用户名: 密码: 验证码:
基于形态学多尺度图像分析的海藻细胞图像分割及特征提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋浮游植物又称浮游海藻,它们既是海洋生态系统中最重要的初级生产者,也是引发赤潮的主要因素。对浮游植物资源的开发利用、对海洋生态系统的监测,都离不开对其种类的分类和鉴定。目前,对海藻的鉴定,最基本的方法是由生物学专家,观察显微镜下的藻类外观形态实现的。这种方法需要研究者拥有很高的专业水平和丰富的经验,且费时又费力。将计算机图像处理与模式识别技术,与这种最基本的方法相结合,建立浮游植物图像自动识别系统,是实现海藻种类准确、快速鉴定的新途径。国内外已有的浮游植物图像识别系统,普遍存在一些局限性:例如,海藻种类繁多,但大多数图像识别系统能够识别的种类偏少等。
     本文的研究内容是浮游植物图像自动识别系统中的重要组成部分,以海藻细胞显微图像的自动分割以及纹理特征提取作为主要研究目标。图像分割和特征提取的结果是准确分类识别的基础。
     近年来,形态学图像分析逐步发展成为图像领域一种新兴的研究方法,其基本思想对非线性图像处理分析产生了不可估量的促进意义,尤其适合于实时性要求高的场合。形态学图像分析具有理论严谨完备、节省内存、算法执行效率高、易于用硬件实现等优势。在浮游植物图像识别的国际先进研究工作中,采用形态学图像分析的方法进行图像分割和部分特征的提取,是一个主流的和有效的途径。
     多尺度分析是一种类似于人类视觉系统的图像分析方法,它的优势在于:图像在不同的尺度下,可表现出与尺度相关的不同特性。因此,在某种单一尺度下无法实现的图像分割或特征检测任务在另外的或者综合的尺度上能实现。而形态学多尺度图像分析方法兼具形态学和多尺度分析的优点。因此,本文系统归纳了形态学多尺度图像分析的理论体系,跟踪其前沿进展,针对海藻细胞显微图像的特点,围绕图像分割和特征提取这两个目标,解决图像分割和特征提取中的难题。
     本文的主要研究工作及创新之处包括以下几点:
     1针对含噪、低对比度、弱边界、复杂形状海藻细胞显微图像的分割,利用形态金字塔变换和连通形态算子,解决分割中的主要问题:
     (1)为了解决图像边缘增强与噪声放大的矛盾,利用附益形态金字塔变换,结合直接灰度映射、梯度边缘检测算子和改进软阈值滤波方法,提出了一种基于Haar形态金字塔的多尺度边缘增强算法。
     Haar形态金字塔变换的非线性特性,使得图像中的边缘等重要几何信息在各分辨率的残差图像中很好地保留。直接灰度映射增强了整幅图像的灰度对比度,但同时放大了噪声。梯度边缘检测算子和改进软阈值滤波方法,实现了残差图像边缘的跟踪和增强,而对噪声进行了抑制。实验结果表明:针对低对比度和边缘连续性差的海藻细胞显微图像,该算法可以有效地增强图像的边缘,且没有放大噪声。
     (2)为了解决图像分割过程中噪声抑制和图像细节保留之间的矛盾,在连通形态变换的基础上,提出了一种自适应面积开算法,结合形态重建和属性细化等连通形态算子,在去噪的同时,保留边缘、角毛等精细结构。
     2提出了一种完备重构的极值保留自适应提升形态小波。
     在提升小波框架基础上,提出了一种极值保留自适应提升形态小波,而且证明:在不需要分解过程中的提升判据的前提下,它是可完备重构的。极值保留自适应提升形态小波,在对图像的多分辨率分解过程中,只对图像的平坦区域进行中值滤波,保留图像的局部极值点。
     3以对海藻细胞显微图像的特征描述为目的,将极值保留自适应提升形态小波和基于灰度级共生矩阵(GLCM)的统计法相结合,提出了一种多尺度纹理特征描述方法。
     为了降低GLCM的计算量,同时有效、可靠地描述海藻细胞纹理特征,本文将极值保留自适应提升形态小波引入基于GLCM的统计法,充分利用极值保留自适应提升形态小波极值保留的多分辩率特性和中值滤波的抗噪性能,使得该多尺度纹理特征描述方法,相对于单纯的基于GLCM的统计法,既具有计算效率上的优势,又降低了对噪声的敏感度。对中国沿海常见浮游植物细胞图像库中的17种圆筛藻种的纹理图像识别实验结果证明:基于极值保留自适应提升形态小波和GLCM的多尺度纹理特征描述方法,比基于原始图像的GLCM的纹理特征描述方法,平均正确识别率要高约7个百分点。
     4针对甲藻类细胞原始显微图像边缘模糊、对比度低等不利于甲沟提取的困难,构造了一种边缘保留自适应提升形态小波。
     该小波在根据图像的局部特征构造自适应性更新算子时,将边缘作为感兴趣的图像特征,更新提升根据是否是边缘像素选择保留、锐化滤波或平滑滤波,使得分解后的近似图像中,图像边缘得以保留,而灰度变化缓慢的区域得到了平滑。实验证明:甲藻细胞经边缘保留自适应提升形态小波分解后的近似图像,在一定程度上突出了目标边界,较之原始图像,更有利于甲沟特征的提取。
Algae is also called phytoplankton. In order to make use of Algae resources and to monitor marine ecosystem in time, identification and classification of Algae is an essential work. For the sake of identifying Algae appearing frequently in China's sea areas efficiently and accurately without professional biologist, research on Automatic Identification and Classification of Algae by cell microscopic image (AICA) is carried out, which take the advantages of digital image processing technique and pattern classification method. Image segmentation and feature extraction play an important role in AICA system, which is the main objective of research in this paper.
     During recent years, Morphological image analysis is considered to be an important and significant technique for lots of image applications, due to its mature and strict mathematical theory, efficient arithmetic and easiness of hardware implementation. It has become a popular tool for real-time image processing. Therefore, it is not surprising that Morphological image analysis is adopted widely to accomplish the task of image segmentation and some feature extraction in most of the advanced research on automatic identification of Algae by microscopic image around the world. But until now, the developed work about automatic identification of Algae is limited in a few species of algae reported in the literature. Much work should be done to advance the research further.
     Multiscale analysis is an excellent image analysis method similar to human's vision, with the benefits of representing and processing image in different scale. Thus distinct properties relevant to its scale can be utilized to image segmentation and feature extraction, in particular for those applications where such task is difficult to realize by single scale image analysis. Accordingly, the combination of Multiscale analysis and mathematical morphology provide us with a powerful tool for nonlinear image processing, which is named as Multiscale Morphological image analysis and is applied to solve the problem in process of image segmentation and feature extraction of Algae cell microscopic image.
     The systemic theory of Multiscale Morphological image analysis is summarized. Based on the systemic theory about Multiscale Morphological image analysis and its up to date development, such as morphological pyramid transformation and morphological wavelet, some innovation is brought out in the field. The main work of this paper is concluded as followed:
     1 Algae cell microscopic image have the properties of low contrast, weak edge and mixed with lots of noise, which make it very difficult to separate the cell from the background. In addition, according to the variety of Algae, they have multiplicate and abnormal shapes, which add much to the difficulty of image segmentation. In fact, such kind of image segmentation is a challenging work around the world. So it is critical to enhance the edge and reduce noise for the purpose of perfect image segmentation. But contradictions arise in image enhancement and noise magnification, noise reduction and detail reservation. Thus morphological adjunction pyramid transformation and connected morphological transformation are explored to solve the problem:
     (1) A multiscale edge enhancement approach is proposed based on Haar morphological pyramid transformation, image enhancement by direct grey-level mapping, gradient edge detector and improved soft threshold filtering, aiming at enhance the edge of image while not magnifying noise.
     The multiscale edge enhancement algorithm mainly take the advantage of non-linearity inherent in morphological adjunction pyramid transformation, which make it possible that the residual images at different resolution decomposed by morphological adjunction pyramid transformation preserves the geometric structure perfectly. Image enhancement by direct grey-level mapping enlarges the dynamic range of the grey-level of the whole image, which enhance the edge and nosie all together. At the moment, gradient edge detector and improved soft threshold filtering are used to trace and enhance the edge only in the residual images. Accordingly, the reconstructed image has the characteristic of enhanced edge without introducing new noise. Experimental results show that this algorithm can enhance the edge of Algae cell while not enlarging noise in the image.
     (2) An adaptive area open algorithm is built based on connected morphological transformation. The adaptive area open algorithm, banding with morphological reconstruction and attribute thinning, achieve the goal of eliminating noise while preserving the majority of detail information of Algae cell.
     2 An extremum reservation adaptive morphological wavelet is put forward based on lift wavelet scheme, which performs median filtering to smooth region while leave extremum untouched during decomposition procedure. And it is proved that complete reconstruction can be fulfilled without storage of criterion at each pixel location produced in the procedure of decomposition which saves the memory of computer. Another interest of this adaptive morphological wavelet is that it is non-seperable wavelet transform in spatial domain and has simple architecture for decomposition and reconstruction.
     3 A multiscale texture feature description method is developed by means of combination of extremum reservation adaptive morphological wavelet with grey-level co-occurrence matrix (GLCM) based statistics approach.
     This texture feature description method has the virtue of computational efficiency and less sensitivity to noise compared to GLCM based statistics approach itself, so it can describe the texture feature reliably and effectively. Experiments are carried out on identification of 17 species of coscinodiscaceae collected in image database of phytoplankton appearing frequently in China's sea by texture feature. Experimental results indicate that this multiscale texture feature description method precede about 7 percentage in average correct recognition rate compared with the GLCM method.
     4 An edge reservation adaptive morphological wavelet is established in pursuit of feature extraction. Adaptivity is successfully introduced into the update lifting by taking into account local characteristic such as edge, which enable the edge remain untouched or sharpened at different resolution image decomposed by this adaptive morphological wavelet. At the same time, smoothing effect is gained by median filtering at other region.
     The edge reservation adaptive morphological wavelet is used to deal with the tough task for extraction of faint girdle or sulcus of dinoflagellates. Experiments demonstrate that contrast of girdle or sulcus of dinoflagellates to the whole image are improved in multiscale decomposition image by this adaptive morphological wavelet, compared to its original grey-level image. Thus it is more favorable for the extraction of girdle or sulcus.
引文
[1]高亚辉,杨军霞等.海洋浮游植物自动分析和识别技术.厦门大学学报(自然科学版),2006(12):40-44.
    [2]高亚辉.海洋微藻分类生态和生物活性物质研究.厦门大学学报(自然科学版),2001,40(2):566-573.
    [3]齐雨藻,王艳,王寿松,等.中国沿海赤潮.北京:科学出版社,2003.
    [4]王昭晖.中国沿海甲藻孢囊与赤潮研究.北京:海洋出版社,2007.
    [5]李继刚,王世忠,高志,等.藻类和悬浮物的光谱识别研究.高技术通讯,2000,(7):68-71.
    [6]Seppaelae J, Balode M. The use of spectral fluorescence methods to detect changes in the phytoplankton community. Hydrobiologia,1998,363 (13):207-217.
    [7]张前前,类淑河,王修林,等.浮游植物活体三维荧光光谱分类判别方法研究.光谱学与光谱分析,2004b,24(10):1227-1229.
    [8]王海黎,洪华生,徐立.反相高效液相色谱法分离测定海洋浮游植物的叶绿素和类胡萝卜素.海洋科学,1999,4:6-9.
    [9]姚鹏,于志刚,米铁柱.海洋浮游藻类的化学分类法.海洋环境科学,2003,22(1):75-80.
    [10]Balfoort H W, Snoek J, Smiths J R M, et al. Automatic identification of algae:neural network analysis of flow cytometric data. Plankton Res,1992,14 (4):575-589.
    [11]Scholin C A, Marin R, Miller P E, et al. DNA probes and a receptorbinding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. J Phycol,1999:1356-1367.
    [12]梁君荣,高杨,高亚辉,等.全细胞杂交在三种赤潮微藻检测中的应用.高技术通讯,2005,15(12):84-89.
    [13]Culverhouse P F, Simpson R G, Ellis R, et al. Automatic classification of field collected dinoflagellates by artificial neural network. Marine Ecology Progress Serries,1996, 139:281-287.
    [14]Culverhous P F, Williams R, Reguera B, et al. Expert and Machine Discrimination of Marine Flora:a comparison of recognition accuracy of Field-Collected Phytoplankton. In: Proceeding of IEEE International Conference on Visual Information Engineering,2003. 177-183.
    [15]Davis C S, Gallager S M, Solow A R. Microaggregations of oceanic plankton observed by towed video microscopy. Science,1992,257:230-232.
    [16]Tang X, Stewwart W K, Vincent L, et al. Automatic plankton image recognition. Artificial Intelligence Review,1998,12:177-199.
    [17]Davis C, Thwaites F T, Gallager S M, and Hu Q. A three-axis fast-tow digital Video Plankton Recorder for rapid surveys of plankton. taxa and hydrography. Limnology and Oceanography methods,2005,3:59-74.
    [18]Hu Q, Davis C. Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine. Marine Ecology Progress Series,2005,295:21-31.
    [19]H du Buf, Bayer M M, eds. Automatic Diatom Identification. Singapore:World Scientific Publishing Co Pre L td,2002.
    [20]Jalba A C, Wilkinson M H F, Roerdink J B T M. Automatic Segmentation of Diatom Images for Classification. MICROSCOPY RESEARCH AND TECHNIQUE,2004, 65:72-85.
    [21]Jalba A C, Wilkinson M H F, Roerdink J B T M, et al. Automatic diatom identification using contour analysis by morphological curvature scale spaces. Machine Vision and Applications,2005,16(4):217-228.
    [22]Wilkinson M H F, Roerdink J B T M, Droop S, et al. Diatom contour analysis using morphological curvature scale spaces. In:Proceedings of 15th International Conference on Pattern Recognition (ICPR'2000), Barcelona, Spain,2000.656-659.
    [23]Jalba A C, Wilkinson M H F, Roerdink J B T M. Morphological hat-transform scale spaces and their use in pattern classification. Pattern Recognition,2004,37(5):901-915.
    [24]Luo T, Kramer K, Goldgof D B, et al. Recognizing Plankton Images From the Shadow Image Particle Profiling Evaluation Recorder. IEEE Transactions on System, Man and Cybernetics,2004,34(6):2423-2433.
    [25]Pech-Pacheco Jose L, Alvarez-Borrego Josue, et al. Identification of a red tide blooming species through an automatic optical digital system. In:Proceedings of SPIEInt Soc Op Eng(USA),2001.243-250.
    [26]王明时,王学民,张磊.显微图像分析技术在赤潮生物识别中的应用.天津大学学报,2004,37(5):392-395.
    [27]张磊,王学民,王明时.基于图像处理技术的赤潮生物自动识别仪器.仪表学报,2003,24(4):369-370.
    [28]张磊.赤潮优势藻图像分析的研究[硕士学位论文].天津:天津大学,2003.
    [29]王学民,孙勇.双光谱在赤潮生物自动识别系统中的应用.计算机辅助设计与图形学学报,2006,18(9):1455-1459.
    [30]Wang X M, Sun Y, Cao H B. Fluorescence-assisted Image Analysis of Harmful Microalgaes, Marine Science Bulletin,2006,8(1):75-82.
    [31]孙勇.基于双光谱有毒赤潮藻图像自动识别系统的研究[硕士学位论文].天津:天津大学,2007.
    [32]高亚辉,罗金飞,杨晨辉.数学形态学在海洋浮游植物显微图像处理中的应用.厦门大学学报(自然科学版),2008(47):242-244.
    [33]陈成.海洋浮游植物自动识别系统中的外轮廓提取和形状分析[硕士学位论文].厦门:厦门大学,2009.
    [34]聂文.形状与纹理分析在海洋浮游植物自动识别系统中的应用[硕士学位论文].厦门:厦门大学,2009.
    [35]刘君君.赤潮生物图像分类识别技术研究[硕士学位论文].厦门:厦门大学,2009.
    [36]姬光荣等.基于内禀结构模式的图像分割.电子学报,2002,30(10):1428-1430.
    [37]赵文仓,姬光荣,周立俭等.浮游植物细胞图像识别方法的研究.计算机工程,2005,31:143-145.
    [38]郑海永.基于生物形态学的有害赤潮显微图像诊断研究[博士学位论文].青岛:中国海洋大学,2009.
    [39]冯晨.基于分形维数的中国海常见浮游植物细胞图像识别[博士学位论文].青岛:中国海洋大学,2007.
    [40]汪振兴,佘众,姜建国.赤潮藻类图像自动识别的研究.海洋环境科学,2007,26(1): 42-44.
    [41]Matheron G. Random Sets and Integral Geometry. New York:Wiley,1975.
    [42]Serra J. Image Analysis and Mathematical Morphology. New York:Academic Press,1982.
    [43]Sahoo P K, Soltani S, Wong A and Chen Y. A survey of thresholding techniques. Computer vsion, Graphics and Image Process,1988,41:233-260.
    [44]Serra J. Connectivity on complete lattices. Journal of Mathematical Imaging and Vision, 1998,9:231-251.
    [45]段汕.形态学及其在遥感影像处理中的应用研究[博士学位论文].武汉:武汉大学,2005.
    [46]Heijmans H J A M. Connected Morphological Operators for Binary Images. Computer Vision and Image Understanding,1999,73(1):99-120.
    [47]Salembier P, Serra J. Flat zones filtering, Connected Operators, and Filters by Reconstruction. IEEE Trans. on Image Processing,1995,4(8):1153-1160.
    [48]Serra J, Salembier P. Connected operators and pyramids. In:Proceedings of Image Algebra and Morphological Image Processing IV, Vol.2030, San Diego,1993.65-76.
    [49]Ronse C. Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imag. Vis,1998,8:41-58.
    [50]Vincent L. Morphological gray scale reconstruction in image analysis:applications and efficient algorithms. IEEE Trans. on Image Processing,1993,2(2):176-201.
    [51]Serra J, Vincent L. An overview of morphological filtering. Circuits Systems Signal Process,1992,11(1):47-108.
    [52]Vincent L.1992. Morphological Area Openings and Closings for Greyscale Images. In: Proc. NATO Shape in Picture Workshop, Springer-Verlag, Netherlands,1992.197-208.
    [53]Wilkinson M H F. Attribute-Space Connectivity and Connected Filters. Image and Vision Computing,2007,25(4):426-435.
    [54]Breen E J, Jones R. Attribute openings, thinnings and granulometries. Comput. Vision Image Understanding,1996,64 (3):377-389.
    [55]连静,王珂.多尺度形态学图像边缘检测方法.2006,计算机工程与应用,42(5):76-78.
    [56]刘伟军,孙兴波.AFM显微图像多尺度形态边缘检测算法.计算机应用与软件,2008,25(9):83-85.
    [57]Goutsias J, Heijmans H J A M. Nonlinear multiresolution signal decomposition schemes. Part I:Morphological pyramids. IEEE Transactions on Image Processing,2000,9(11): 1862-1876.
    [58]Heijmans H J A M, Goutsias J. Nonlinear multiresolution signal decomposition schemes. Part Ⅱ:Morphological wavelet. IEEE Transactions on Image Processing,2000, 9(11):1897-1913.
    [59]杨世民,董树刚.中国海域常见浮游硅藻图谱.青岛:中国海洋大学出版社,2006.
    [60]马义德.生物细胞图像分割技术的进展.生物医学工程学杂志,2002,19(3):487-492.
    [61]Maragos P. morphological systems for multidimensional signal processing. In:Proc IEEE, vol.78, no.4,1990.690-710.
    [62]P Soille.形态学图像分析原理与应用(第2版),王小鹏泽.北京:清华大学出版社,2008.
    [63]Sternberg S R. Grayscale morphology. Computer Vision, Graphics, and Image Processing, 1986,35(3):333-355.
    [64]Heijmans H J A M. Morphological image operators. Boston:Academic Press,1994.
    [65]Goutsias J, Heijmans H J A M. Fundamenta morphologicae mathematicae. Fundamenta Informaticae,2000,41(1-2):1-31.
    [66]Matheron G. Filters and lattices. In:Serra J, eds. Image analysis and mathematical morphology. volume 2:theoretical advances. London:Academic press,1988.115-140.
    [67]Heijmans H J A M. Composing morphological filter. IEEE Transactions on Image Processing,1997,6(5):713-723.
    [68]Serra J, eds. Image Analysis and Mathematical Morphology. Volume 2:Theoretical Adcances. London:Academic Press,1988.
    [69]Serra J. Connections for sets and functions. Fundamenta Informaticae,2000,41:147-186.
    [70]P Soille. On morphological operators based on rank filters. Pattern Recognition,2002, 35(2):527-535.
    [71]Jay ant N S. Average and median-based smoothing techniques for improving speech quality in the presence of transmission errors. IEEE Trans. Commun.,1976,24:1043-1045.
    [72]Pratt W K. Digital Image Processing. New York:Wiley,1978.
    [73]Huang T, Yang G, Tang G. A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process,1979,27(1):13-18.
    [74]Banon G, Barrera J. Minimal representation for translation-invariant set mappings by mathematical morphology. SIAM J. Appl. Math.1991,51:1782-1798.
    [75]Maragos P, Schafer R. Morphological filters-Part Ⅱ:Their relations to median, order-statistic, and stack filters. IEEE Trans. Acoust. Speech Signal Process,1987,35(8): 1170-1184.
    [76]Yuille A, Vincent L, Geiger D. Statistical Morphology. In:Proc. SPIE symp. Image Algebra and Morphological Image Processing Ⅱ. Vol.1568,1991:271-282.
    [77]万嘉若,吴敏金.Mlinkowsik结构运算与顺序滤波.自动化学报,1984,10(1):8-15.
    [78]吴敏金.二值序列的复合顺序滤波.电子学报,1986,14(3):76-81.
    [79]Ronse C. Order-configuration functions:Mathematical characterizations and applications to digital signal and image processing. Inform. Sci.,1990,50 (3):275-327.
    [80]Ronse C, Heijmans H J A M. The algebraic basis of mathematical morphology:II. Openings and closings. Comput. Vis. Graph. Image Process. Image Understanding,1991, 54(1):74-97.
    [81]Soille P. Morphological image analysis applied to crop field mapping. Image and Vision Computing,2000,18(13):1025-1032.
    [82]Ronse C. Erosion of narrow image features by combination of local low rank and max filters. In:Proceedings of Second IEE International Conference on Image Processing and its Applications, London,1986.77-81.
    [83]Heijmans H J A M. Morphological filters for dummies. In:Maragos P, Schafer R, Butt M, Eds. Mathematical Morphology and its Applications to Image and Signal Processing. Dordrecht:Kluwer Academic Publishers,1996.127-137.
    [84]Burt P J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications 31,1983,4:532-540.
    [85]章毓晋.图像工程(上册).北京:清华大学出版社,2006.
    [86]Gonzalaz R C, Woods R E. Digital Image Processing(2nd ed). Prentice Hall,2002.
    [87]Serra J. Introduction to mathematical morphology. Comput.vis.graph.image process.,1986, 35:283-305.
    [88]段汕,梅建新,秦前清.形态小波变换在图像处理中的应用.中南民族大学学报(自然科学版),2003,22(2):81-84.
    [89]段汕,秦前清.具有附益性的形态塔式变换及其应用.武汉大学学报(理学版),2004,50(1): 74-78.
    [90]Daubechies I. Ten Lectures on Wavelets. Philadelphia:Society for Industrial and Applied Mathematics,1992.
    [91]Mallat S. A Wavelet Tour of Signal Processing. San Diego:Academic Press,1998.
    [92]Meyer Y. Wavelets and Operators. Cambridge:Cambridge University Press,1992.
    [93]Strang G, Nguyen T. Wavelets and Filter Banks. Massachusetts:Wellesley-Cambridge Press,1996.
    [94]Grossman A, Moriet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SLAM J. Math. Anal.,1984,15(4):723-736.
    [95]Mallat S. Multiresolutson approximations and wavelet orthonormal bases of L2(R). Trans. Amer. Math.Soc.,1989,315(9):69-87.
    [96]Mallat S. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Trans. PAMI,1989, 11(7):674-693.
    [97]Coifman R R, Meyer Y, Wickerhouser M V. Wavelet analysis and signal processing. In: Wavelet and their Applications, Boston,1992.153-178.
    [98]王卫卫.小波与提升及其在图像数字水印中的算法研究[博士学位论文].西安:西安电子科技大学,2001.
    [99]王彦臣.基于多尺度数字X光图像增强方法的研究[博士学位论文].北京:中国科学研究生院,2005.
    [100]Geronimo S, Hardin D P, Massopust P R. Fractal functions and wavelet expansions based on several functions. Journal of Approximation Theory,1994,78(3):373-401.
    [101]焦李成.图像多尺度几何分析理论与应用.西安:西安电子科技大学出版社,2008.
    [102]Sweldens W. The lifting scheme:A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis,1996,3(2):186-200.
    [103]Kovacevic J, Sweldens W. Wavelet families of increasing order in arbitrary dimensions. IEEE Transactions on Image Processing,2000,9(3):480-496.
    [104]孙即祥等.图像分析.北京:科学出版社,2005.
    [105]孙即祥等.图像压缩与投影重建.北京:科学出版社,2005.
    [106]Vetterli M. Wavelets and filter banks:theory and design. IEEE Transactions on Signal Processing,1992,40:2207-2232.
    [107]Maragos P. Pattern Spectrum and Multiscale Shape Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):701-716.
    [108]马义德.脉冲耦合神经网络原理及其应用.北京:科学出版社,2006.
    [109]章毓晋.图像工程(中册).北京:清华大学出版社,2006.
    [110]Marr D, Hildren E. Theory of edge detection. In:Proc. R. Soc, London,1980.187-217.
    [Ill]Canny J. A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
    [112]Castleman K R. Digital Image Processing. Prentice Hall,1996.
    [113]Sahoo P, Wilkins C, Ueager J. Threshold selection using Renyi's entropy. Pattern Recognition,1997,30(1):71-84.
    [114]Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics,1979,9(1):62-66.
    [115]Kapur J N, Sahoo P K, Wong A K C.A new method for gray level picture thresholding using the entropy of histogram. CVGIP,1985,29:273-285.
    [116]Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy. CVGIP,1989,47:23-32.
    [117]薛景浩,章毓晋,林行刚.最大类间后验交叉熵二值化分割算法.中国图像图形学报,1999,4(2):110-114.
    [118]余学飞.基于模糊理论的医学图像分割算法研究[博士学位论文].广州:南方医科大学,2009.
    [119]Beucher S, Meyer F. The morphological approach to segmentation:the watershed transformation. In Dougerty E, eds. Mathematical Morphology in Image Processing. Kluwer Academic Publishers,1994,69-76.
    [120]Kass M, Witkin A, Terzopoulos D. Snakes:active contour models. In:Proc. of First Int Confon ComputerVision, London,1987.259-269.
    [121]Osher S, Sethian J A. Fronts Propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,1988,79(1): 12-49.
    [122]Povlow B R, Dunn S M. Texture classification using noncausal hidden Markov models. IEEE trans. on PAMI,1995,17(10):1010-1014.
    [123]Geman S, Geman G. Stochastic Relaxation Gibbs Distributions and the Bayesian Restoration of Images. IEEE Trans. on Pattern Analysis,1984,6(6):721-741.
    [124]Maragos P. Morphological filtering for image enhancement and feature detection. In:Bovik A C, eds. the Image and Video Processing Handbook (2nd editon). Elsevier Academic Press,2005.135-156.
    [125]池建男.图像形态学和小波分析在图像增强与边缘检测中的应用[博士学位论文].沈阳:东北大学,2005.
    [126]蔚立磊,韩紫恒,张剑.小波变换域数字图像增强算法及实现.信息技术,2009,(9):131-135.
    [127]王海珍,吴爱弟,武伟,等.基于图像边缘检测的小波阈值去噪方法.天津工程师范学院学报,2009,19(4):23-25.
    [128]桑恩方,沈郑燕,高云超.小波域声呐图像自适应增强.哈尔滨工程大学学报,2009,30(4):411-416.
    [129]Donoho D L. De-noising by shoft-thresholding. IEEE Transactions on Information Theory, 1995,41:613-627.
    [130]李卓,郭立红.基于形态小波变换的低对比度图像增强算法.电子器件,2007,30(6):2137-2140.
    [131]Liedtke C E, et al. Segmentation of microscopic cell scenes. AQCH,1987,9:197-211.
    [132]Heijmans H J A M, Goutsias J. Constructing morphological wavelets with the lifting scheme. In:Proceedings of the Fifth International Conference on Pattern Recognition and Information Processing (PRIP'99), Minsk, Belarus,1999.65-72.
    [133]Sweldens W. The lifting scheme:A construction of second generation wavelets. SIAM Journal of Mathematical Analysis,1997,29:511-546.
    [134]戴青云,余英林.一种基于形态小波的在线掌纹的线特征提取方法.计算机学报,2003,26(2):234-239.
    [135]张光新,蔡晋辉,周泽魁.基于模板的二维多通道形态小波的构造.光电子·激光,2005,16(2):217-221.
    [136]刘循,游志胜.形态小波变换及其在图象编码中的应用.四川大学学学报(自然科学版),2003,40(1):69-73.
    [137]胡翔宇,唐小萍.基于提升格形态小波的生物芯片图像增强.光电工程,2007,34(12):82-86.
    [138]任获荣,王家礼,张平.一种更新提升形态小波图像去噪算法.西安电子科技夫学学报(自然科学版),2004,31(6):955-957.
    [139]Cha Hyungtai, Chaparro L F. Adaptive Morphological Representation of Signals: Polynomial and Wavelet Methods. Multidimensional Systems and Signal Processing,1997, (8):249-271.
    [140]Claypoole R L, Davis G, Sweldens W, et al. Nonlinear wavelet transforms for image coding. In:Proceedings of the 31st Asilomar Conference on Signals, Systems, and Computers, vol. 1, California,1997.662-667.
    [141]Claypoole R L, Baraniuk R G, Nowak R D. Adaptive wavelet transforms via lifting. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.3, Washington,1998.1513-1516.
    [142]Claypoole R L, Baraniuk R G, Nowak R D. Lifting construction of nonlinear wavelet transforms. In:Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Pennsylvania,1998.49-52.
    [143]Roger L, Claypoole J R. Nonlinear Wavelet Transforms for Image Coding via Lifting. IEEE Transaction on Image Processing,2003,12 (12):1449-1459.
    [144]Lazzaroni F, Leonardi R, Signoroni A. High Performance Embedded Morphological Wavelet Coding. IEEE Signal Processing Society,2003,10(10):293-295.
    [145]Piella G. Adaptive wavelets and their application to image fusion and compression [Ph.D. Thesis]. Amsterdam:Universiteit van Amsterdam (UvA),2003.
    [146]Piella G, Pesquet-Popescu B, Heijmans H J A M. Gradient-driven update lifting for adaptive wavelets. Signal Processing:Image Communication,2005,20(9-10):813-831.
    [147]Piella G, Heijmans H J A M. Adaptive lifting schemes with perfect reconstruction, IEEE Trans. Signal Process,2002,50 (7):1620-1630.
    [148]王晓军.形态学小波提升格和自适应提升格在图像处理中的应用[硕士学位论文].汕头:汕头大学,2002.
    [149]王文波,羿旭明,费浦生.具有更新自适应性形态小波的构造.武汉大学学报(信息科学版),2007,32(9):804-807.
    [150]王文波,羿旭明,费浦生.基于图像统计特性的二维形态小波的构造.光电子·激光,2008,19(9):1240-1243.
    [151]Povlow B R, Dunn S M. Texture classification using noncausal hidden Markov models. IEEE trans. PAMI,1995,17(10):1010-1014.
    [152]Lu C S, Chuang P C, Chen C F. Unsupervised Texture Segmentation via Wavelet Transform. Pattern Recognition,1997,30(5):129-142.
    [153]Arivazhagan S, Ganesan L. Texture classification using wavelet transform. Pattern Recognition Letters,2003,24 (9):1513-1521.
    [154]Zhang J, Wang D, Tran Q N. A Wavelet-based Multiresolution Statistical Model for Texture. IEEE Trans. Image Processing,2002,11(2):146-158.
    [155]Henri Maitre.现代数字图像处理, 孙洪译.北京:电子工业出版社,2006.
    [156]Haralick R M, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics,1973,3 (6):610-621.
    [157]赵晖,鲍莉,梁光明,等.基于综合灰度共生矩阵的显微细胞图像纹理研究.自动化技术与应用,2004,23(10):27-33.
    [158]薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析.电子学报,2006,34(1):155-158.
    [159]Kosaku Y. Functional analysis. Berlin Heidelberg:Springer-Verlag,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700