. AIAA2001-2000.
    [172]彭勇,宋旭民,秦子增.用粘性涡方法计算伞状物绕流[J].航天返回与遥感,2004,25(4):10-14.
    [173]沈琼,余雄庆.无人机机载导弹分离轨迹的数值仿真[J].弹箭与制导学报,2009,29(5):99-102.
    [174]张永杰,孙秦.整体式头罩分离运动轨迹可靠性分析[J].弹箭与制导学报,2011,31(1):19-22.
    [175]赵晓慧.巡航导弹锥形头罩抛离方案设计与仿真研究[D].长沙:国防科学技术大学,2009.
    [176]赵会强,钟诚文,韩王超.飞机舱盖重心位置对舱盖抛放轨迹影响的数值模拟[J].航空学报,2008,29(6):1436-1439.
    [177]张岩,唐乾刚,张翼.导弹分离碰撞判断与最小距离快速算法[J].战术导弹技术,2003,(4):41-46.
    [178] Strickert G, Jann T. Determination of the Relative Motion between ParafoilCanopy and Load Using Advanced Video-Image Processing Techniques[R].AIAA99-1754.
    [179] Sengupta A, Wernet M, Roeder J, et al. Supersonic Testing of0.8m Disk GapBand Parachutes in the Wake of a70Deg Sphere Cone Entry Vehicle[R]. AIAA2009-2974.
    [180] Ray E S, Morris A L. Measurement of Cpas Main Parachute Rate of Descent[R].AIAA2011-2545.
    [181] Ray E S, Bretz D R, Morris A L. AIAA2011-2538.
    [182] Morris A L, Olson L, Taylor T. Load Asymmetry Observed During Orion MainParachute Inflation[R]. AIAA2011-2611.
    [183]张小苗,曹勇,于起峰.基于双目视觉的返回舱着陆横向速度测量[J].航天返回与遥感,2007,28(3):1-5.
    [184]张小苗.机载视觉着陆导航测量方法及关键技术研究[D].长沙:国防科学技术大学博士学位论文,2008.
    [185]汪思国,汤更生,杨辉等.投影图像法对旋转体空间扫描角和转速的测量研究[J].实验流体力学,2010,24(1):79-83.
    [186] Gonzalez R C, Woods R E. Digital Image Processing[M]. Beijing:PublishingHouse of Electronics Industry,2002.
    [187] Gonzalez R C, Woods R E, Eddins S L. Digital Image Processing UsingMatlab[M]. Beijing:Publishing House of Electronics Industry,2009.
    [188]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.
    [189]章毓晋.图像分析[M].北京:清华大学出版社,2005.
    [190]章毓晋.图像处理[M].北京:清华大学出版社,2006.
    [191]章毓晋.图像理解[M].北京:清华大学出版社,2007.
    [192]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社,2002.
    [193]于起峰,尚洋.摄像测量学原理与应用研究[M].北京:科学出版社,2009.
    [194]赵鹏.机器视觉理论及应用[M].北京:电子工业出版社,2011.
    [195]于起峰,孙祥一,陈国军.用光测法测量空间目标三维姿态[J].国防科技大学学报,2000,22(2):15-19.
    [196] Brink A D. Thresholding of Digital Images Using Two-DimensionalEntropies[J]. Pattern Recognition,1992,25(8):803-808.
    [197] Abutaleb A S. Automatic Thresholding of Gray-Level Pictures UsingTwo-Dimensional Entropies[J]. Pattern Recognition,1989,22(47):22-32.
    [198] Chen W T, Wen C H, Yang C W. A Fast Two-Dimensional EntropicThresholding Algorithm[J]. Pattern Recognition,1994,27(7):885-893.
    [199]张新明,张爱丽,郑延斌等.改进的最大熵阈值分割及其快速实现[J].计算机科学,2011,38(8):278-283.
    [200] Brink A D, Pendock N E. Minimum Cross-Entropy Thresholding Selection[J].Pattern Recognition,1996,29(1):179-189.
    [201] Li C H, Lee C K. Minimum Cross Entropy Thresholding [J]. PatternRecognition,1993,26(4):617-625.
    [202]雷博,范九伦.灰度图像的二维交叉熵阈值分割法[J].光子学报,2009,38(6):1572-1576.
    [203]吴一全,樊军,周怀春.改进的二维最小交叉熵阈值分割快速迭代算法[J].应用科学学报,2011,29(5):487-494.
    [204]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
    [205] Kang J, Min L, Luan Q, et al. Novel Modified Fuzzy C-Means Algorithm withApplication[J]. Digital Signal Processing,2009,(19):309-319.
    [206] Wang X-Y, Bu J. A Fast and Robust Image Segmentation Using Fcm withSpatial Information[J]. Digital Signal Processing,2010,(20):1173-1182.
    [207]赵冬,赵光恒,王天慧.基于模糊c-均值聚类航天图像分割方法的研究[J].宇航学报,2009,30(4):1667-1674.
    [208]李明,李云松.改进的快速模糊c均值聚类的图像分割方法[J].兰州理工大学学报,2007,33(3):95-99.
    [209] Cai W L, Chen S C, Zhang D Q. Fast and Robust Fuzzy C-Means ClusteringAlgorithms Incorporating Local Information for Image Segmentation[J]. PatternRecognition,2007,40:825-838.
    [210] Kang J Y, Min L Q, Luan Q X, et al. Novel Modified Fuzzy C-Means Algorithmwith Application[J]. Digital Signal Processing,2009,19(309-319)
    [211]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2008.
    [212] Bertalmio M, Sapiro G, Caselles V, et al. Image Inpainting[C]. Proceedings ofSIGGRAPH, New Orleans,USA,2000.
    [213] Chan T F, Shen J. Mathematical Models for Local Non-Texture Inpaintings[J].SIAM Journal on Applied Mathematics,2001,(62):1019-1043.
    [214]葛仕明.数字图像的修复方法研究[D].安徽:中国科学技术大学博士学位论文,2008.
    [215]李言俊,张科.景象匹配与目标识别技术[M].西安:西北工业大学出版社,2009.
    [216] Kass M, Witkin A, Terzopoulos D. Snake:Active Contour Models[J].International Journal of Computer Vision,1988,1(4):321-331.
    [217] Chan T F, Vese L A. Active Contours without Edges[J]. IEEE Transactions onImage Processing,2001,10(2):266-277.
    [218] Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours[J]. InternationalJournal of Computer Vision,1997,22(1):61-79.
    [219] Sobel L. Neighborhood Coding of Binary Images for Fast Contour Followingand General Binary Array Processing[J]. Computer Graphics Image Process,1978,8(1):127-135.
    [220]葛澎.一种快速边缘跟踪与提取的新算法[J].微电子学与计算机,2005,22(8):14-17.
    [221]石爽,曲仕茹,何力.一种新的边界跟踪算法[J].工程图学学报,2011,(3):52-56.
    [222]胡青泥,欧宗瑛,刘金义.二值和多值图像的边界跟踪及逼近[J].大连理工大学学报,1995,35(3):357-361.
    [223]范建兴,冯伯儒,张锦.用时间-边界跟踪模型确定抗蚀剂显影后的轮廓分布[J].光子学报,1997,26(6):546-549.
    [224]《现代数学手册》编纂委员会.现代数学手册(计算机数学卷)[M].武汉:华中科技大学出版社,2001.
    [225]杨万扣,任明武,杨静宇.数字图像中基于链码的目标面积计算方法[J].计算机工程,2008,34(1):30-33.
    [226] Tang G Y. A Discrete Version of Green's Theorem[C]. IEEE Transactions onPattern Analysis and Machine Intelligence,1982.
    [227]李波,刘东华,梁光明等.一种计算任意形状封闭区域面积的新方法[J].国防科技大学学报,2002,24(4):61-64.
    [228]张旭,王宏安.面向车牌识别的区域分割技术[J].计算机工程,2002,28(4):113-115.
    [229] Berrndt R J. The Opening Force of Solid Cloth, Personal Type Parachute[R].AIAA70-1167.
    [230] Wolf D F. Parachute Opening Shock[R]. AIAA99-1702.
    [231] Hwang Y L. Nonlinear Analysis of Mooring Lines[C]. OMAE,1986.
    [232]纪宝淳.水下缆索之振动分析[D].台湾高雄:国立中山大学硕士学位论文,2001.
    [233]王礼立.应力波基础[M].北京:国防工业出版社,2010.
    [234]丁启财.固体中的非线性波[M].北京:中国友谊出版公司,1985.
    [235] Berlioz A, Lamarque C H. A Non-Linear Model for the Dynamics of an InclinedCable[J]. Journal of Sound and Vibration,2005,279:619-639.
    [236] Perkings N C, Mote C D, Jr. There-Dimensional Vibration of Travelling ElssticCables[J]. Journal of Sound and Vibration,1987,114(2):325-340.
    [237] Zhang W, Tang Y. Global Dynamics of the Cable under Combined Parametricaland External Excitations[J]. Non-Linear Mechanics,2002,37:505-526.
    [238] Behbahani-Nejad M, Perkins N C. Freely Propagating Waves in ElasticCables[J]. Journal of Sound and Vibration,1996,196(2):189-202.
    [239] Zhao Y Y, Wang L H, Chen D L. Non-Linear Dynamic Analysis of theTwo-Dimensional Simplified Model of an Elastic Cable[J]. Journal of Soundand Vibration,2002,255(1):43-59.
    [240]金栋平,胡海岩.横向流体激励下绳索的动力学分析[J].振动工程学报,2000,13(3):340-345.
    [241]金栋平,胡海岩.行进绳索在横向流体激励下的运动[J].力学学报,2001,33(4):525-530.
    [242]金栋平,文浩,胡海岩.绳索系统的建模、动力学和控制[J].力学进展,2004,34(3):304-313.
    [243] Oprea著J,陈志奇,李君译.微分几何及其应用[M].北京:机械工业出版社,2006.
    [244]老大中.变分法基础[M].北京:国防工业出版社,2011.
    [245] Lin X.固体应力波的数值解法[M].北京:国防工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700