用户名: 密码: 验证码:
受云雾干扰的可见光遥感影像信息补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代以来,计算机技术、通讯技术和遥感技术的飞速发展给遥感图像处理等技术带来了新的发展契机。遥感图像凭借其覆盖范围广和具有较高的多种分辨率等特点也被广泛应用于国土资源调查、基础地理信息获取、城市规划、农业生产、海洋监测、气象观测及天文发现等各个领域。然而,受传感器自身特性的限制,目前除主动式的雷达摄影能有效地避免复杂天气的影响外,几乎所有借助被动式光学遥感手段获取的影像都不同程度地受到云、雾、霭等天气的干扰,这种干扰已经成为遥感图像在各领域应用中的主要障碍,尤其影响了基于遥感图像的测绘产品生产,延长了作业时间并使生产效率降低。
     基于单幅遥感图像进行图像清晰化处理及利用辅助图像进行厚云区域的信息补偿能够有效地提升遥感图像质量、提高遥感图像的利用率。本文针对遥感对地观测中常用的光学遥感图像,结合摄影测量、计算机视觉、图像处理及图论等领域的最新理论,分别对薄云去除及厚云区域信息补偿的若干理论与算法进行了深入研究,设计实现了一套实用的软件应用系统,并成功应用于陆地特定区域及海岛(礁)区域的影像处理。
     论文的主要研究内容及创新点概括如下:
     1.总结并分析了云雾图像的电磁波谱特征、纹理特征、空间分布特征及地物间的相关特征。由于云雾图像成像时,薄云和厚云的四种成像特征差异较大,图像退化模型也大不相同,薄云退化图像信号包含电磁波经云层反射和电磁波经地面反射及云层透射综合作用的两部分信号,而厚云退化图像在云覆盖区域仅包含云层反射信号,这从根本上决定了两种云覆盖图像处理方法将有所不同。上述分析为后续的算法研究提供了必要的理论支持。
     2.总结并分析了经典的去薄云算法的基本原理,例如直方图增强法、同态滤波法、小波变换法及暗原色法,对涉及的小波变换法进行了深入的研究比较。由于小波家族中小波函数和小波变换方法千差万别,致使小波分析在图像去云中的应用存在诸多困惑。本文针对不同的小波基函数、不同的分解层数和不同的小波方法进行了实验分析。实验表明:具有近似对称的db4小波和sym6小波处理效果较好,结果图像中完全没有马赛克现象,并且在地物边缘处没有移位发生;平稳小波变换适用于3层小波分解,小波包变换适用2层小波包分解,而提升小波只须1层小波分解就能达到理想的效果;提升小波变换及平稳小波变换能够做为去云的小波变换方法。综合上述分析认为,以db4小波做为小波基的1层提升小波变换是薄云去除小波变换算法中的最优选择,以db4小波做为小波基的3层平稳小波变换的薄云去除方法次之。
     3.提出了一种针对非均匀分布的薄云图像清晰化复原方法。该算法利用高斯滤波器的低通特性,对成像时刻的云雾浓度进行了自动估计,改进了云雾图像的退化公式,将退化模型中大气光估计值赋予云雾浓度信息,有效避免了图像清晰化过程中出现的“欠处理”或“过处理”现象。利用不同分辨率的两幅图像进行实验验证,实验结果表明,针对非均匀分布的云雾图像的清晰化算法复原处理后的图像,其各项评价指标均优于暗原色去云雾算法。
     4.地物影像替换去云法是简单且直接有效的遥感图像厚云去除方法。但是由于影像间的差异,影像替换后极易产生类似“拼接缝”的现象,本文利用灰度统计及Freeman链码轮廓跟踪技术引导云层及云影的自动识别,然后巧妙选取云及阴影区域的最小外接矩形做为地物替换区域,结合直方图匹配和数学形态学理论,提出了无缝化的遥感图像厚云区域信息补偿方案,该方案在实际生产应用中产生了较好的处理效果。
     5.把图割理论中的最大流最小割思想引入到图像匀光算法中,将水域与陆地区域进行区分处理,有效地避免了因水域的镜面反射作用对整幅图像匀光效果的影响。实验表明,与基于梯度域以及基于分裂合并的图像匀光算法相比,基于图割理论的匀光算法具有更好的稳定性和自适应性,能够取得更为令人满意的匀光效果。
     6.将上述多种算法综合应用于海岛(礁)区域及我国西南地区的遥感影像处理,结合具体工程实践,验证了理论和算法的合理性和有效性。
The rapid development of computer, communication and remote sensing techniques has brought new opportunities for the remote sensing image processing since the 1980’s. By virtue of its wide area coverage and various spatial resolution, remote sensing image has been widely used in different fields, including land resource investigation, basic geographic information acquisition, city planning, agricultural production, oceanographic monitor, meteorological observation and astronomical discovery. However, except active radar photography can effectively avoid the weather disturbance, almost all remote sensing images obtained in the passive optical means are subject to different levels of clouds, mist and brume’s influence, and this interference has been the major obstacles for the widespread use of remote sensing image, especially for the mapping production based on remote sensing image, prolonging the production time and lower productivity.
     The quality and utilization of remote sensing image can be greatly improved when the clearness processing is performed based on single image and information compensation related to the thick cloud area is achieved based on auxiliary image. Aiming at the optical image commonly used in the earth observation, with the latest theories of photogrammetry, computer vision, image processing and graph theory, this thesis made an intensive and deep study on the theories and approaches of haze removal and information compensation related to the cirrus area, designed and completed a practical application software which has successfully been applied to the image processing on specific land areas and island areas.
     The main contents and innovations in this thesis can be summarized as follows.
     1. The electromagnetic spectrum features, textural features, spatial distribution features and correlation features in degraded cloudy images are summarized and analyzed. The haze image is made up of two signals, reflected electromagnetic wave signal from haze and ground, transmission electromagnetic wave from haze, and that degraded image with thick cloud only includes cloud reflected signal. These different degradation models determine two kinds of image processing methods. Above-analysis offers the essential theoretical supports for the study of subsequent algorithms.
     2. The main principles and fundamentals of classical haze removal algorithms are summarized and analyzed, which include histogram enhancement, homomorphic filtering, wavelet transformation, and dark channel prior dehazing. Then we conducted in-depth study of wavelet transform. There are many kinds of wavelet functions and transformations, which bring much trouble to the study of cloud removing in RS image. In this thesis, various types of wavelet base functions, decomposition layers and kernel methods are conducted and tested. The experimental results show that, db4 and sym6 wavelet functions with approximately symmetry provide better results in which the Mosaic Show has been eliminated entirely and no displacements at object’s edges occurs. DSWT is applicable to three layers decompositions, and wavelet packets is suitable for two layers decompositions. Just one layer decomposition can produce the ideal results when the lifting wavelet is used. The lifting wavelet transform and stationary wavelet transform are fit for cloud removing process. From the above comprehensive analysis, the lifting wavelet transform using the db4 wavelet function and one layer decomposition is considered to be the optimal selection for haze removal, and the stationary wavelet transform using the db4 wavelet function and with three layer decompositions is the secondary selection.
     3. A clearness improvement method for image with non-uniform cloud and mist distribution is proposed. In this method, the density of cloud and mist is automatically evaluated based on the low pass characteristics of Gaussian Filter. Then the degraded equation of cloudy and misty image is improved, which avoid“under-processing”and“over-processing”in the clearness improvement. Finally, two images with different resolutions are used to verify the experiment. Experimental results indicate that the clearness improvement method presented in this thesis for the image with non-uniform cloud and mist distribution takes advantage over dark channel prior method in each evaluating indicator.
     4. Direct-replacing method is a simple and effective cloud removing method for the remote sensing images. This method substitutes the cloudy pixels with the corresponding pixels on the auxiliary image. But it inclines to cause obvious seam lines between substituted cloud area and original image. In this thesis, the replace area is skillfully selected firstly. Then combined with histogram theory and mathematical morphology theory, the scheme for the seamless information compensation related to the cloud area is discussed, which achieves good effects in the practical production application.
     5. By applying Min-cut/Max-flow of graph theory to the image dodging algorithm, water area and terrestrial area can be processes separately, which effectively avoids the water specular reflection effect. Experiments show that, compared with the algorithms based on Split-Merge and gradient field, the dodging algorithm based on the graph theory can achieve a more satisfactory results.
     6. The above algorithms are applied to the remote sensing image processing in islands areas and the southwest of china areas. Moreover, the rationality and effectiveness of the algorithms are verified in real projects. Key words: Information Compensation, Homomorphic Filtering, Wavelet Transformation, Non-uniform Cloud, Image Registration, Image Fusion, Graph Cut, Image Dodging Processing
引文
[1]中国科学院空间领域战略研究组.中国至2050年空间科技发展路线图[M].北京:科学出版社,2009年6月.
    [2]李德仁.浅论21世纪遥感与GIS的发展[J].东北测绘,2002,25(4):3-5.
    [3]国防科工委发布“十一五”民用遥感卫星应用技术研究项目指南.www.wk.baidu.com/wiew/500e1cbff121dd3632d822e?pcf=2#1.
    [4]科技部发布“十二五”国家科学和技术发展规划.www.scitech.people.com.cn/gb/15151800.html.
    [5]霍娟,吕达仁.利用全天空数字图像对北京上空云况分布特征的试验分析[J].气象科学,2005,25(3).
    [6] G P ASNER. Cloud cover in Landsat observations of the Brazilian Amazon[J]. International journal of remote sensing, 2001, 22(18):3855-3862.
    [7]赖格英,刘春燕,辜晓青.基于ERDAS IMAGINE的遥感图象去云方法[C].GIS协会第六届年会论文集,成都:GIS协会,2001,565-568.
    [8]张鹏强,余旭初,韩丽.遥感图像薄云滤波增强[J].海洋测绘,2008,28(2):13-16.
    [9] Nayar S K, Narasimhan S G. Vision in bad weather[C]. In Proceedings of the 7th International Conference on Computer Vision. 1999,128-134.
    [10] Narasimhan S G., Nayar S K. Chromatic framework for vision in bad weather[C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2000.235-240.
    [11] Narasimhan S G, Nayar S K. Vision and the atmosphere[J]. International Journal of compute Vision, 2002.48(3):233-254.
    [12] Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images[J]. Pattern Anal.Mach.Intell.2003, 25(6):713-724.
    [13] S.G Narasimhan, S K,Nayar. Shedding light on the weather[C]. In Proc. CVPR.2003, 78-90.
    [14] R. Tan. Visibility in bad weather from a single image[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2008, 1-8.
    [15] R. Fattal. Single image dehazing[C]. In SIGGRAPH, 2008, 1–9.
    [16] Gao B C,Li R R. Quantitative improvement in the estimates of NDVI values from remotely sensed data by correcting thin cirrus scattering effects[J]. Remote Sensing of Environment, 2000, 74:494-502.
    [17] Zhang Y,Guindon B,Cihlar J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images[J]. Remote Sensing of Environment, 2002, 82:173-187.
    [18]江兴方.遥感图像去云方法的研究及其应用[D].南京理工大学博士学位论文,2007年.
    [19]朱锡芳.光学图像去云雾方法研究[D].南京理工大学博士学位论文,2008年.
    [20]冯春.基于辐射传输模型的遥感定量化关键关键问题研究[D].中国地质大学博士学位论文,2005年.
    [21] R. Richter. A spatially adaptive fast atmospheric correction algorithm[J]. Int.J Remote Sens., 17:1201-1214.
    [22] R. Richter. Atomospheric correction of satellite data with haze removal including a haze/cleartransition region, Comput. Geosci. 22:675-681.
    [23]王恒进.基于小波的遥感图像薄云去除的研究与实现[D].西北工业大学博士学位论文,2002年.
    [24]樊厚春.遥感图像薄云去除研究[D].中科院研究生院硕士论文,2004年.
    [25]蒋立辉,张晓东,陈奋.基于离散小波框架变换的遥感影像薄云去除[J].信号处理,200521(4A)301-304.
    [26] Kaiming He, Jian Sun, Xiaoou Tang. Single Image Haze Removal Using Dark Channel Prior[C]. CVPR 2009.
    [27]郭毅.雾霾天气条件下退化图像处理方法研究[D].沈阳理工大学硕士学位论文,2007年.
    [28] Anuta P.E. Spatial registration of multispectral and multitemporal digital imagery using fast Fourier transformation techniques[J]. IEEE Trans. on Geosci. Electron, Oct.1970, Vol.GE.8, 355-368.
    [29] Bamea D.I., Silverman H.F. A class of algorithms for fast digital image registration[J]. IEEE Trans. on Computers, 1972, Vol. C-21, 179-186.
    [30] W.K.Pratt著,高荣坤等译,数字图像处理学[M].北京:科学出版社,1983年.
    [31] M.Svedlow, C.D. MacGillen, Paul E. Anuta. Image registration: Two new techniques for image matching[C]. Proc 5th Joint Conf. On Artificial Intelligence, Cambridge. Mess. 659-663.
    [32] Henri Maitre, Yifeng Wu. A dynamic programming algorithm for elastic registration of distorted pictures based on autoregressive model[J]. IEEE Trans. on acoustics, speech, and signal processing, 1989, Vol. 37, 288-298.
    [33] Jan Flussr. An adaptive method for image registration[J]. Pattern Recognition, 1992, Vol. 25, 45-54.
    [34] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
    [35]郭海涛,刘智,张保明,王宏力,陈国栋.基于遗传算法的快速影像匹配技术的研究[J].测绘学院学报,2001, 9, 18(51): 20-22.
    [36]李智,张雅声.基于轮廓特征的图像配准[C].CCUA图像分会,1997年.
    [37]张祖勋,张剑清.山区遥感影像的小面元微分纠正[C].第三届海峡两岸测绘发展研讨会论文集,2000年.
    [38]黄勇杰,王树国,刘俊义等.遥感图像去云算法研究[J].仪器仪表学报,2003,24(4):490-491.
    [39] Cheevasuvit F,Dejhan K,Tanapanpanich T. Cloud cover and cloud shadow removing based on 2-dimensional histogram[C].The 13th Asian Conference on Remote Sensing Proceedings ACRS Digital Image Processing, 1992:235-237.
    [40]王惠,谭兵,沈志云.多源遥感影像的去云层处理[J].测绘学院学报, 2001, 18(3):195-198.
    [41]方勇,常本义.联合应用多传感器影象消除云层遮挡影响的研究[J].中国图象图形学报,2001,6(2):138-141.
    [42]张明源,王宏力,陈国栋.基于小波分析的多源图像融合去云技术研究[J].传感器与微系统, 2007, 26(11):19-21.
    [43] Hojat Yeganeh, Ali Ziaei, Amirhossein Rezaie. A novel approach for contrast enhancement based on histogram equalization[J], Proceedings of the International Conference on Computer and Communication Engineering 2008, 13(15):256-260.
    [44] Soong-Der Chen, Abd. Rahman Ramli, Contrast Enhancement using RecursiveMean-Separate Histogram Equalization for Scalable Brightness Preservation[J]. IEEE Transactions on Consumer Electronics,2003,49(4):1301-1309.
    [45] Mary Kim and Min Gyo Chung, Recursively Separated and Weighted Histogram Equalization for Brightness Preservation and Contrast Enhancement[J], IEEE Transactions on Consumer Electronics,2008,54(3):1389-1397.
    [46]李治江.彩色影像色调重建的理论与实践[D].武汉大学博士学位论文,2005年.
    [47]王智均,李德仁,李清泉.Wallis变换在小波影像融合中的应用[J].武汉测绘科技大学学报,2000,25(4):338-342.
    [48]李德仁,王密,潘俊.光学遥感影像的自动匀光处理及应用[J].武汉大学学报,2006, 31(9):753-756.
    [49]王密,潘俊.一种数字航空影像的匀光方法[J].中国图象图形学报,2004,9(6):744-748.
    [50] IHO S-52. IHO Specifications for Chart Content and Display Aspects of Ecdis Edition 5.0[C], the International Hydrographic Bureau MONACO, 1996.
    [51] IHO S-52. Appl Guidance on Updating the Electronic Navigation Chart Edition 3.0[C].the international Hydrographic Bureau MONACO, 1996.
    [52]李刚,杨武年,翁韬.一种基于同态滤波的遥感图像薄云去除算法[J].测绘科学,2007,32(3):47-48.
    [53] Edwin H Land. The retinex theory of color vision[J], Scientific American, 1977,237(6):108-129.
    [54] Ron Kimmel, Michael Elad. A Variational Framework for Retinex[J], International Journal of Computer Vision 2003, 52(1):7-23.
    [55] Schott, J. R., Salvaggio, C., and Volchok, W. J.. Radiometric scene normalization using pseudo-invariant features[J]. Remote Sensing of Environment, 1988, 26:1-16.
    [56]肖平.土地利用/覆盖变化探测技术研究[D].武汉大学硕士学位论文,2001年.
    [57] Hall, F. G., Strebel, D. E., Nickeson, J. E., & Goetz, S. J. Radiometric rectification: toward a common radiometric response among multidate, multisensor images[J]. Remote Sensing of Environment, 1991, 35: 11-27.
    [58]张鹏强,余旭初.多时相遥感图像相对辐射校正[J].遥感学报,2006,10(3):339-344.
    [59] Moran, M. S., Jackson, R. D., Slater, P. N., & Teillet, P. M.. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output[J]. Remote Sensing of Environment, 1992, 41:160-184.
    [60] Yang, X., Lo, C. P., Relative radiometric normalization performance for change detection from multi-date satellite images[J]. Photogrammetric Engineering and Remote Sensing, 20 00, 66: 967-980.
    [61] Furby, S. L., Campbell, N. A. Calibrating images from different dates to like-valuecounts[J]. Remote Sensing of Environment, 2001, 77:186-196.
    [62] Du, Y., J. Cihlar, Beaubien, J., and Latifovic, R.. Radiometric Normalization, Compositing, and Quality Control for Satellite High Resolution Image Mosaics over Large Areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 623-634.
    [63] Canty, M. J., Nielsen, A. A., and Schmidt, M.. Automatic radiometric normalization of multitemporal satellite imagery[J]. Remote Sensing of Environment, 2004, 91(3-4):441-451.
    [64] Koffler R. A Procedure for Estimating Cloud Amount and Height from Satellite Infrared Radiation Data[J]. Mon Wea Rev, 1973, 101:240-243.
    [65] Shenk W E, Holub R T. Neff R A. A Multispectral Cloud Type Indentification MethodDeveloped for Topical Ocean Area with Nimbus-3 MRIR Measurements[J]. Mon Wea Rev,l976, 104:284-291.
    [66]童庆禧,张兵,郑兰芬.高光谱遥感原理技术与应用[M].北京:高等教育出版社,2010年.
    [67]章澄昌,周文贤.大气气溶胶教程[M].北京:气象出版社,1995年.
    [68]徐希孺.遥感物理[M].北京:北京大学出版社,2005年2月.
    [69]吴兑.关于霾与雾的区别和灰霾天气预警的讨论[J].广东气象,2005,31(4):3-7.
    [70] Young A T.Seeing Cause and Cure.Astrop J,1974,189(3):587-604.
    [71]孙家抦编.遥感原理与应用[M].武汉:武汉大学出版社,2003年.
    [72]朱亚平,刘健文,白洁.云的光谱和纹理特征统计分析[J].遥感技术与应用,2006,26(1):18-24.
    [73]王波,袁涛.霾天气的危害和防御[J].科苑论坛,2008,17:118.
    [74]廖国男.大气辐射导论[ M].北京:气象出版社,1985年.
    [75]马慧云,李德仁,刘良明,郭建星.基于MODIS数据的雾光谱特性研究[J].武汉大学学报(信息科学版),2007,32(6):506-509.
    [76]章毓晋.图像工程(上册)图像处理[M].北京:清华大学出版社,2006年.
    [77]杨安洪.光学遥感影像云雾处理方法研究[D].解放军信息工程大学硕士学位论文,2010年.
    [78]冈萨雷斯.数字图像处理[M].第2版.北京:电子工业出版社,2003年.
    [79] Stockham,T.G.,Jr.Image Processing in the Context of a Visual Model.Proc.IEEE.Vo1.60,No.7:828—842.
    [80]李鹏.薄尘雾退化图像的处理研究[D].南京理工大学硕士学位论文,2005年.
    [81] P. Chavez. An improved dark-object substraction technique for atmospheric scattering correction of multispectral data[J]. Remote Sensing of Environment, 1998, 4(24):450-479.
    [82]陈奋.高分辨率全色波段遥感影像处理中的图像复原问题研究[D].中国科学院理学博士学位论文,2006年.
    [83]叶秋果,宗景春,李钏等.基于同态滤波的遥感影像去云雾处理[J].海洋测绘,2009,29(3):45-46.
    [84]沈文水,周新志.基于同态滤波的遥感影像薄云去除算法[J].强激光与粒子束,2010,22(1):45-48.
    [85]张金泉,杨进华,卢珊.基于同态滤波的图像去烟雾方法研究[J].机械与电子,2009,07:71.
    [86] Stephane Mallat.A Wavelet Tour of Signal Processing (Second Edition) [M]. China Machine Press. 2003.
    [87] Oleksiy Pogrebnyak,Juan Humberto Sossa Azuela.Fast Algorithm of Byte-to-byte Wavelet Transform for Image Compression Application[J].SPIE.2002:291-30l.
    [88] C.Steve Suh,Andrew K. Chan. Wavelet-Based technique for Detection of Mechanical Chaos[J]. SPIE.2000:267-274.
    [89] Yang X, Ramchandran K. Scalable Wavelet Video Coding Using A liasing-reduced Hierarchical Motion Compensation[J]. IEEE Transactions on Image Processing, 2000, 9 (5): 778-791.
    [90] Xiong Z, Ramchandran K, Orchard M T. Space-frequency Quantization for Wavelet Image Coding[J] .IEEE Transactions on Image Processing, 1997, 6: 677-693.
    [91] SongM, Civco D L. A Knowledge-based Approach for Reducing Cloud and Shadow[C]. Proc.of 2002 ASPRS-ACSM Annual Conference and FIG 22 Congress, Washington D. C., April 22-26, 2002.
    [92] Li M, Liew S C, Kwoh L K. Automated Production of Cloud-freeand Cloud Shadow-free Image Mosaics from Cloudy Satellite Imagery[C]. Proc of Geo-Imagery Bridging Continents, 20th ISPRS Congress. 2004, Vol. 25, part B3: 754-758.
    [93]陈奋,闫冬梅,赵忠明.基于无抽样小波的遥感影像薄云检测与去除[J].武汉大学学报(信息科学版),2007,32(1):71-74.
    [94]朱锡芳,吴峰,庄燕滨.基于Mallat算法遥感图像去云雾处理的改进方法[J].遥感学报,2007,11(2):241-246.
    [95]王爱玲等.Matlab R2007图像处理技术与应用[M].北京:电子工业出版社,2008年1月.
    [96] Vetterli M,Herley C. Wavelet and filter banks: theory and design [J]. IEEE Trans Signal Processing, 1992, 40(6):2207-2232.
    [97] W.Sweldens.The Lifting Scheme: A custom-design construction of biorthogonal wavelet[J]. Applied and Computational Harmonic Analysis, 1996, 3(2):186-200.
    [98] W.Sweldens.The Lifting Scheme: A construction of second generation wavelets[J].SIAM J.Math.Anal.,1997,29(2):511-546.
    [99]褚标.小波理论在图象去噪与纹理分析中的应用研究[D].合肥工业大学博士学位论文,2008.04.
    [100]王德华.小波分析及其应用的几个问题[D].湖南大学博士学位论文,2006.03.
    [101]侯建华.基于小波及其统计特性的图像去噪方法研究[D].华中科技大学博士学位论文,2007.06.
    [102]孙秩.基于自适应提升小波的信号去噪技术研究[D].中国科学技术大学博士学位论文,2008.06.
    [103]王永明,王贵锦.图像局部不变性特征与描述[M].北京:国防工业出版社,2010年4月.
    [104]朱述龙.利用辅助图像进行IKONOS图像的厚云处理[J].测绘科学与工程,2004,24(4):24-28.
    [105] RI Pyongsop, MA Z B,QI Q W. Cloud and shadow removal from LANDSAT TM data[J]. Journal of Remote Sensing 2010,14(03):534-545.
    [106]傅晓珊.基于灰度梯度的遥感图像去云方法研究[J].测绘通报,2008,10:14-16.
    [107]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [108]王蕾.图像配准技术及应用研究[D].西安电子科技大学硕士学位论文,2007.01.
    [109]张祖勋,张剑清.遥感影像的高精度自动配准[J].武汉测绘科技大学学报,1998年23(4):320-323.
    [110]陈鹰.遥感影像的数字摄影测量[M].上海:同济大学出版社,2003.09.
    [111] Cihlar J, Howarth J. Detection and removal of cloud contamination from AVHRR images[J]. IEEE Transactions on Geoscience, 1994, 32(3):583-589.
    [112] Saunders R W, Kriebel K T. An improved method for detecting clear sky and cloudy radiances from AVHRR data[J]. Int. J. Remote Sensing, 1988, 9(2):123-150.
    [113] Simpson James J, Stitt J R. A procedure for the detection and removal of cloud shadow from AVHRR data over land[J]. IEEE Transactions on Geoscience, 1998, 36(3):880-897.
    [114] Simpson James J, Jin Zhonghai,and James R.Stitt,Member, IEEE.Cloud Shadow Detection Under Arbitraty Viewing and Illumination Conditions[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2000, 38(2):233-245.
    [115] Wang Bin and ONO Atsuo. Automated Detection and Removal of Clouds and Their Shadows from Landsat TM Images[C]. IEICE TRANS.INF.SYST, 1999, Esc-D (2):185-192.
    [116] Wang Bin and ONO Atsuo and Fujiwara N.Automatic removal of clouds and their shadows for digital mosaic of Landsat TM data[C].The 23rd Japanese Conf.On Remote Sensing, 1997, 12:257-258.
    [117]李小春,王勇,陈鲸.多光谱图像中云层及阴影的检测与消除[J].宇航学报,2004,25(5):555-559.
    [118] LU D. Detection and substitution of clouds/hazes and their cast shadows on IKONOS images[J]. International Journal of Remote Sensing, 2007, 28(18):4027-4035.
    [119]曹琼,郑红,李行善.一种基于纹理特征的卫星遥感图像云探测方法[J].航空学报,2007,28(3):661-666.
    [120]柴勇,何友,曲长文.基于云影距离模型的遥感图像多尺度融合算法[J].中国图象图形学报,2010,15(9):1398-1405.
    [121]朱述龙,钱曾波.遥感影像镶嵌时拼接缝的消除方法[J].遥感学报,2002,6(3):183-187.
    [122]黄文莉,朱述龙,陈虹.镶嵌图像上拼接缝的消除方法[J].测绘学院学报,2000,17(1):31-33.
    [123]周廷刚.遥感彩色影像镶嵌拼接缝的消除方法研究[J].计算机工程与应用,2004,36:84-86.
    [124] Horowitz S L, Pavlidis T. Picture segmentation by a tree traversal algorithm[J]. Journal of the Association for Computing Machinery, 1976, 23(2):368-388.
    [125]刘晓龙.基于影像匹配接边纠正的数字正射影像的镶嵌技术[J].遥感学报,2001,5(2 ) :104-109.
    [126] Shih-Chang Hsia, and Po-Shien Tsai. Efficient light balancing techniques for text images in video presentation systems[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(8):1026-1031.
    [127] Shih-Chang Hsia,Ming-Huei Chen,and Yu-Min Chen. A cost-effective line-based light-balancing technique using adaptive processing[J]. IEEE Transactions on Image Processing, 2006, 15(9):2719-2729.
    [128] DICARLO, J. M., WANDELL, B. A. Rendering high dynamic range images[J]. In Proceedings of the SPIE: Image Sensors. 2001, 3965:392-401.
    [129]潘俊.自动化的航空影像色彩一致性处理及接缝线网络生成方法研究[D].武汉大学博士学位论文,2008年.
    [130]孙明伟.正射影像全自动快速制作关键技术研究[D].武汉大学博士学位论文,2008年.
    [131] Kim J.Y, Kim L.S. and Hwang S.H. An Advanced Contrast Enhancement Using Partially Overlapped Subblock Histogram Equalization[J]. IEEE Trans. Circuits and Systems for Video Technology, 2001, 11(4): 475-484.
    [132] Y. Yitzhaky, I. Dror and N. S. Kopeika. Restoration of atmospherically blurred Images according to weather-predicted atmospheric modulation transfer functions [J]. Optical Eng., vol.36, 1997, Page(s):3064-3072.
    [133] Fabrizio Russo. An Image Enhancement Technique Combining Sharpening and Noise Reduction[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(4):824-828.
    [134]朱锡芳,徐芳芳.Retinex和小波变换去除遥感图像云雾方法分析[J].常州工学院学报,2007,20(5):8-13.
    [135]刘茜,卢心红,李象霖.基于多尺度Retinex的自适应图像增强方法[J].计算机应用,2009,29(8):2077-2079.
    [136]蒋永馨,王孝通,徐晓刚,黄华.一种基于光照补偿的图像增强算法[J].电子学报,2009,37(4A):151-155.
    [137]葛微,李桂菊,程宇奇等.利用改进的Retinex进行人脸图像光照处理[J].光学精密工程,2010,18(4):1011-1020.
    [138] B.Thompson, Z.Rahman, S.Park. A Multiscale Retinex for Improved Performance in Multi-spectral Image Classfication[C]. SPIE, 2000, 4041:34-44.
    [139] Zia-ur Rahman, Daniel J.Jobson, Geenn A.Woodell, et al. Retinex Processing for automatic Image Enhancement[C]. SPIE.2002, 4662:390-401.
    [140] Daniel J.Jobson, Zia-ur Rahman, Gienn A.Woodell, et al. Multi-sensor Fusion and Enhancement Using the Retinex Image Enhancement Algorithm[C]. SPIE, 2002, 4736:36-44.
    [141] Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE trans on PAKI,2000,22(8):888-905.
    [142] Wang S, Siskind J M. Image segmentation with ratio cut[J]. IEEE Trans on PAKI,2003,25(6):675-690.
    [143]殷剑宏,吴开亚.图论及其算法[M].合肥:中国科学技术大学出版社,2006年12月.
    [144]卢开澄,卢华明.图论及其应用[M].北京:清华大学出版社,2005年1月.
    [145] Gary Chartrand, Ping Zhang.Introduction to Graph Theory[M].北京:人民邮电出版社,2007年09月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700