用户名: 密码: 验证码:
基于耦合效应的主—附结构体系地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展和科技进步,越来越多土木工程结构物的形式趋向于大型化和复杂化,由多个子结构构成的组合结构体系在工程中日益频繁出现,如大量装饰性和功能性的建筑类非结构构件依附于建筑物主体结构安置,现代化进程的推进使得重要精密仪器和机电设备在生产生活中逐渐开始广泛应用,为抵抗复杂环境荷载阻尼器装置在建筑结构中的采用等,诸如此类的结构体系都可归于由具备不同动力特性、存在主次关系的多个子结构组合而成,并具有独特动力特性的主—附结构体系,其中建筑物称为主体结构,建筑物上附加的建筑类非结构构件、机电设备非结构构件以及阻尼器减振装置统称为附属结构。鉴于附属结构在地震中的损坏往往会造成巨大的经济损失,国内外学者对其十分关注,自上世纪八十年代开始,持续进行了较系统的研究工作。近年来,随着基于性能抗震设计理念的发展,附属结构的抗震设防以及减振控振成为目前抗震领域研究的热点。由于主一附结构体系具有明显区别于一般建筑结构形式的动力特性,从严格意义上来说,传统的实模态振型分解以及以此为基础的抗震设计反应谱等动力分析方法在理论上不再适用,依赖于传统分析方法必然会引入不必要的误差甚至是错误,因此,有必要针对此类结构形式进行专门的研究,扩展和改进已有分析手段并引入新方法,以建立兼顾精度和效率要求的适合于主—附结构体系的动力分析方法。根据以上几点需要,本文开展了相关研究工作,工作内容以建筑物主体结构和附属结构动力耦合特性为基础,分别从主一附结构体系的地震响应特性、数值分析方法和减振控振策略等方面对主—附结.构体系进行研究,作者所做的工作如下:
     (1)基于主—附结构体系的动力耦合特性,对非线性主体结构上附属结构的地震响应特性进行了研究。文中建立了由建筑物主体结构与附属结构组合而成的主—附结构耦合体系的随机分析模型,通过数值实验分析了影响附属结构动力响应的几个重要因素:建筑物主体结构的非线性情况、主体结构和附属结构各自的模型参数、附属结构所在楼层位置以及多个附属结构之间的动力相互影响等,其中重点分析了主体结构非线性对附属结构的影响。文中通过以上的参数影响研究,得到了一些有益的结论,借此探究非线性情况下主一附结构体系的耦合响应特征。
     (2)研究了多维地震动输入下具有偏心特性的建筑物主体结构上附属结构的地震响应特性,并对偏心楼板反应谱的变化情况进行了分析和探讨。文中建立了偏心主体结构—附属结构的耦合动力模型,基于此偏心模型对附属结构进行了分析,研究了偏心情况下影响附属结构地震响应的主要因素。进一步计算了附属结构响应评估的重要参数一楼板反应谱,分析了参数影响规律,文中计算考虑了主—附结构之间的耦合特性,将其结果与基于规范方法的结果相对比,指出了规范方法的适用范围和误差情况。
     (3)基于动力耦合效应,对主—附结体系的整体可靠度进行了研究。文中首先指出了在主—附结构体系中对附属结构进行整体可靠度分析的必要性,研究了地震激励下考虑建筑物主体结构损坏情况时附属结构整体可靠度的计算方法,进一步分析了建筑物主体结构参数变化对附属结构可靠度的影响规律和影响程度。此外,文中还对比了相关失效模式和基于独立重复试验的结构体系可靠度,分析了基于独立重复试验假定的串联可靠度计算方法的误差。
     (4)推导了适用于主—附结构体系随机响应计算的快速迭代公式。不同于之前提出的迭代方法,本文方法是基于虚拟激励法所提出,其结合了虚拟激励法和迭代法各自的优点,计算效率较高,并可避免复数运算和矩阵求逆运算,借以避免矩阵病态可能导致的数值问题,得到随机响应分析的精确解。文中从数值理论上分析了该方法的计算效率,并采用数值算例验证了其计算准确性,证明了该方法是一种具有高计算效率的准确随机分析方法。
     (5)提出了适用于主—附结构体系反应谱分析的摄动反应谱方法。该方法是基于与传统的完全平方组合(CQC)方法类似的假定展开的随机推导,是对传统反应谱组合方法的改进,可提高主—附结构体系反应谱分析的精度,避免非比例阻尼情况下强迫解耦可能会带来的过大误差。文中通过数值算例进行验证,可知其相对于传统的CQC方法具有更高的精度。鉴于当前工程设计中采用的往往是能体现概率统计特性同时具备较高实用性的反应谱理论,该方法具有一定的工程应用价值。
     (6)提出了临近多个附属结构协同减振的控制策略,并进行了相关研究。文中对协同减振装置参数进行了优化设置,分析了多个附属结构的协同减振效果,从而确切指出可以在多个附属结构之间设置连接粘滞阻尼器和共享调谐阻尼器来实现共同减振,并分析了二者的适用范围。此外,文中给出了调谐质量阻尼器(TMD)和调谐液体阻尼器(TLD)的统一运动方程,提出了将TLD转化为TMD的建模方法,其可统一调谐阻尼器的数值建模,具有工程实用意义。
In recent years, more and more civil engineering structures tend to be large-scale and complicated along with technological progress and economic development, which lead to plenty of coupled system composed by a number of sub-structures, such as a lot of decorative and functional building non-structural components attached to the main structure of the building, important mechanical and electrical equipments comprehensively adopted in the production and life, damper devices installed in buildings in order to resist complex environment loads, et al. As be shown above, such complicated system can be grouped into primary-secondary system which is composed by multiple subsystems with different dynamic characteristics and exicsts the relationship between primary and secondary. The structure is referred to as primary system, and the mechanical and electrical equipments, structural appendages and damper devices are collectively referred to as secondary system. Because the secondary systems damaged in the earthquake would cause huge economic losses, a lot of researchers have been devoted to the seismic response of such systems since 80s of the last century, and some meaningful research work are in progress. Especially in recent years, with the development of performance-based seismic design, aseicmis design and seismic control of secondary systems attract more and more researchers' attention. Primary-secondary systems have significantly different dynamic characteristics distinguished with the ordinary building structures, the traditional real modal decomposition method as well as the response spectrum theory, because of failing to properly account for the distinctive characteristic, would introduce unnecessary errors or mistakes and are no longer applicable in theory. Therefore, it is necessary to carry out specialized research and improve existing analytical tools and introduce new methods for dynamic analysis of such system. According to the demand mentioned above, the research in the thesis is carried out based on the coupled dynamic characteristics of primary-secondary system, and the work includes 3 asepct of research content: seismic characteristics, numercical analysis method and seismic control strategy. The main findings of the research work are listed as follows:
     (1) The primay-secondary coupled system consisted of the nonlinear structure and secondary systems is established, and based on the dynamic coupling effect several important factors affecting the seismic response of secondary systems are studied, which is helpful for the estimating the seismic performance of secondary systems. The stochastic analysis model of primary-secondary system is established in the thesis, and the the coupling characteristics between the two subsystems are included, the corresponding parameters of the study include in the research: the random model corresponding to different types of ground site, the nonlinear situation of the structure, the model parameters of the nonlinear model, the postion of the secondary systems and dynamic interaction between multiple secondary systems.
     (2) The eccentric characteristic of the structure and multiple-dimensional seismic input ae considered and studied for the seismic response of secondary systems, and the effect of some important parameters are analyzed. The floor response spectrum of the eccentric structure to two horizontal earthquake input is also studied and some important parameters related with the floor response spectrum were also discussed, and the conventional method in the current aseismatic criterion is also discussed, consequently the shortcomings are indicated in the thesis.
     (3) Considering the dynamic coupling effect of the primary-secondary system, the united dynamic reliability of the primary-secondary system are computed and studied. In the thesis, firstly the necessity of the united dynamic reliability analysis of secondary system is explained, and then the calculation method is presented. By numerical research, the effect of parameters' varieties on the realiability of secondary systems is studied. Furthermore, the approximate solution based on the independent repeated trials and the exact solution based on general Rice formula are compared, and the research indicates that the approximate solution is inaccurate and conservative in some cases.
     (4) A new fast stochastic method for seismic analysis of the non-proportionally damped structure is presented, which can be used in the primary-secondary systems. In the new method, the dynamic equilibrium equation of non-proportionally damped structure is expressed in the iteration form, based on which the inverse operation of the matrices is avoided. Moreover, the new method also does not need the solution of any complex eigenvalue problem, in contrast to other methods found in the literature. The new method is based on fundamental principles from structural dynamics, pseudo excitation method and pseudo force method, so it is more efficient in computation and can give the exact solution. Furthermore, several numerical examples corresponding to different types of prmary-secondary systems are utilized to verify the accuracy and computational efficiency of the new method.
     (5) A new response spectrum combination rule for the seismic analysis of non-classically damped systems such as primary-secondary systems are developed. The approach, which is denoted the perturbation spectrum method, can provide a more accurate evaluation of non-classically damped system's mean peak response in terms of the ground response spectrum, and avoid the error introcued by ignoring the off-diagonal elements of modal damping matrix. Given the response spectrum which can possess statistical properties is often used in the current engineering design, the method has engineering application value. Finally, the computation efficiency and accuracy of the proposed method is examined by numerical examples.
     (6) A new strategy which can be used for the vibration absorbtion of multiple adjacent secondary systems is presented in the thesits. By setting viscous damper and shared mass damper connecting adjacent secondary systems, the vibration of all the systems can be reduced, and the corresponding numerical research are carried out. The parameters of the two measures are optimized for obtaining a good vibration control effect. In the paper, the effect of two strategies of STMD and VD on reducing the seismic response of secondary systems is studied and so is the application scope of the two seismic control strategies. Moreover, the author also gives the unified motion equations of the TMD and TLD, and proposes the modeling method to simulate TLD utilizing the TMD model, which can facilitate the model establishment of the tuned damper and has practical significance in engineering.
引文
[1]Structural Engineers Association of California-SEAOC.Recommended Lateral Force Requirements and Commentary,Sacramento,CA,1999.
    [2]International Building Code-IBC.International Code Council.Falls Creek,VA,2000.
    [3]Applied Technology Council-ATC.NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings(FEMA 274).ATC-33,Redwood City,CA,1997.
    [4]Applied Technology Council-ATC.NEHRP Guidelines for the Seismic Rehabilitation of Buildings(FEMA 273).Arc-33,Redwood City,CA,1997.
    [5]Villaverde R.Seismic design of secondary structures:State of the art[J].Journal of Structural Engineering,1997,123(8):1011-1019.
    [6]Miranda E,Taghavi S.Towards the prediction of seismic performance of nonstructural elements[C].Proceedings of 2003 SEAOC Convention,Squaw Valley,CA,September 2003.
    [7]建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001.
    [8]朱丽华.基于主子系统耦合效应的直接空冷结构体系地震响应与破坏机理研究[D].西安建筑科技大学博士学位论文,2008,3.
    [9]赵晓,李杰.空间结构-设备体系模型分析[J].华北水利水电学院学报,1995,16(3):89-94.
    [10]Yang Y B,Huang W H.Seismic response of light equipment in torsional buildings [J].Journal of Earthquake Engineering and Structural Dynamics,1993,22(2):113-128.
    [11]李杰,陈淮,孙增寿,赵晓.工业结构一设备体系在地震作用下的动力相互作用研究[J].地震工程与工程振动,1997,17(2):98-105.
    [12]秦权,李瑛.抗震用楼面谱.第五届高层建筑抗震技术交流会论文集[C],浙江桐庐,1995.
    [13]ASME.Boiler and Pressure Vessel Code,Section Ⅲ,Division Ⅰ,Article N,1989.
    [14]International Conference of Building Officials.Uniform Building Code,1991.
    [15]核电厂抗震设计规范(GB50267-97).中国国家地震局,1997.
    [16]Sackman J L,Kiureghian A D,Nour-Omid B.Dynamic analysis of light equipment in structures:modal properties of the combined system[J].Journal of the Engineering Mechanics Division,ASCE,1983,109(1):73-89.
    [17]Kiureghian A D,Sackman J L,Nour-OmidB.Dynamic analysis of light equipment in structures:response to stochastic input[J].Journal of the Engine.ering Mechanics Division,ASCE,1983,109(1):90-110.
    [18]Igusa T,Kiureghian A D.Generation of floor response spectra including oscillator -structure interaction[J].Earthquake Engineering and Structural Dynamics,1985,13(5):661-676.
    [19]Gupta A K,Jaw J W.Complex modal properties of coupled moderately light equipment -structure systems[J].Nuclear Engineering and Design,1986,91(2):171-178.
    [20]Gupta A K,Jaw J W.Coupled response spectrum analysis of secondary,systems using uncoupled modal properties[J].Nuclear Engineering and Design,1986,92(1):61-68.
    [21]Suarez L E,Singh M P.Floor response spectra with structure-equipment interaction effects by a mode synthesis approach[J].Earthquake Engineering and Structural Dynamics,1987,15(2):141-158.
    [22]张建霖,杨智春.随机输入条件下的楼层反应谱分析[J].西北工业大学学报,2003,21(6):650-653.
    [23]Asfura,Kiureghian A D.A new floor response spectrum method for seismic analysis of multiply supported secondary system[R].Report No.UBC/EERC- 84/04,EERC,UCB,June,1984.
    [24]Lee M C,Penzien J.Stochastic analysis of structures and piping systems subjected to stationary multiple support excitations[J].Earthquake Engineering and Structural Dynamics,1983,11(1):91-110.
    [25]Asfura,Kiureghian A D.Floor response spectrum method for seismic analysis of multiply supported secondary systems[J].Earthquake Engineering and Structural Dynamics,1986,14(2):245-265.
    [26]Gupta A K,Jaw J W.A new instructure response spectrum(IRS) method for multiply connected secondary systems with coupling effects[J].Nuclear Engineering and Design,1986,96(1):63-80.
    [27]Saudy A G,Aziz T S.A modified CCFS approach for the seismic analysis of multiply supportedMDOF secondary systems[J].Nuclear Engineering and Design,1992,133(2):183-197.
    [28]秦权,李瑛.非结构构件和设备的抗震设计楼面谱[J].清华大学学报(自然科学版),1997,37(6):82-86.
    [29]韩淼,秦丽.连接区独立的多点支撑二次结构抗震分析[J].世界地震工程,2004,20(4):52-58.
    [30]Kawakatsu T,Kitada K,Takemory T,Kuwabara Y,et al.Floor response spectra considering elasto-plastic behavior of nuclear facilities[R].Trans.5th Int.Conf.on Struc.Mech.In Reactor Technol,K9/4.Berlin,Aug,1979.
    [31]Lin J,Mahin S A.Seismic response of light subsystems on inelastic structures[J].Journal of the Structural Engineering Division,ASCE,1985,111(2):400-417.
    [32] Viti G, Olivieri M, Travi S. Development of nonlinear floor response spectra[J].Nuclear Engineering and Design, 1981, 64(1): 33-38.
    
    [33] Newmark N M, Hall W J. Earthquake spectra and design[M]. Berkeley: EER I , 1982.
    [34] Viliaverde R. Simplified approach for the seismic analysis of equipment attached to elastoplastic structures[J]. Nuclear Engineering and Design, 1987, 103(3):267-279.
    [35] Suarez L E, Singh M P. Seismic response of SDF equipment-structure system[J].Journal of Engineering Meehanies, ASCE, 1987, 113(1): 16-30.
    [36] Singh M P. Generation of seismic floor spectra[J]. Journal of Engineering Mechanics, ASCE, 1987, 101(EM5): 593-607.
    [37] Sackman J L, Kelly J M. Seismic analysis of internal equipment and components in Structures[J]. Engineering Structure, 1979, 1: 179-190.
    [38] Singh M P, Suarez L P. Seismic response analysis of structural equipment systems with non-classical damping effects[J]. Journal of Earthquake Engineering and Structural Dynamics, 1987, 15: 871-888.
    [39] Yang Y B, Huang W H. Equipment-structure interaction considering the effect of torsion and base isolation[J]. Journal of Earthquake Engineering and Structural Dynamics, 1998, 27: 155-171.
    [40] Bernal D. A dynamic stiffness formulation and for the analysis of secondary systems[J]. Journal of Earthquake Engineering and Structural Dynamics, 1999, 28:1295-1308.
    [41] Agrawal A K, Datta T K. Behavior of secondary system on torsional coupled primary system[J]. European Earthquake Engineering, 1997, 2: 47-53.
    [42] Agrawal A K, Datta T K. Nonlinear response of secondary system due to yielding of torsionally coupled primary system[J]. European Earthquake Engineering, 1998,2(3): 339-356.
    [43] Agrawat A K, Datta T K. Seismic behavior of a secondary system on a yielding torsionally coupled primary system [J]. JSEE, 1999, 2(1): 35-46.
    [44] Agrawal A K, Datta T K. Behavior of multiple supported secondary system mounted on a torsional coupled primary system[J]. Journal of JSEE, 2001, 3(1): 13-22.
    [45] Igusa T. Response characteristics of inelastic 2-DOF primary-secondary structural system[J]. Journal of Engineering mechanics, ASCE, 1990: 1160-1174.
    [46] Mohsen G A, Ali R F. Response of secondary systems subjected to multicomponent earthquake input[J]. JSEE, 2004, 6(2): 29-45.
    [47] Singh M P, Chang R S, Suarez L E. Floor response spectrum amplification due to yielding Of supporting structure[J]. Proceeding Of the 11th World Conferenee on Earthquake Engineering, AeaPulo, 1996, Paper No. 1444.
    [48] Lai M L, Soon T T. Statically energy analysis of primary-secondary structural system[J]. Journal of Structural Engineering, ASCE, 1990, 116: 2400-2413.
    [49] Lai M L, Soong T T. Seismic design consideration for secondary structural systems[J]. Journal of Structural Engineering, ASCE, 1991, 117(2): 2400-2413.
    [50] Singh M R, Ghafory-Ashtiany M. Model time history analysis of non-classical damped Structures for seismic motions[J]. Journal of Earthquake Engineering and Structural Dynamics, 1986, 11: 133-146.
    [51] Villaverde R. Simplified seismic analysis of secondary systems[J]. Structural Engineering, 1986,112(3): 588-604.
    [52] Villaverde R. Method to improve seismic provisions for non-structural components in buildings[J]. Journal of Structural Engineering, 1997, 123(4): 432-439.
    [53] Hernried A G, Sackman J L. Response of secondary systems in structures subjected to transient excitation[J]. Journal of Earthquake Engineering and Structural Dynamics, 1984, 12(6): 737-748.
    [54] Igusa T, DerKiureghian A. Dynamic characteristic of two-degree-of-freedom equipment-structure systems[J]. Journal of Engineering Mechanics, ASCE, 1985,111(1): 1-19.
    [55] Surarez L E, Singh M P. Seismic response of equipment structure systems[J]. Journal of Engineering Mechanics, ASCE, 1987, 113(1): 16-30.
    [56] Chen Y, Soong T T. State-of-the-art-review: seismic response of secondary systems [J]. Engineering Structures, 1988, 10(4):218-228.
    [57] Soong T T. Seismic behavior of nonstructural elements state-of-art-report[C].Proceedings of 10th European Conference on Earthquake Engineering, 1994.
    [58] Burdisso R A, Singh M P. Multiply Supported Secondary System Part I: Response Spectrum Analysis[J]. Earthquake Engineering and Structural Dynamics, 1987, 7:53-72.
    [59] Muscolino G. Dynamic Response of Multi-Connected Primary-secondary Systems[J].Earthquake Engineering and Structural Dynamics, 1990, 19: 205-216.
    [60] Falsone G, Muscolino G, Ricciardi G. Combined Dynamic Response of Primary and Multiply Connected Cascaded Secondary Sub-Systems[J], Earthquake Engineering and Structural Dynamics, 1991, 12: 749-767.
    [61] Amin M, Hall W J, Newmark N M, Kassawara R P. Earthquake response of multiply connected light secondary systems by spectrum methods[C]. In: Proceedings of the 1st national conference on pressure vessels and piping. 1971. p. 103-129.
    [62] Singh A K, Ang A H. Stochastic prediction of maximum seismic response of light secondary systems[J]. Nuclear Engineering and Design 1974,29(2): 218-230.
    [63] Toro G R, Mcguire R K, Cornell CA, Sewell RT. Linear and nonlinear response of structures and equipment to California and Eastern United States earthquakes[C].Report NP-5566. Palo Alto (CA): Electric Power Research Institute; 1989.
    [64] Sewell R T, et al. A study of factors influencing floor response spectra in nonlinear multi-degree-of-freedom structures[C]. Reports No. 82, John A. Blume Earthquake engineering center, Stanford university, California, 1986.
    [65] Chen Y Q, Soong T T. Stochastic response sensitivity of secondary systems to primary structural uncertainties[J].Structural safety, 1989, 6:31-41.
    [66] Chen D C K, Lutes L D. Non-normal secondary report due to yielding in a primary structure[C]. Technical report NCEER-90-0002, National center for earthquake engineering research, Buffalo, NY, 1990.
    [67] Huang C D, Soong T T. Stochstic sensitivity analysis of nonlinear primary-secondary strucutral systems[J]. Engineering Structures, 1994, 1: 91-96.
    [68] Zhu W Q, Huang C D, Soong T T. Response and reliability of secondary systems in yielding strucutures[J]. Probabilistic engineering mechanics, 1994, 9: 145-155.
    
    [69] Agrawal A K. Non-linear response of light equipment system in a torsional building to bi-directional ground excitation[J]. Shock and Vibration, 1999, 6: 223-235.
    [70] Adam C, Fotiu P A. Response of substructures in inelastic primary structures[C].In: Duma G, editor. Proceedings of the 10th European Conference on Earthquake Engineering, Rotterdam: Balkema, 1995, pp. 1687-1692.
    [71] Adam C. Dynamics of elastic-plastic shear frames with secondary structures: Shake table and numerical studies[J]. Earthquake Engineering and Structural Dynamics,2001, 30(2): 257-277.
    [72] Medina R A., Sankaranarayanan R, Kingston K M. Floor response spectra for light components mounted on regular moment-resisting frame structures[J]. Engineering Structures, 2006, 28: 1927-1940.
    [73] Villaverde R. Approximate procedure for the seismic nonlinear analysis of nonstructural components in buildings[J]. Journal of Seismology and Earthquake Engineering, 2005, 7(1): 9-24.
    [74] Villaverde R. Simple method to estimate the seismic nonlinear response of nonstructural components in buildings[J]. Engineering Structures, 2006, 28(8):1209-1222.
    [75] Politopoulos I, Feau C. Some aspects of floor spectra of 1D0F nonlinear primary structures[J]. Earthquake Engineering and Structural Dynamics, 2007, 36:975-993.
    [76] Sankaranarayanan R, Medina R A.. Acceleration response modification factors for nonstructural components attached to inelastic moment-resisting frame structures[J].Earthquake engineerign and structural dynamics,2007,36:2189-2210.
    [77]Sankaranarayanan R,Medina R A.Statistical models for a proposed accelerationresponse modification factor for nonstructural components attached to inelastic structures[J].Proceedings of the 14th World Conference on Earthquake Engineering,14WCEE,Beijing,China,Paper Code 2013,October 12-17,2008.
    [78]Rodriguez M E,Restrepo J I,Carr A J.Earthquake-induced floor horizontal accelerations in buildings[J].Earthquake Engineering and Structra]Dynamics,2002,31:693-718.
    [79]Miranda E,raghavi S.Approximate floor acceleration demand in multistory buildings Ⅰ:Formulation[J].Journal of Structural Engineering,ASCE,2005,131(2):203-211.
    [80]Taghavi S,Miranda E.Approximate floor acceleration demand in multistory buildings Ⅱ:Applications[J].Journal of Structural Engineering,ASCE,2005,131(2):212-20.
    [81]苏经宇,周锡元,樊水荣,谭健.计算楼层上设各地震作用的方法[J].地震工程与工程振动,1990,10(2):65-72.
    [82]闵书亮,孙峰,满振勇.附属结构地震反应的隔震方法[J].哈尔滨建筑工程学院学报,1993,26(4):19-26.
    [83]王歆玫,刘季.在双向水平地震作用下建筑楼板反应谱法[J],哈尔滨建筑工程学院学报,1992.25(2):24-34.
    [84]李杰,陈淮,赵晓.结构-设备动力相互作用研究综述[J].世界地震工程,1994,2:5-12.
    [85]李杰,陈淮,孙增寿.结构-设备动力相互作用试验研究[J].工程力学,2003,20(1):157-161.
    [86]陈建兵,李杰.结构-设备体系动力相互作用研究[J].地震工程与工程振动,2000,21(3):70-74.
    [87]秦权,聂宇.非结构构件和设备的抗震设计和简化计算方法[J].建筑结构学报,2001,22(3):15-20.
    [88]韩淼,王亮.主-附结构体系抗震研究的发展综述及展望[J].北京建筑工程学院学报,2002,18(2):30-34.
    [89]韩淼,王亮.考虑耦联影响的主-附结构体系减振分析[J].世界地地震工程,(1):42-46.
    [90]韩淼,王亮.主体结构隔震的二次结构减振分析[J].世界地震工程,2003,19(3):78-83.
    [91]张建霖,杨智春.随机输入条件下的楼板反应谱分析[J].西北工业大学学报,2003,21(6):650-653.
    [92]张建霖.主次结构相互耦合下的楼板反应谱计算[J].厦门大学学报(自然科学版),2003,42(3):326-330.
    [93]张建霖.多点连接次结构系统的地震反应分析[J].土木工程学报,2004,37(4):29-32.
    [94]杨安钦,张建霖.利用模态截断技术分析多点连接主次结构耦合系统的地震反应[J].厦门大学学报(自然科学版),2006,45(3):360-364.
    [95]张向东,单海波.选煤厂结构设备复合体系抗震研究现状[J].煤质技术,2005,1:52-54.
    [96]张向东.选煤厂结构一设备复合体系抗震研究[D].中国地震局工程力学研究所硕士学位论文,2004.
    [97]Xu J,DeGrassi G.Benchmark Program for the Evaluation of the Methods to Analyze Non-classically Damped Coupled Systems[J].Final Report,NUREG/CR-6661,2000.
    [98]Xu J,DeGrassi G,Chokshi N.A NRC-BNL benchmark evaluation of seismic analysis methods for non-classically damped coupled systems[J].Nuclear Engineering and Design,2004,228:345-366.
    [99]Gupta A K,Jaw J W.Seismic response of nonclassically damped systems[J].Nuclear Engineering,1986,91:153-159.
    [100]Gupta V K.Acceleration transfer function of secondary systems[J].Journal of Engineering Mechanics,ASCE,1997,123(7):678-685.
    [101]Dey A,Gupta V K.Response of multiply supported secondary systems to earthquakes in frequency domain[J].Earthquake Engineering and Structural Dynamics,1998,27:187-201.
    [102]Dey A,Gupta V K.Stochastic seismic response of multiply-supported secondary systems in fexible-base structures[J].Earthquake Engineering and Structural Dynamics,1999,28:351-369.
    [103]Rao V S C.Mode acceleration approach to seismic response of secondary systems[D].M.Tech.Thesis,Department of Civil Engineering,I.I.T.Kanpur,Kanpur,India,1998.
    [104]Claret A M,Venancio-Filho F.A modal superposition pseudo-force method for dynamic analysis of structural systems with non-proportional damping[J].Earthquake Engineering and Structural Dynamics,1991,20:303-315.
    [105]Udwadia F E,Esfandiari R S.Nonclassically damped dynamic systems:an iterative approach[J].Journal of Applied Mechanics,ASME,1990,57:423-433.
    [106]Lin C W.Response spectral solution for structures with multiple support input[C].Proceedings of the Fifth World Conference on Earthquake Engineering,Rome,Italy,1973.
    [107] Shaw D E. Seismic structural response analysis for multiple support excitation[C]. Proceedings of the Third SMiRT Conference, London, U. K, 1975.
    
    [108] Vashi K M. Seismic spectral analysis of structural systems subjected to non-uniform excitation at supports[C]. Second ASCE Specialty Conference on Structural Design of Nuclear Power Plants Facilities, New Orleans, 1975, 1-A:188-211.
    
    [109] Thailer H T. Spectral analysis of complex system supported at several elevations[J]. Journal of Pressure Vessel Technology Transactions of ASME, 1976,98: 162-165.
    
    [110] Wu R W, Hussain F A, Liu L K. Seismic response analysis of structural system subjected to multiple support excitations[J]. Nuclear Engineering and Design, 1977,47: 273-282.
    [111] Leimbach K R, Schmidt H. Automated analysis of multiple-supported excitation piping problems[J]. Nuclear Engineering and Design, 1979, 51: 245-252.
    [112] Igusa T and Kiureghian A D. Dynamic response of multiply supported secondary systems[J]. Journal Engineering Mechanics, ASCE, 1985, 111(1): 20-41.
    [113] Chaudhuri S R, Gupta V K. A response-based decoupling criterion for multiply-supported secondary systems[J], Earthquake Engineering and Structural Dynamics,2002, 31: 1541-1562.
    
    [114] Antonino D A, Muscolino G. Improved dynamic correction method in seismic analysis of both classically and non-classically damped structures[J]. Earthquake Engineering and Structural Dynamics, 2001, 30: 501-517.
    
    [115] Falsone G, Muscolino G. New real-value modal combination rules for non-classically damped structures[J]. Earthquake Engineering and Structural Dynamics, 2004, 33: 1187-1209.
    
    [116] Lin F B, Wang Y K, Cho Y S. A pseudo-force iterative method with separate scale factors for dynamic analysis of structures with non-proportional damping[J].Earthquake Engineering and Structural Dynamics, 2003, 32: 329-337.
    [117] Khanlari K, Ghafory-Ashtiany M. New approaches for non-classically damped system eigenanalysis[J]. Earthquake Engineering and Structural Dynamics, 2005, 34: 1073-1087.
    
    [118] Zavoni E H, Perez-Perez A, Barranco-Cicilia F. A method for the transfer function matrix of combined primary-secondary systems using classical modal composition[J].Earthquake Engineering and Structural Dynamics, 2006, 35: 251-266.
    [119] Kim C W, Bennighof J K. Fast frequency response analysis of large-scale structures with non-proportional damping[J]. International Journal for Numerical Methods in Engineering, 2007, 69: 978-992.
    [120] Foss K A. Co-ordinates which uncouple the equations of motion of damped linear dynamic systems[J]. Journal of Applied Mechanics, ASME, 1958, 25: 361-364.
    [121] Hurty W C, Rubinstein M F. Dynamics of Structures[M]. Prentice-Hall: Englewood Clirs, NJ, 1964.
    [122] Itoh T. Damped vibration mode superposition method for dynamic response analysis[J]. Earthquake Engineering and Structural Dynamics, 1973, 2: 47-57.
    [123] Clough R W, Mojtahedi S. Earthquake response analysis considering non-proportional damping[J]. Earthquake Engineering and Structural Dynamics, 1976, 4:489-496.
    [124] Traill-Nash R W. Modal methods in the dynamics of systems with non-classical damping[J]. Earthquake Engineering and Structural Dynamics, 1981, 9: 153-169.
    [125] Mau S T. A subspace modal superposition method for non-classically damped systems[J]. Earthquake Engineering and Structural Dynamics, 1988, 16: 931-942.
    [126] Singh M P. Seismic response by SRSS for nonproportional damping[J]. Journal of the Engineering Mechanics Division, ASCE, 1980, 106(6): 1405-1419.
    [127] GuptaAK, JawJW. Response spectrum method for nonclassically damped systems[J].Nuclear Engineering and Design, 1986, 91: 161-169.
    [128] Yang J N, Sarkani S, Long F X. A response spectrum approach for seismic analysis of nonclassically damped structures[J]. Engineering Structures, 1990, 12: 173-184.
    [129] Kim C W, Benighof J K. Fast frequency response analysis of partially damped structures with non-proportional viscous damping[J]. Journal of sound and vibration, 2006, 297: 1075-1081.
    [130] Ibrahimbegovic A, Wilson EL. Simple numerical algorithms for the mode superposition analysis of linear structural. systems with non-proportional damping[J]. Computers and Structures, 1989, 33: 523-531.
    [131] Tong M, Liang Z, Lee G C. Physical space solutions of non-proportionally damped systems[R]. Technical Report NCEER-91-0002, National Center for Earthquake Engineering Research, 1991.
    [132] Udwadia F E. Further results on the iterative solution of nonclassically damped linear dynamic systems[J]. Journal of Applied Mechanics, ASME, 1993, 60(1): 235-239.
    [133] Udwadia F E, Kumar R. New Iterative Schemes for Nonclassically Damped Dynamic Systems[J]. Earthquake Engineering and Structural Dynamics, 1994, 23(2): 137-152.
    [134]Jangid R S,Datta T K.Spectral analysis of systems with non-classical damping using classical mode superposition technique[J].Earthquake Engineering and Structural Dynamics,1993,22:723-735.
    [135]Zavoni E H,Perez-Perez A,Barranco-Cicilia F.A method for the transfer function matrix of combined primary-secondary systems using classical modal composition[J].Earthquake Engineering and Structural Dynamics,2006,35:251-266.
    [136]Adam C,Fotiu P A.Dynamic analysis of inelastic primary-secondary systems[J].Engineering Structures,2000,22:58-71.
    [137]Lin W L,Liu T H.A discussion of coupling and resonance e(?)ects for integrated systems[C].Proceedings of the Third SMiRT Conference,London,U.K.,1975.
    [138]Gupta A K,Tembulkar J M.Dynamic decoupling of secondary systems[J].Nuclear Engineering and Design,1984,81:359-373.
    [139]Gupta A K,Tembulkar J M.Dynamic decoupling of multiply connected MDOF secondary systems[J].Nuclear Engineering and Design,1984,81:375-383.
    [140]Hadjian A H,Ellison B.Decoupling of secondary systems for seismic analysis[J].Journal of Pressure Vessel Technology Transactions of ASME,1986,108:78-85.
    [141]Reddy GR,Kushwaha HS,Mahajan SC,Suzuki K.Decoupling criteria for multi-connected equipment.Journal of Pressure Vessel Technics(ASME) 1998;120:93- 98.
    [142]Chen G,Wu J.Transfer-function-based criteria for decoupling of secondary systems[J].Journal of Engineering Mechanics,ASCE,1999,125(3):340-346.
    [143]俞瑞芳.非比例阻尼线性系统随机地震输入下的动力反应分析[D].北京工业大学建筑工程学院博士学位论文,2007.
    [144]Buckle I G,Kelly T E,Jones L R.Basic concepts of seismic isolation and their application to nuclear structures[J].Seismic Engineering Recent Advances in Design,Analysis,Testing and Qualification Methods,ASME,1987,PVP-127:429-437.
    [145]Fan F G,Ahmadi G.Seismic responses of secondary systems in base-isolated structures[J].Engineering Structures,1992,14(1):35-48.
    [146]Kelly J M,Tsai H C.Seismic response of light internal equipment in base isolated structures[R].Report No.UCB/SESM-84/17,Division of Structural Engineering and Structural Mechanics,Department of Civil Engineering,College of Engineering,University of California,Berkeley,CA,1984.
    [147]Kasalanati A,Reinhron A M,Constantinou M C,Sanders D.Experimental study of ball-in-cone isolation system[C].Proceedings of the ASCE Structures Congress XV,April 13-16,1997:1191-1195.
    [148]Kemeny Z A.Ball-in-cone seismic isolation bearing[P].U.S.Patent 5599106,February 4,1997.
    [149]Gavin H P,Zaicenco A.Performance and reliability of semi-active equipment isolation[J].Journal of sound and vibration,2007,306:74-90.
    [150]Murnal P,Sinha R.Aseismic design of structure-equipment systems using variable frequency pendulum isolator[J].Nuclear Engineering and Design,2004,231(2):129-139.
    [151]Agrawal A K.Behaviour of equipment mounted over a torsionally coupled structure with sliding support[J].Engineering structures,2000,22:72-84.
    [152]Huang Y N,Andrew S W,Constantinou M C.Seismic demands on secondary systems in base-isolated nuclear power plants[J].Earthquake Engineering and Structural Dynamics,2007,36:1741-1761.
    [153]Huang Y N.Seismic protection of secondary systems in nuclear power plant facilities[J].18th International Conference on Structural Mechanics in Reactor Technology(SMiRT 18),Beijing,China,August 7-12,2005,SMiRT18-K11-7.
    [154]Pavlou E A.Performance of primary and secondary systems in buildings with seismic protective systems[D].State University of New York,2005.
    [155]Wolff E D.Experimental study of seismic isolation systems with emphasis on secodary system response and verification of accuracy of dynamic response history analysis methods[D].State University of New York,2003.
    [156]Wang Y,Liu H J.Multi-degree-of-freedom hybird control system for high technology facilities[J].Proceeding of the 2007 IEEE international conference on mechatronics and automation,August 5-8,Harbin,China.
    [157]Xu Y L,Li B.Hybrid platform for high-tech equipment protection against earthquake and microvibration[J].Earthquake engineering and structural dynamics,2006,35:943-967.
    [158]Xu Y L,Liu H J,Yang Z C.Hybrid platform for vibration control of high-tech equipment in buildings subject to ground motion Part 1:Experiment[J].Earthquake engineering and structural dynamics,2003,32:1185-1200.
    [159]Xu Y L,Liu H J,Yang Z C.Hybrid platform for vibration control of high-tech equipment in buildings subject to ground motion Part 2:Analysis[J].Earthquake engineering and structural dynamics,2003,32:1201-1215.
    [160]李大望,庄鹏,周锡元.结构内设备的摩擦摆隔震响应分析[J].世界地震工程,2004,20(4):90-93.
    [161]曾奔,周福霖,徐忠根.隔震结构基于功率谱密度函数法的楼板反应谱分析[J].2009,28(2):36-39.
    [162]马玉宏,赵桂峰,谭平,周福霖,罗学海.建筑设备隔震技术在我国的研究与应用现状[J].广州大学学报(自然科学版),2008,7(2):78-82.
    [163]李忠献,李忠诚,沈望霞.核反应堆厂房结构楼板反应谱的敏感性分析[J].核动力工程,2005,26(1):44-50.
    [164]李忠诚,李忠献.大亚湾核电站反应堆厂房楼板反应谱分析评估[J].核科学与工程,2006,26(1):72-78.
    [165]李忠诚,李忠献.大亚湾核电厂反应堆厂房地震响应分析评估[J].核动力工程,2005,26(6):614-617.
    [166]李忠诚,考虑土-结构相互作用效应的核电厂地震响应分析[D].天津大学博士学位论文,2006.
    [167]李延涛,基于三维实体模型的核电厂结构楼板反应谱分析[D].天津大学硕士学位论文,2005.
    [168]荣峰,核反应堆工程地基-结构相互作用与楼板反应谱分析[D].天津大学硕士学位论文,2003.
    [169]荣峰,汪嘉春,何树延,董占发.CARR堆反应堆厂房土壤-结构相互作用与楼板反应谱分析[J].核动力工程,2006,27(5):19-23.
    [170]Takahashi K,Inoue K,Kato A,Morishita M,Fujita T.A development of three-dimensional seismic isolation for advanced reactor systems in Japan-Part 2[C].Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology,Beijing,China.Atomic Energy Press:Beijing,2005:3371-3380.
    [171]Suhara J,Matsumoto R,Oguri S,Okada Y,Inoue K,Takahashi K.Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring-Part 2[C].Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology,Beijing,China.Atomic Energy Press:Beijing,2005:3381-3391.
    [172]Shimada T,Suhara J,Takahashi K.Study on 3-dimensional base-isolation system applying to new type power plant reactor-Part 2(hydraulic 3-dimensional base-isolation system)[C].Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology,Beijing,China.Atomic Energy Press:Beijing,2005:3392-3403.
    [173]Okamura S.,Kitamura S.,Takahashi K.,Somaki T.Experimental study on vertical component isolation system[C],Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology,Beijing,China.Atomic Energy Press:Beijing,2005:3411- 3422.
    [174]Biggs J M,Roesset J M.Seismic analysis of equipment mounted on a massive structure[M].In:Seismic design of nuclear power plants.MIT press;1970.
    [175]US NRC Regulatory Guide 1.122.Development of floor design response spectra for seismic design of floor-supported equipment or components[M].Rev.1 1978.
    [176]International Code Council(ICC).International building code,IBC2003,Falls Church(VA),2003.
    [177]Building Seismic Safety Council.NEHRP recommended provisions for seismic regulations for new buildings and other structures[R],FEMA-450.Washington(DC):Federal Emergency Management Agency,2003.
    [178]Gupta A K.Response spectrum method in seismic analysis and design of structures[C].Cambridge(MA):Blackwell Scientific Publications,Inc,1990.
    [179]Segal D,Hall W J.Experimental seismic investigation of appendages in structures[C].Civil Engineering Studies,Structural Research Series no.545.Urbana(IL):University of Illinois;1989.
    [180]Singh M P.An overview of techniques for analysis of nonstructural components[C].In:Proceedings,ATC-29 seminar and workshop on seismic design and performance of equipment and nonstructural elements in buildings and industrial structures.1990.
    [181]Singh MP,Suarez LE,Matheu EE,Maldonado GO.Simplified procedure for seismic design of nonstructural components and assessment of current code provisions[R].Report NCEER-93-0013.Buffalo(NY):National Center for Earthquake Engineering Research,State University of New York at Buffalo;1993.
    [182]Soong T T,Shen G,Wu Z,Zhang R H,Grigoriu M.Asessment of the 1991 NEHRP provisions for nonstructural components and recommended revisions[R].Report NCEER 93-0003.Buffalo(NY):National Center for Earthquake Engineering Research,State University of New York at Buffalo;1993.
    [183]Applied Technology Council.ATC-58 Project Task Report,Phase 2,Task 2.3,Engineering Demand Parameters for Nonstructural Components[M],Redwood City,CA,2004.
    [184]Applied Technology Council.Guidelines for Seismic Performance Assessment of Buildings-25%Complete Draft-ATC-58 Project Task Report[M],Redwood City,CA,2005.
    [185]王爱文,史扬,缪升.基于遗传算法的TMD系统参数优化和设计[J].昆明理工大学学报,2002,27(1):69-72.
    [186]滕军,高峰,刘红军等.脉动风作用下电视塔结构TMD控制的惯性质量与位置优化[J].工程抗震与加固改造,2006,28(1):35-40.
    [187]李创第,黄天立,李墩等.带TMD结构随机地震响应分析的复模态法[J].振动与冲击,2003,22(1):36-39.
    [188]Fujino Y,Masato A.Design formulas for tuned mass dampers based on A perturbation technique[J].Earthquake Engineering and Structural Dynamics,1993,22(10):833-854.
    [189]Zhu W Q,Huang C D,Soong T T.Nonlinear Stochastic Response and Reliability of Secondary Systems[J].Journal of Engineering Mechanics,1994,120(1):177-196.
    [190]Villaverde R.Simplified approach to account for nonlinear effects in seismic analysis of nonstructural components[J].Seminar on Seismic Design,Retrofit and Performance of Non-Structural Components,1998,ATC-29-1:187-200.
    [191]玄光男,程润伟.遗传算法与工程优化(第二版)[M].北京:清华大学出版社,2004.
    [192]雷英杰,张善文,李续武.遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [193]刘祖润,邹阿金.一种求解Lyapunov方程的代数方法[J].贵州工业大学学报(自然科学版),2000,29(2):89-92.
    [194]韩淼,秦丽.多点连接二次结构地震响应的研究方法[J].北京建筑工程学院学报,2003,19(4):13-17.
    [195]Warburton G B,Soni S R.Errors of torsional coupling on earthquake forces in buildings[J].Journal of Structural Engineering,ASCE,1977,103(5):805-819.
    [196]赵晓,李杰.结构-设备体系空间动力学模型建模[J].郑州工学院学报,1995,16(4):30-37.
    [197]李创第,李暾,黄天立等.高层建筑TMD风振控制分析的复模态法[J].振动与冲击,2003,22(2):1-4.
    [198]李创第,丁晓华,陈俊忠等.基础隔震结构基于Clough-Penzien谱随机地震响应分析的复模态法[J].振动与冲击,2006,25(5):162-165.
    [199]李忠献,何玉敖.非经典阻尼结构动力分析模态综合法综述[J].工程力学,1992,9(1):51-59.
    [200]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [201]楼梦麟,范么清.求解非比例阻尼体系复模态的实模摄动法[J].力学学报,2007,39(1):112-118.
    [202]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.
    [203]Bouc R.Forced vibration of mechanical systems with hysteresis[C].Proceedings of the Fourth Conference on Nonlinear Oscillation,Prague,1967.
    [204]Wen Y K.Approximate method for nonlinear random vibration[J].Journal of Engineering Mechanics,1975,101:389-401.
    [205]Wen Y K.Equivalent linearization for hysteretic systems under random excitations[J].Journal of Application Mechanics,1980,47:150-154.
    [206]Adam C,Heuer R and Pirrotta A.Experimental dynamic analysis of elastic-plastic shear frames with secondary structures[J].Experimental Mechanics,2003,43:124-130.
    [207]Chen C K D,Lutes L D.First-passage time of secondary system mounted on yielding structure[J].Journal of Engineering Mechanics,1994,120:814-834.
    [208]李桂青,曹宏,李秋胜,霍达.结构动力可靠性理论及应用[M].北京:地震出版社,1993.
    [209]Huang W H.Dynamic characteristic of equipment- structure systems with torsional effect[D].Department of Civil Engineering,National Taiwan University at Taipei,Taiwan,1991.
    [210]李颖,朱伯立,张威.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004.
    [211]Lou M L,Duan Q,Chen G D.Modal perturbation method and its applications in structural systems[J].Journal of Engineering Mechanics,2003,169(8):935-943.
    [212]Fernando C,Maria J E.Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments[J].Computer Methods in Applied Mechanics and Engineering,2006,195(44-47):6448-6462.
    [213]Hea J J,Jianga J S,Xu B.Modal reanalysis methods for structural large topological modifications with added degrees of freedom and non-classical damping[J].Finite Elements in Analysis and Design,2007,44(1-2):75-85.
    [214]Bilbao A,Aviles R,Agirrebeitia J,Ajuria G.Proportional damping approximation for structures with added viscoelastic dampers[J].Finite Elements in Analysis and Design,2006,42(6):492-502.
    [215]Lin J L,Tsai K C.Simplified seismic analysis of one-way asymmetric elastic systems with supplemental damping[J].Earthquake Engineering and Structure Dynamics,2007,36(6):783-800.
    [216]Li H,Du Y F.Study on torsion coupled response of non-proportionally damped eccentrically isolated structure under earthquake[C].The 14th World Conference on Earthquake Engineering,in Beijing,2008.
    [217]Udwadia F E,Kumar R.Convergence of iterative methods for non-classically damped dynamic systems[J].Applied Mathematics and Computation,1994,61(1):61-97.
    [218]Feriani A,Perotti F,Simoncini V.Iterative system solvers for the frequency analysis of linear mechanical systems[J].Computer Methods in Applied Mechanics and Engineering,2000,190(13-14):1719-1739.
    [219]Kim C W.A preconditioned iterative method for modal frequency-response analysis of structures with non- proportional damping[J].Journal of Sound and Vibration,2006,297(3-5):1097-1103.
    [220]Lin J H.A fast CQC algorithm of PSD matrices for random seismic responses[J].Computers and Structures,1992,44(3):683-687.
    [221]Lin J H.,Zhang Y H.Vibration and Shock Handbook,Chapter 30:Seismic Random Vibration of Long-span Structures.CRC Press:Boca Raton,FL,2005.
    [222]Zhou X Y,Yu Y F,Di D.Complex mode superposition algorithm for seismic responses of non-classically damped linear MDOF system[J].Journal of Earthquake Engineering,2004,8(4):597-641.
    [223]Yu R F,Zhou X Y.Simplifications of CQC method and CCQC method[J].Earthquake Engineering and Engineering Vibration,2007,6(1):65-75.
    [224]Elishakaff I,Lyon H R.Random vibration-status recent developments[M].Elsevier Science Publishers,New York,1986.
    [225]Kiureghian D A,and Nakamura Y.CQC modal combination rule for high-frequency modes[J].Earthquake Engineering and Structural Dynamics,1993,22(11):943-956.
    [226]陈文兵,唐家祥.联合结构减振体系的动力分析和连接的优化布置[J].世界地震工程,2002.18(3):141-145.
    [227]龚治国,吕西林,翁大根.超高层主楼与裙房黏滞阻尼器连接减振分析研究[J].土木工程学报,2007,40(9):8-15.
    [228]Xu Y L,He Q and Ko J M.Dynamic response of damper-connected adjacent buildings under earthquake excitation[J].Engineering Structures,1999,21:135-148.
    [229]Yang Z,Xu Y L and Lu X L.Experimental seismic study of adjacent buildings with fluid dampers[J].Journal of Structural Engineering,2003,129(2):197-205.
    [230]Zhu H P,Xu Y L.Optimum parameters of Maxwell model-defined dampers used to link adjacent structures[J].Journal of Sound and Vibration,2005,279(1-2):253-274.
    [231]Gurley K,Kareem A,Bergman L A,Johnson E A and Klein R E.Coupling tall buildings for control of response to wind[C].Proceedings of the Sixth International Conference on Structural Safety and Reliability(ISOSSAR),A.A.Balkema,Rotterdam,1994:1553-1560.
    [232]Luco J E,Barros F D.Optimal damping between two adjacent elastic structures[J].Earthquake Engineering and Structural Dynamics,1998,27:649-659.
    [233]Luco J E,Barros F D.Control of the seismic response of a composite tall building modelled by two interconnected shear beams[J].Earthquake Engineering Structural Dynamics,1998,27:205-223.
    [234]Abdullah M M,Hanif J H,Richardson A and Sobanjo J.Using of a shared tuned mass damper(STMD) to reduce vibration and pounding in adjacent structures[J].Earthquake Engineering and Structural Dynamics,2002,30:1185-1201.
    [235]李宏男,闫石,贾连光.利用调液阻尼器减振的结构控制研究进展[J].地震工程与工程振动,1995,15(3):99-110.
    [236]李宏男,贾影等.利用TLD减小高柔结构多振型地震反应研究[J].地震工程与工程振动,2000,20(2):122-128.
    [237]Sun L M,et al.The properties of tuned liquid dampers using a TMD analogy[J].Earthquake Engineering and Structural Dynamics,1995,24(8):967-976.
    [238]文永奎,孙利民.大跨度斜拉桥钢塔制振方案与参数分析[J].同济大学学报(自然科学版),2006,34(3):296-301.
    [239]楼梦麟,牛伟星,宗刚,陈根达.TLD控制的钢结构振动台模型试验研究[J].地震工程与工程振动,2006,26(1):145-151.
    [240]Chang C C and Qu W L.Unified dynamic absorber design formulas for wind-induced vibration control of tall building[J].The structural design of tall buildings,1998,7(2):147-166.
    [241]瞿伟廉,陶牟华,C.C.Chang.五种被动动力减振器对高层建筑脉动风振反应控制的实用设计方法[J].建筑结构报,2001,22(2):29-34.
    [242]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报,2003,36(5):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700