用户名: 密码: 验证码:
过渡金属纳米颗粒催化的选择加氢反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文制备了多种过渡金属纳米催化剂,将其应用于催化加氢反应并得到令人满意的结果。首先,合成了水油两亲性的功能化离子液体,阳离子为聚乙二醇功能化的烷基咪唑双阳离子,阴离子为氯离子。在水相中,通过两亲性的离子液体制备并稳定水溶性的Pd纳米颗粒。电子透射显微镜(TEM)显示了Pd纳米颗粒的直径为1.9±0.3nm。水相中[C12Im-PEG]Cl2的物理化学性质通过表面张力测试,电导率测试和动态光散射(DLS)得到表征。结果证实,随着[C12Im-PEG]Cl2水溶液的浓度增加发现存在临界胶束浓度,[C12Im-PEG]Cl2水溶液在临界胶束浓度之上时可以形成大量胶束,该胶束对Pd纳米颗粒的稳定起到至关重要的作用并可促进催化加氢活性。而且,[C12Im-PEG]Cl2也是一个Gemini表面活性剂,亲油性的底物和含催化剂的水相在反应的时候形成乳化现象。乳化作用可以减少水油两相之间的传质阻碍对活性的不利影响,并增加了底物与Pd纳米颗粒的接触机会,从而提高了反应速率。另外,离子液体中的咪唑阳离子对Pd纳米颗粒的表面具有一定的修饰作用,从而影响了其加氢活性。在温和的条件下,Pd纳米催化剂对不同底物的加氢反应显示了高效的催化活性。催化剂至少可以循环8次并提供完全转化的活性。
     由聚乙二醇功能化的烷基咪唑阳离子和三苯基膦三间磺酸根(P(C6H4-m-SO3-)3)组成的功能化离子液体在乙酸乙酯中具有温控相行为的特点([C12Im-PEG]1.5[tppt]),离子液体在室温下几乎不溶于乙酸乙酯,当升高温度(>35℃)之后完全溶于乙酸乙酯,降温(0℃)后从乙酸乙酯中析出。选用乙酸乙酯作为温控溶剂可以减少体系带来的毒性。该温控离子液体可以用来稳定过渡金属纳米颗粒得到温控相分离加氢催化剂。由于离子液体中阴阳离子的协同作用(阳离子部分提供温控效果,阴离子部分有效地稳定金属纳米颗粒),过渡金属纳米催化剂显示了显著地温控相分离现象和优良的催化活性和选择性,同时过渡金属纳米催化剂具有卓越的稳定性。在α,β-不饱和醛的加氢反应中,温控离子液体稳定的Pd和Rh纳米颗粒针对C=C双键的选择性加氢效果优于商业化的Pd/C和Rh/C催化剂。通过NMR表征,我们发现离子液体的阴离子(P(C6H4-m-SO3-)3)通过配位作用改变了纳米颗粒表面的电子性质,从而影响了加氢选择性。另外,聚乙二醇功能化的咪唑阳离子为纳米催化剂在乙酸乙酯中提供了温控相分离的特点,实现了“均相反应、多相分离”。该体系可以催化多种带不同官能团的底物的加氢反应。通过温控相分离,催化剂可以方便的与产物分离并回收。催化剂可以进行10次循环并没有任何活性降低。
     磺酸功能化的二氧化硅负载的Ru纳米催化剂(Ru/SiO2-SO3H)被用于一锅法转化纤维素制山梨醇。首先利用共价键将磺酸官能团嫁接到二氧化硅表面(SiO2-SO3H),然后将Ru纳米颗粒负载于SiO2-SO3H,制得的Ru/SiO2-SO3H是一个双功能催化剂,同时含有Br(?)nsted酸中心和金属中心。针对纤维素的氢解反应,Br(?)nsted酸用于催化水解纤维素制葡萄糖,Ru纳米颗粒用于催化加氢葡萄糖制山梨醇,从而实现一锅法转化纤维素制山梨醇。对比机械混合的SiO2-SO3H+SiO2-SO3H催化剂,双功能催化剂Ru/SiO2-SO3H可以得到更高的山梨醇产率,在150℃下反应10小时,山梨醇的产率达到61.2%。通过XPS和吡啶吸脱附红外的表征,在Ru/SiO2-SO3H上的磺酸官能团和Ru纳米颗粒之间存在相互作用。磺酸官能团和Ru纳米颗粒之间的相对位置对增加山梨醇的产率影响很大。由于磺酸官能团对Ru纳米颗粒的配位或中毒作用,山梨醇分子可能更容易从Ru的表面脱附,从而在某种程度上避免了进一步的副反应发生。另外,该催化剂可以重复使用五次仅有稍微的山梨醇产率下降。
In this work, several transition-metal nanocatalysts have been prepared. They were applied in catalytic hydrogenation reactions and showed satisfactory results. The highly water-soluble palladium nanoparticles (NPs) were synthesized by using the amphiphilic poly(ethylene glycol)-functionalized dicationic imidazolium-based ionic liquid ([C12Im-PEG]Cl2) as a stabilizing agent. The aqueous dispersed palladium NPs in the range of1.9±0.3nm were observed by transmission electron microscopy (TEM). The physicochemical properties of [C12Im-PEG]Cl2in aqueous phase have been characterized by surface tension and Dynamic Light Scattering (DLS) measurements. It was demonstrated that the amphiphilic ionic liquid could form micelles above its critical micelle concentration (CMC) in aqueous solution and the micelles played a crucial role in stabilizing palladium NPs and thus promoted the catalytic hydrogenation. Furthermore, the dicationic ionic liquid can act also as a Gemini surfactant and generated emulsion between hydrophobic substrates and catalytic aqueous phase during the reaction. The aqueous dispersed palladium NPs showed efficient activity for the catalytic hydrogenation of various substrates under very mild conditions and the stabilizing Pd(0) nanoparticles (NPs) could be reused at least eight times with a complete conservation of activity.
     The use of transition metal nanoparticles/ionic liquid (IL) as a thermoregulated and recyclable catalytic system for hydrogenation has been investigated under mild condition. The functionalized ionic liquid was composed of poly(ethylene glycol)-functionalized alkylimidazolium as cation and tris-meta-sulfonato-phenylphosphine (P(C6H4-m-SO3-)3) as anion ([C12Im-PEG]1.5[tppt]). Simultaneously, ethyl acetate was chosen as the thermomorphic solvent to overcome the drawbacks like usage of toxic organic solvents in this contribution. Due to the cooperative effect regulated both cation and anion of ionic liquid, the nano-catalysts revealed distinguished temperature-dependent phase behavior and excellent catalytic properties, such as catalytic stability, activity and selectivity. For the hydrogenation of α,β-unsaturated aldehydes, palladium and rhodium nanopartciles stabilized by ionic liquid exhibited higher selectivity for the hydrogenation of the C=C bonds than the commercial catalyst (Pd/C and Rh/C). We believed that the anion of the ionic liquid, P(C6H4-m-SO3-)3, played a role in modification of the metal nanopaticles through the coordination capacity, changing the surrounding electronic characteristics of nanoparticles, while the poly(ethylene glycol)-functionalized alkylimidazolium cation provided the thermomorphic properties for the nano-catalysts in ethyl acetate. The present catalytic systems can be employed for the hydrogenation of a wide range of the substrates with different functional groups. The catalysts could be easily separated from products by phase separation and efficiently recycled ten times without significant changes in the catalytic activity.
     Sulfonic acid-functionalized silica-supported ruthenium catalyst (Ru/SiO2-SO3H) was employed for the hydrogenolysis of cellulose in a one-pot in neutral water medium. Ru/SiO2-SO3H was a bifunctional catalyst containing both Br(?)nsted acidic site and metal site (Ru). Compared with the mechanical mixture of silica-supported Br(?)nsted acid (SiO2-SO3H) and silica-supported Ru catalyst (Ru/SiO2), the bifunctional catalyst showed much higher yield to sorbitol, which can reach up to61.2%when the reaction was performed for10h at150℃. Through the characterizations of XPS and pyridine-adsorbed FT-IR, it was observed the existence of the interaction between sulfonic groups and Ru nanoparticles in Ru/SiO2-SO3H catalyst. The sulfonic acid groups and metal sites in the adjacent position were important for enhancing the yield of sorbitol. In addition, the present catalyst can be reused five times with only a slight decrease in yield of sorbitol in the consecutive recycles.
引文
[1]B6nnemann H., Richards R. M. Nanoscopic metal particles-Synthetic methods and potential applications [J]. European Journal of Inorganic Chemistry.2001,2001(10): 2455-2480.
    [2]Schmid G., Chi L. F. Metal clusters and colloids [J]. Advanced Materials.1998,10(7): 515-526.
    [3]Aiken J. D. Ⅲ, Finke R. G. A review of modern transition-metal nanoclusters:their synthesis, characterization, and applications in catalysis [J]. Journal of Molecular Catalysis A: Chemical.1999,145(1-2):1-44.
    [4]Roucoux A., Schulz J., Patin H. Reduced transition metal colloids:A novel family of reusable catalysts [J]. Chemical Reviews.2002,102(10):3757-3778.
    [5]Wilcoxon J. P., Abrams B. L. Synthesis, structure and properties of metal nanoclusters [J]. Chemical Society Reviews.2006,35:1162-1194.
    [6]Philippot K., Chaudret B. Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles [J]. Comptes Rendus Chimie.2003,6(8-10):1019-1034.
    [7]Cushing B. L., Kolesnichenko V. L., O'Connor C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles [J]. Chemical Reviews.2004,104(9):3893-3946.
    [8]Turkevich J., Kim G Palladium:preparation and catalytic properties of particles of uniform size [J]. Science.1970,169(3948):873-879.
    [9]Turkevich J., Stevenson P. C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discussions of the Faraday Society.1951,11:55-75.
    [10]Fukuoka A., Sato A., Kodama K., Hirano M., Komiya S. Synthesis of organo(siloxo)platinum and palladium complexes and preparation of supported nanoclusters by facile ligand reduction [J]. Inorganic Chimica Acta.1999,294:266-274.
    [11]Prechtl M. H. G, Scariot M., Scholten J. D., Machado G, Teixeira S. R., Dupont J. Nanoscale Ru(0) particles:Arene hydrogenation catalysts in imidazolium ionic liquids [J]. Inorganic Chemistry.2008,47(19):8995-9001.
    [12]Prechtl M. H. G, Scholten J. D., Dupont J. Tuning the selectivity of ruthenium nanoscale catalysts with functionalised ionic liquids:Hydrogenation of nitriles [J]. Journal of Molecular Catalysis A:Chemical.2009,313(1-2):74-78.
    [13]Reetz M. T., Helbig W. Size-selective synthesis of nanostructured transition metal clusters [J]. Journal of the American Chemical Society.1994,116(16):7401-7402.
    [14]Klabunde K. J., Cardenas-Trivino G. Active metals:preparation, characterization, application [M]. Wiley-VCH:Weinheim,1996.
    [15]Reetz M. T., Helbig W., Quaiser S. A. Electrochemical preparation of nano-structural bimetallic clusters [J]. Chemistry of Materials,1995,7(12):2227-2228.
    [16]Klabunde K. J., Youngers G., Zuckerman E. J., Tan B. J., Antrim S., Sherwood P. M. Living colloidal metal particles in non-aqueous solvents as precursors for thin films by chemical liquid deposition (CLD). Gold coatings on glass, metals, silicon, and organic polymers employing organic and fluororganic solvents [J]. European Journal of Solid State and Inorganic Chemistry.1992,29:227-260.
    [17]Astruc D., Lu F., Aranzaes J. R. Nanoparticles as recyclable catalysts:The frontier between homogeneous and heterogeneous catalysis [J]. Angewandte Chemie International Edition.2005,44(48):7852-7872.
    [18]Collman J P, Kosydar K M, Bressan M, Lamanna W, Garrett T. Polymer-bound substrates:A method to distinguish between homogeneous and heterogeneous catalysis [J]. Journal of the American Chemical Society.1984,106(9):2569-2579.
    [19]Bard A. J., Faulkner L. R. Electrochemical methods:Fundamentals and applications [M]. Wiley:New York,1980.
    [20]Wilcoxon J. P., Martin J. E., Provencio P. Size distributions of gold nanoclusters studied by liquid chromatography [J]. Langmuir.2000,16(25):9912-9920.
    [21]Ott L. S., Hornstein B. J., Finke R. G. A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly(vinylprrolidone), as well as four other polymeric protectants [J]. Langmuir.2006,22(22):9357-9367.
    [22]Hirai H., Yakura N. Protecting polymers in suspension of metal nanoparticles [J]. Polymers for Advanced Technologies.2001,12(11-12):724-733.
    [23]Hoppe C. E., Lazzari M., Blanco I. P., Lopez-Quintela M. A. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent [J]. Langmuir. 2006,22(16):7027-7034.
    [24]Washio I., Xiong Y., Xia Y. Reduction by the end groups of poly(vinyl pyrrolidone):a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates [J]. Advanced Materials.2006,18(13):1745-1749.
    [25]Narayanan R., El-Sayed M. A. Effect of Catalysis on the Stability of Metallic nanoparticles:Suzuki reaction catalyzed by PVP-palladium nanoparticles [J]. Journal of the American Chemical Society.2003,125(27):8340-8347.
    [26]Li Y., Boone E., El-Sayed M. A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution [J]. Langmuir.2002,18(12):4921-4925.
    [27]Widegren J. A., Finke R. G. A. review of soluble transition-metal nanoclusters as arene hydrogenation catalysts [J]. Journal of Molecular Catalysis A:Chemical.2003,191(2): 187-207.
    [28]Konya Z., Puntes V. F., Kiricsi I., Zhu J., Alivisatos A. P., Somorjai G. A. Nanocrytal templating of silica mesopores with tunable pore sizes [J]. Nano Letters.2002,2(8):907-910.
    [29]Kayano T., Yonezawa Y., Shin C. Convenient synthesis of the main tridehydropentapeptide skeleton for a macrocyclic antibiotic, sulfomycin [J]. Chemistry Letters.2004,33(1):72-73.
    [30]Sakai T., Alexandridis P. Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature [J]. Langmuir.2004, 20(20):8426-8430.
    [31]Niesz K., Grass M., Somorjai G. A. Precise control of the Pt nanoparticle size by seeded growth using EO13PO13EO13 triblock copolymers as protective agents [J]. Nano letters.2005, 5(11):2238-2240.
    [32]Lai J. I., Shafi K. V. P. M., Ulman A., Loos K., Lee Y., Vogt T., Lee W., Ong N. P. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants [J]. The Journal of Physical Chemistry B.2005,109(1):15-18.
    [33]Esumi K. Dendrimers for nanoparticle synthesis and dispersion stabilization [J]. Topics in Current Chemistry.2003,227:31-52.
    [34]Uozumi Y., Nakao R., Rhee H. Development of an amphiphilic resin-dispersion of nanopalladium catalyst:design, preparation, and its use in aquacatalytic hydrodechlorination and aerobic oxidation [J]. Journal of Organometallic Chemistry.2007,692(1-3):420-427.
    [35]Nakao R., Rhee H., Uozumi Y. Hydrogenation and dehalogenation under aqueous conditions with an amphiphilic-polymer-supported nanopalladium catalyst [J]. Organic Letters.2005,7(1):163-165.
    [36]Uozumi Y., Nakao R. Catalytic oxidation of alcohols in water under atmospheric osygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst [J]. Angewandte Chemie International Edition.2003,42(2):194-197.
    [37]Uozumi Y, Nakao R. Catalytic oxidation of alcohols in water under atmospheric osygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst [J]. Angewandte Chemie International Edition.2003,115(2):204-207.
    [38]Astruc D. Dendrimers and nanoscience [M]. Elsevier:Paris,2003.
    [39]Newkkome G. R., Moorefield C. N., Vogtle F. Dendrimers and dendrons:concepts, synthesis, applications [M]. Wiley-VCH:Weinhein,2001.
    [40]Piotti M. E., Rivera F. J., Bond R., Hawker C. J., Frechet J. M. J. Synthesis and catalytic activity of unimolecular dendritic reverse micelles with "internal" functional groups [J]. Journal of the Americam Chemical Society.1999,121(40):9471-9472.
    [41]Gitsov I., Lin C. Dendrimers-nanoparticles with precisely engineered surfaces [J]. Current Organic Chemistry.2005,9(11):1025-1051.
    [42]Crooks R. M., Zhao M., Sun L., Chechik V., Yeung L. K. Dendrimer- encapsulated metal nanoparticles:synthesis, characterization, and applications to catalysis [J]. Accounts of Chemical Research.2001,34(3):181-190.
    [43]Crooks R. M., Lemon B. I. Ⅲ, Sun L., Yeung L. K., Zhao M. Dendrimer-encapsulated metal and semiconductors:synthesis, characterization, and applications [J]. Topics in Current Chemistry.2001,212:81-135.
    [44]Niu Y., Crooks R. M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis [J]. Comptes Rendus Chimie.2003,6(8-10):1049-1059.
    [45]Ye H., Scott R. W. J., Crooks R. M. Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers [J]. Lnagmuir.2004,20(7):2915-1920.
    [46]Yeung L. K., Crooks R. M. Heck heterocoupling within a dendritic nanoreactor [J]. Nano Letters.2001,1(1):14-17.
    [47]Scott R. W., Ye H., Henriquez R. R., Crooks R. M. Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles [J]. Chemistry of Materials.2003, 15(20):3873-3878.
    [48]Niu Y. Yeung L. K., Crooks R. M. Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles [J]. Journal of the American Chemical Society.2001,123(28):6840-6846.
    [49]Chechik V., Zhao M., Crooks R. M. Self-assembled inverted micelles prepared from a dendrimer template:phase transfer of encapsulated guests [J]. Journal of the American Chemical Society.1999,121(20):4910-4911.
    [50]Yeung L. K., Lee Jr C. T., Johnston K. P., Crooks R. M. Catalysis in supercritical CO2 using dendrimer-encapsulated palladium nanoparticles [J]. Chemical Communication.2001, (21):2290-2291.
    [51]Esumi K., Miyamoto K., Yoshimura T. Comparison of PAMAM-Au and PPI-Au nanocomposites and their catalytic activity for reduction of 4-nitrophenol [J]. Journal of Colloid and Interface Science.2002,254(2):402-405.
    [52]Nasar K., Fache F., Lemaire M., Beziat J. C., Besson M., Gallezot P. Stereoseletive reduction of disubstituted aromatics on colloidal rhodium [J]. Journal of Molecular Catalysis. 1994,87(1):107-115.
    [53]Bonnemann H., Chem D., Braun G. A. Enantioselective hydrogenations on platinum colloids [J]. Angewandte Chemie International Edition in English.1996,35(17):1992-1995.
    [54]Bonnemann H., Braun G. A. Enantioselectivity control with metal colloids as catalysts [J]. Chemistry-A European Journal.1997,3(8):1200-1202.
    [55]Ozkar S., Finke R. G. Nanocluster formation and stabilization fundamental studies: ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria [J]. Journal of the American Chemical Society.2002,124(20): 5796-5810.
    [56]Strimbu L., Liu J., Kaifer A. E. Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction [J]. Langmuir.2003,19(2):483-485.
    [57]Reetz M. T., Breinbauer R., Wanninger K. Suzuki and heck reactions catalyzed by preformed palladium clusters and palladium/nickel bimetallic clusters [J]. Tetrahedron Letters. 1996,37(26):4499-4502.
    [58]Reetz M. T., Helbig W., Quaiser S. A., Stimming U., Breuer N., Vogel R. Visualization of surfactants on nanostructured palladium cluster by a combination of STM and high-resolution TEM [J]. Science.1995,267(5196):367-369.
    [59]Reetz M. T., Winter M., Breinbauer R., Albrecht T. T., Vogel W. Size-selective electrochemical preparation of surfactant-stabilized Pd-, Ni- and Pt/Pd colloids [J]. Chemistry-A European Journal.2001,7(5):1084-1094.
    [60]Reetz M. T., Maase M. Redox-controlled size-selective fabrication of nanostructured transition metal colloids [J]. Advanced Materials.1999,11(9):773-777.
    [61]Pachon L. D., van Maarseveen J. H., Rothenberg G. Click chemistry:copper clusters catalyse the cycloaddition of azides with terminal alkynes [J]. Advanced Synthesis & Catalysis.2005,347(6):811-815.
    [62]Singla M. L., Negi A., Mahajan V, Singh K. C., Jain D. V S. Catalytic behavior of nickel nanoparticles stabilized by lower alkylammonium bromide in aqueous medium [J]. Applied Catalysis A:General.2007,323:51-57.
    [63]Oehme G, Grassert I., Paetzold E., Meisel R., Drexler K., Fuhrmann H. Comples catalyzed hydrogenation and carbon-carbon bond formation in aqueous micelles [J]. Coordination Chemistry Reviews.1999,185-186:585-600.
    [64]Heijinen J. H. M., Bruijn V. G, Broeke L. J. P., Keurentjes J. T. F. Micellar catalysis for selective epoxidations of linear alkenes [J]. Chemical Engineering and Processing:Process Intersification.2003,42(3):223-230.
    [65]Niessen H. G., Eichhorn A., Woelk K., Bargon J. Homogeneous hydrogenation in superdritical fluids mediated by colloidal catalysts [J]. Journal of Molecular Catalysis A: Chemical.2002,182-183:463-470.
    [66]Dwars T., Haberland J., Grassert I., Oehme G, Kragi U. Asymmetric hydrogenation in a membrane reactor:recycling of the chiral catalyst by using a retainable micellar system [J]. Journal of Molecular Catalysis A:Chemical.2001,168(1-2):81-86.
    [67]Seregina M. V., Bronstein L. M., Platonova O. A., Chernyshov D. M., Valetsky P. M., Hartmann J., Wenz E., Antonietti M. Preparation of noble-metal colloids in block copolymer micelles and their catalytic properties in hydrogenation [J]. Chemistry of Materials.1997, 9(4):923-931.
    [68]Boutonnet M., Kizling J., Mintsa-Eya V., Choplin A., Touroude R., Maire G., Stenius P. Monodisperse colloidal metal particles from nonaqueous solutions:catalytic behavior in hydrogenation of but-1-ene of platinum, palladium, and rhodium particles supported on pumice [J]. Journal of Catalysis.1987,103(1):95-104.
    [69]Pileni M. P., Hickel B., Ferradini C., Pucheault J. Hdyrated electron in reverse micelles [J]. Chemical Physics Letters.1982,92(3):308-312.
    [70]Taleb A., Petit C., Pileni M. P. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles:a way to 2D and 3D self-organication [J]. Chemistry of Materials. 1997,9(4):950-959.
    [71]Calandra P., Giordano C., Longo A., Livert T. Physicochemical investigation of surfactant-coated gold nanoparticles synthesized in the confined space of dry reversed micelles [J]. Materials Chemistry and Physics.2006,98(2-3):494-499.
    [72]Lang H., May R. A., Iversen B. L., Chandler B. D. Dendrimer-encapsulated nanoparticle precursors supported platinum catalysts [J]. Journal of the American Chemical Society.2003, 125(48):14832-14836.
    [73]Kormann H. P., Schmid G., Pelzer K., Philippot K., Chaudret B. Gas phase catalysis by metal nanoparticles in nanoporous alumina membranes [J]. Zeitschrift anorganische und allgenmeine Chemie.2004,630(12):1913-1918.
    [74]Guczi J., Beck A., Horvath A., Koppany Z., Stefler G., Frey K., Sajo I., Geszti O., Bazin D., Lynch J. AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation [J]. Journal of Molecular Catalysis A:Chemical.2003, 204-205:545-552.
    [75]Prockl S. S., Kleist W., Gruber M. A., Kohler K. In situ generation of highly active dissolved palladium species from solid catalysts-A concept for the activation of aryl chlorides in the heck reaction [J]. Angewandte Chemie International Edition.2004,43(14):1881-1882.
    [76]Park K. H., Son S. U., Chung Y. K. Sequential actions of palladium and cobalt nanoparticles immobilized on silica:one-pot synthsis of bicyclic enones by catalytic allylic alkylation and pauson-khand reaction [J]. Organic Letters.2002,4(24):4361-4363.
    [77]Kim S. W., Kim M., Lee W. Y., Hyeon T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions [J]. Journal of the American Chemical Society.2002,124(26):7642-7643.
    [78]Hori K., Matsune H., Takenaka S., Kishida M. Preparation of silica-coated Pt metal nanoparticles using microemulsion and their catalytic performance [J].Science and Technology of Advanced Materials.2006.7:678-684.
    [79]Huang J., Jiang T., Gao H., Han B., Liu Z., Wu W., Chang Y., Zhao G. Pd nanoparticles immobilized on molecular sieves by ionic liquids:heterogeneous catalysts for solvent-free hydrogenation [J]. Angewandte Chemie International Edition.2004,43(11):1397-1399.
    [80]Riahi G., Guillemot D., Polisset-Thfoin M., Khodadadi A. A., Fraissard J. Preparation, characterization and catalytic activity of gold-based nanoparticles on HY zeolites [J]. Catalysis Today.2002,72(1-2):115-121.
    [81]Das D. D., Sayari A. Applications of pore-expanded mesoporous silica 6. Novel synthesis of monodispersed supported palladium nanoparticles and their catalytic activity for Suzuki reaction [J]. Journal of Catalysis.2007,246(1):60-65.
    [82]Su F., Lv L., Lee F. Y., Liu T., Cooper A. I., Zhao X. S. Thermally reduced ruthenium nanoparticles as a highly activity heterogeneous catalyst for hydrogenation of monoaromatics [J]. Journal of the American Chemical Society.2007,129(46):14213-14223.
    [83]Borsla A., Wilhelm A. M., Delmas H. Hydrogenation of olefins in aqueous phase, catalyzed by polymer-protected rhodium colloids:kinetic study [J]. Catalysis today,2001, 66(2):389-395.
    [84]Mayer A. B. R., Mark J. E. Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems [J]. Colloid and Polymer Science.1997,275(4): 333-340.
    [85]Zhao M., Crooks R. M. Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles [J]. Angewandte Chemie International Edition in English.1999,38,364-366.
    [86]Zhao M., Sun L. Crooks R. M. Dendrimer-encapsulated transition metal nanoclusters: synthesis, characterization, and applications to catalysis [J]. Polymer Preprprints.1999,40(1), 400-401.
    [87]Chechik V., Crooks R. M. Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts [J]. Journal of the American Chemical Society.2000,122(6): 1243-1244.
    [88]Yu W. Y., Liu H. F., Tao Q. Modification of metal cations to metal clusters in liquid medium[J]. Chemical Communications.1996, (15):1773-1774.
    [89]Yu W., Liu H., Liu M., Tao Q. Selective hydrogenation of α,β-unsaturated aldehyde to α, β-unsaturated alcohol over polymer-stabilized platinum colloid and the promotion effect of metal cations [J]. Journal of Molecular Catalysis A:Chemical.1999,138(2-3):273-286.
    [90]Feng H., Liu H. The metal complex effect on metal clusters in liquid medium [J]. Journal of Molecular Catalysis A:Chemical.1997,126(1):L5-L8.
    [91]Yu W., Wang Y., Liu H., Zheng W. Preparation and characterization of polymer-protected Pt/Co bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde [J]. Journal of Molecular Catalysis A:Chemical.1996, 112(1):105-113.
    [92]Yu W. Y., Wang Y., Liu H. F., Zheng W. Preparation of polymer-protected Pt/Co bimetallic colloid and its catalytic properties in selective hydrogenation of cinnamaldehyde to cinnamyl alcohol [J]. Polymers for Advanced Technologies,1996,7(8):719-722.
    [93]Yu W., Liu H., An X. Novel catalytic properties of supported metal nanoclusters [J]. Journal of Molecular Catalysis A:Chemical.1998,129(1):L9-L13.
    [94]Yu W., Liu H., An X., Ma X., Liu Z., Qiang L. Modification of metal cations to the supported metal colloid catalysts [J]. Journal of Molecular Catalysis A:Chemical.1999, 147(1-2):73-81.
    [95]Mitsudome T., Matoba M., Mizugaki T., Jitsukawa K., Kaneda K. Core-shell AgNP@CeO2 nanocomposite catalyst for highly chemoselective reductions of unsaturated aldehydes [J]. Chemistry-A European Journal.2013,19(17):5255-5258.
    [96]Mitsucome T., Matoba M., Yamamoto M., Mizugaki T., Jitskawa K., Kaneda K. Remarkable effect of bases on core-shell AgNP@CeO2 nanocomposite-catalyzed highly chemoselective reduction of unsaturated aldehydes [J]. Chemistry Letters.2013,42(6): 660-662.
    [97]Zahmakiran M., Tonbul Y., Ozkar S. Ruthenium(0) Nanoclusters Stabilized by a Nanozeolite Framework:Isolable, Reusable, and Green Catalyst for the Hydrogenation of Neat Aromatics under Mild Conditions with the Unprecedented Catalytic Activity and Lifetime [J]. Journal of the American Chemical Society.2010,132(18):6541-6549.
    [98]Widegren J. A., Finke R. G. A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts [J]. Journal of Molecular Catalysis A:Chemical.2003,191(2): 187-207.
    [99]RoucouxA. Stabilized noble metal nanoparticles:an unavoidable family of catalysts for arene derivative hydrogenation [J]. Topics in Organometallic Chemistry.2005,16:261-279.
    [100]Roucoux A., J. Schultz and H. Patin, Reduced Transition Metal Colloids:A Novel Family of Reusable Catalysts? [J]. Chemical Reviews.2002,102(10):3757-3778.
    [101]Stanislaus A., Cooper B. H. Aromatic Hydrogenation Catalysis:A Review [J]. Caralysis Reviews:Science and Engineering.1994,36(1):75-123.
    [102]Nakamula I., Yamanoi Y., Imaoka T., Yamamoto K., Nishihara H. A Uniform Bimetallic Rhodium/Iron Nanoparticle Catalyst for the Hydrogenation of Olefins and Nitroarenes [J]. Angewandt Chemie International Edition.2011,123(26):5952-5922.
    [103]Bai X., Gao Y., Liu H., Zheng L. Synthesis of amphiphilic ionic liquids terminated gold nanorods and their superior catalytic activity for the reduction of Nitro compounds [J]. Journal of Physical Chemistry C.2009,113(26):17730-17736.
    [104]Alonso D. M., Wettstein S. G., Dumesic J. A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals [J]. Chemical Society Reviews.2012,41:8075-8098.
    [105]Vyver S. Van de, Geboers J., Jacobs P. A., Sels B. F. Recent advances in the catalytic conversion of cellulose [J]. ChemCatChem.2011,3(1):82-94
    [106]Wang J., Ren J., Liu X., Xi J., Xia Q., Zu Y., Lu G., Wang Y. Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst [J]. Green Chemistry.2012, 14(9):2506-2512.
    [107]Kusserow B., Schimpf S., Claus P. Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts [J]. Advanced Synthesis & Catalysis.2003,345(1-2):289-299.
    [108]Hoffer B.W., Crezee E., Devred F., Mooijman P. R. M., Sloof W. G., Kooyman P. J., van Langeveld A. D., Kapteijn F., Moulijn J. A. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of d-glucose to d-sorbitol [J]. Applied Catalysis A: General.2003,253(28):437-452
    [109]Hoffer B.W., Crezee E., Devred F., Mooijman P. R. M., Sloof W. G., Kooyman P. J., Langeveld A. D. van, Kapteijn F., Moulijn J.A. Carbon supported Ru catalysts as promising alternative for Raney-type Ni in the selective hydrogenation of d-glucose [J]. Catalysis Today. 2003,79-80 (30):35-41
    [110]Fukuoka A., Dhepe P. L. Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie International Edition.2006,45(31):5161-5163.
    [111]Han J. W., Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution [J]. Catalysis Communications.2012,19:115-118.
    [112]Earle M. J., Esperanc J. M. S. S., Gilea M. A., Canongia L. J. N., Rebelo L. P. N., Magee J. W., Seddon K. R., Widegren J. A. The distillation and volatility of ionic liquids [J]. Nature.2006,439:831-834.
    [113]Fannin A. A., Floreani D. A., King L. A. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids.2. Phase transitions, densities, electrical conductivities and viscosities [J]. Journal of Physical Chemistry B.1984,88(12):2614-2621.
    [114]Bonhote P., Dias A. P., Papageorgiou N. Hydrophobic highly conductive ambient-temperature molten salts [J]. Inorganic Chemistry.1996,35(5):1168-1178.
    [115]Quarmby I. C., Osteryoung R. A. Latent acidity in buffered chloroaluminate ionic liquids [J]. Journal of the American Chemical Society.1994,116(6):2649-2650.
    [116]Varma R. S., Namboodiri V. V. An expeditious solvent-free route to ionic liquids using microwaves [J]. Chemical Communications.2001, (7):643-644.
    [117]Namboodiri V. V., Varma R. S. Solvent-free sonochemical preparation of ionic liquids [J]. Organic Letters.2002,4(18):3161-3163.
    [118]King Jr J. A. Extractive method for the preparation of quaternary salts. US:5705696, 1998.
    [119]Bosmann A., Datsevich L., Jess A., Lauter A., Schmitz C., Wasserscheid P. Deep desulfurization of disel fuel by extraction with ionic liquids [J]. Chemical Communications. 2001, (23):2494-2495.
    [120]Cole A. C., Jensen J. L., Ntai I., Tran K. L. Y., Weaver K. J., Forbes D. C., Davis J. H., Jr. Novel Bronsted acidic ionic liquids and their use as dual solvent-catalysts [J]. Journal of the American Chemical Society.2002,124(21):5962-5963.
    [121]Arfan A., Bazureau J. P. Efficient combination of recyclable task specific ionic liquid and microwave dielectric heating for the synthesis of lipophilic esters [J]. Organic process research & development.2005,9(6):743-748.
    [122]Zhao G., Jiang T., Gao H., Han B., Huang J., Sun D. Mannich reaction using acidic ionic liquids as catalysts and solvents [J]. Green Chemistry.2004,6(2):75-77.
    [123]Guo S., Du Z., Zhang S., Li D., Li Z., Deng Y. Clean Beckmann rearrangement of cyclohexanone oxime in caprolactam-based Br(?)nsted acidic ionic liquids [J]. Green Chemistry.2006,8(3):296-300.
    [124]Weng J., Wang C., Li H., Wang Y. Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction [J]. Green Chemistry.2006,8(1): 96-99.
    [125]Tait S., Osteryoung R. A. Cofacial assembly of partially oxidized metallomacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids: Synthesis and properties of cofacially joined silicon and germanium hemiporphyrazine polymers [J]. Inorganic Chemistry.1984,23(25):4352-4360.
    [126]Kumar A., Pawar S. S. AlCl3-catalysed dimerization of 1,3-cyclopentadiene in the chloroaluminate room temperature ionic liquid [J]. Journal of Molecular Catalysis A: Chemical.2004,208(1-2):33-37.
    [127]Lee C. W. Diels-Alder reactions in chloroaluminate ionic liquids:acceleration and selectivity enhancement [J]. Tetrahedron letters.1999,40(13):2461-2464.
    [128]Abbott A. P., Capper G., Davies D. L., Munro H. L., Rasheed R. K., Tambyrajah V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains [J]. Chemical Communications.2001, (19): 2010-2011.
    [129]Liu S., Xie C., Yu S., Xian M., Liu F. A Br(?)nsted-Lewis Acidic Ionic Liquid:Its Synthesis and Use as the Catalyst in Rosin Dimerization [J]. Chinese Journal of Catalysis. 2009,30(5):401-406.
    [130]Liu L. L., Chen C. C., Hu X. F., Mohamood T., Ma W. H., Lin J., Zhao J. C. A role of ionic liquid as an activator for efficient olefin epoxidation catalyzed by polyoxometalate [J|. New Journal of Chemistry.2008,32(2):283-289.
    [131]Scheeren C. W., Machado G., Teixeira S. R., Morais J., Domingos J. B., Dupont J. Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids [J]. Journal of Physical Chemistry B.2006,110(26):13011-13020.
    [132]Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions [J]. Journal of the American Chemical Society.2002, 124(16):4228-4229.
    [133]Redel, E.; Thomann, R.; Janiak, C. First Correlation of Nanoparticle Size-Dependent Formation with the Ionic Liquid Anion Molecular Volume [J]. Inorganic Chemistry.2008, 47(1):14-16.
    [134]Durand, J.; Teuma, E.; Malbosc, F.; Kihn, Y.; Gomez, M. Palladium nanoparticles immobilized in ionic liquid:An outstanding catalyst for the Suzuki C-C coupling [J]. Catalysis Communications.2008,9(2):273-275.
    [135]Gelesky, M. A.; Umpierre, A. P.; Machado, G.; Correia, R. R. B.; Magno, W. C.; Morais, J.; Ebeling, G.; Dupont, J. Laser-Induced Fragmentation of Transition Metal Nanoparticles in Ionic Liquids [J]. Journal of the American Chemical Society.2005,127 (13): 4588-4589.
    [136]Prechtl, M. H. G.; Scariot, M.; Scholten, J. D.; Machado, G.; Teixeira, S. R.; Dupont, J. Nanoscale Ru(0) particles:Arene hydrogenation catalysts in imidazolium ionic liquids [J]. Inorganic Chemistry.2008,47 (19):8995-9001.
    [137]Prechtl, M. H. G.; Scholten, J. D.; Dupont, J. Tuning the selectivity of ruthenium nanoscale catalysts with functionalised ionic liquids:Hydrogenation of nitriles [J]. Journal of Molecular Catalysis A:Chemical.2009,313(1-2):74-78.
    [138]Umpierre, A. P.; Machado, G.; Fecher, G. H.; Morais, J.; Dupont, J. Selective hydrogenation of 1,3-butadiene to 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids [J]. Advanced Synthesis & Catalysis.2005,347(10):1404-1412.
    [139]Redel, E.; Kramer, J.; Thomann, R.; Janiak, C. Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquidsand their use as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene [J]. Journal of Organometallic Chemistry.2009,694(7-8): 1069-1075.
    [140]Hu Y., Yu Y., Hou Z., Li H., Zhao X., Feng B. Biphasic hydrogenation of olefins by functionalized ionic liquid-stabilized palladium nanoparticles [J]. Advanced Synthesis & Catalysis.2008,350(13):2077-2085.
    [141]Hu Y., Yang H. M., Zhang Y. C., Hou Z. S., Wang X. R., Qiao Y. X., Li H., Feng B., Huang Q. F. The functionalized ionic liq-uid-stabilized palladium nanoparticles catalyzedselective hydro-genation in ionic liquid [J]. Catalysis Communications.2009, 10(14):1903-1907.
    [142]Hu Y., Yu Y. Y., Hou Z. S., Yang H. M., Feng B., Li H., Qiao Y. X., Wang X. R., Hua L., Pan Z. Y., Zhao X. G. Ionic Liquid immobilized Nikel(0) nanoparticles as stable and highly efficient catalysts for selective hydrogenation in the aqueous phase [J]. Chemistry-An Asian Journal.2010,5(5):1178-1184.
    [143]Itoh H., Naka K., Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation [J]. Journal of the American Chemical Society.2004, 126(10):3026-3027.
    [144]Zhao D. B., Fei Z. F., Geldbach T. J., Scopelliti R., Dyson P. J. Nitrile-functionalized pyridinium ionic liquids:Synthesis, Characterization, and their application in carbon-carbon coupling reactions [J]. Journal of the American Chemical Society.2004,126(48): 15876-15882.
    [145]Zhao D. B., Fei Z. F., Scopelliti R., Dyson P. J. Synthesis and characterization of ionic liquids incorporating the nitrile functionality [J]. Inorganic Chemistry.2004,43(6), 2197-2205.
    [146]Dubbaka S. R., Zhao D. B., Fei Z. F., Volla C. M. R., Dyson, P. J., Vogel, P. Palladium-catalyzed desulfitative mizoroki-heck coupling reactions of sulfonyl chlorides with olefins in a nitrile-functionalized ionic liquid [J]. Synlett.2006, (18):3155-3157.
    [147]Yang X., Fei Z. F., Zhao D. B., Ang W. H., Li Y. D., Dyson P. J. Palladium nanoparticles stabilized by an ionic polymer and ionic liquid:A versatile system for C-C cross-coupling reactions [J]. Inorganic Chemistry.2008,47(8):3292-3297.
    [148]Neouze M. A. About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials [J]. Journal of Materials Chemistry.2010,20(43): 9593-9607.
    [149]Dukhin A. S., Goetz P. J. Ultrasound for characterizing colloids. Particle sizing, zeta potential, rheology [M]. Elsevier:Chichester, U.K.,2002.
    [150]Alvarez-Puebla R. A., Arceo E., Goulet P. J. G., Garrido J. J., Aroca R. F. Role of nanoparticle surface charge in surface-enhanced raman scattering [J]. Journal of Physical Chemistry B.2005,109 (9):3787-3792.
    [151]Schrekker H. S., Gelesky M. A., Stracke M. P., Schrekker C. M. L., Machado G., Teixeira S. R., Rubim J. C., Dupont J. Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles [J]. Journal of Colloids Interface Science.2007,316(1):189-195.
    [152]Zhang H., Cui H. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/ carbon nanotube hybrids [J]. Langmuir.2009,25(5):2604-2612.
    [153]Liu G., Hou M. Q., Song J. Y., Jiang T., Fan H. L., Zhang Z. F., Han B. X. Immobilization of Pd nanoparticles with functional ionic liquid grafted onto cross-linked polymer for solvent-free Heck reaction [J]. Green Chemistry.2010,12(1):65-69.
    [154]Mu X. D., Meng J. Q., Li Z. C., Kou Y. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids:Long lifetime nanocluster catalysts for benzene hydrogenation [J]. Journal of the American Chemistry Society.2005,127(27):9694-9695.
    [155]Gua Y. L., Li G. X. Ionic Liquids-Based Catalysis with Solids:State of the Art. Advanced Synthesis & Catalysis.2009,351(6):817-847.
    [156]Rodriguez-Perez L., Teuma E., Falqui A., Gomez M., Serp P. Supported ionic liquid phase catalysis on functionalized carbon nanotubes [J]. Chemical Communications.2008, (35):4201-4203.
    [157]Mehnert C. P. Supported ionic liquid catalysis [J]. Chemistry-A European Journal.2005, 11(1):50-56.
    [158]Riisager A., Fehrmann R., Haumann M., Wasserscheid P. Supported ionic liquid phase (SILP) catalysis:An innovative concept for homogeneous catalysis in continuous fixed-bed reactors [J]. European Journal of Inorganic Chemisrey.2006,2006(4):695-706.
    [159]Riisager A., Fehrmann R., Flicker S., Hal R., Haumann M., Wasserscheid P. Very stable and highly regioselective supported ionic-liquid-phase (SILP) catalysis: Continuous-flow fixed-bed hydroformylation of propene [J]. Angewandte Chemie Internatioanl Edition.2005,44(5):815-819.
    [160]Huang J., Jiang T., Gao H. X., Han B. X., Liu Z. M., Wu W. Z., Chang Y. H., Zhao G. Y. Pd nanoparticles immobilized on molecular sieves by ionic liquids:heterogeneous catalysts for solvent-free hydrogenation [J]. Angewandte Chemie International Edition.2004, 43(11):1397-1399.
    [161]Miao S. D., Liu Z. M., Han B. X., Huang J., Sun Z. Y., Zhang J. L., Jiang T. Ru nanoparticles immobilized on montmorillonite by ionic liquids:A highly efficient heterogeneous catalyst for the hydrogenation of benzene [J]. Angewandte Chemie International Edition.2006,45(2):266-269.
    [162]Arras J., Steffan M., Shayeghi Y., Claus P. The promoting effect of a dicyanamide based ionic liquid in the selective hydrogenation of citral [J]. Chemical Communications. 2008, (34):4058-4060.
    [163]Roucoux A., Schulz J., Patin H. Reduced transition metal colloids:A novel family of reusable catalysts? [J]. Chemical Reviews.2002,102(10):3757-3778.
    [164]Glaspell G., Hassan H. M. A., Elzatahry A., Fuoco L., Radwan N. R. E., El-Shall M. S. Nanocatalysis on tailored shape supports:Au and Pd nanoparticles supported on MgO nanocubes and ZnO nanobelts [J]. Journal of Physical Chemistry B.2006,110(43): 21387-21393.
    [165]Yamada Y. M. A., Arakawa T., Hocke H., Uozumi Y. A nanoplatinum catalyst for aerobic oxidation of alcohols in water [J]. Angewandte Chemie International Edition.2007, 46(5):704-706.
    [166]Nowicki A., Boulaire V. L., Roucoux A. Nanoheterogeneous catalytic hydrogenation of arenes:Evaluation of the surfactant-stabilized aqueous Ruthenium(0) colloidal suspension [J]. Advanced Synthesis & Catalysis.2007,349(14-15):2326-2330.
    [167]Aiken J. D., Finke R. G. Polyoxoanion- and tetrabutylammonium-stabilized Rh(0)(n) nanoclusters:Unprecedented nanocluster catalytic lifetime in solution [J]. Journal of the American Chemical Society.1999,121(38):8803-8810.
    [168]Zhao M., Sun L., Crooks R. M. Preparation of Cu nanoclusters within dendrimer templates [J]. Journal of the American Chemical Society.1998,120(19):4877-4878.
    [169]Jansat S., Gomez M., Philippot K., Muller G., Guiu E., Claver C., Castillon S., Chaudret B. A case for enantioselective allylic alkylation catalyzed by palladium nanoparticles [J]. Journal of the American Chemical Society.2004,126(6):1592-1593.
    [170]Astruc D., Lu F., Aranzaes J. R. Nanoparticles as recyclable catalysts:The frontier between homogeneous and heterogeneous catalysis [J]. Angewandte Chemie International Edition.2005,44(48):7852-7872.
    [171]Son S. U., Jang Y., Yoon K. Y., Kang E., Hyeon T. Facile synthesis of various phosphine-stabilized monodisperse palladium nanoparticles through the understanding of coordination chemistry of the nanoparticles [J]. Nano Letters.2004,4(6):1147-1151.
    [172]Migowski P., Dupont J. Catalytic applications of metal nanoparticles in imidazolium ionic liquids [J]. Chemistry-A European Journal.2007,13(1):32-32.
    [173]Fonseca G. S., Umpierre A. P., Fichtner P. F. P., Teixeira S. R., Dupont J. The use of inidazolium ionic liquids for the formation and stabilization of IrO and RhO nanoparticles: efficient catalysts for the hydrogenation of arenes [J]. Chemistry-A European Journal.2003, 9(14):3263-3269.
    [174]Xue X., Lu T., Liu C, Xu W., Su Y., Lv Y., Xing W. Novel preparation method of Pt-Ru/C catalyst using imidazolium ionic liquid as solvent [J]. Electrochima Acta,2005, 50(16-17):3470-3478.
    [175]Calo V., Nacci A., Monopoli A., Montingelli F. Pd nanoparticles as efficient catalysts for Suzuki and Stille coupling reactions of aryl halides in ionic liquids [J]. Journal of Organic Chemistry.2005,70(15):6040-6044.
    [176]Umpierre A. P., Machado G., Fecher G. H., Morais J., Dupont J. Selective hydrogenation of 1,3-butadiene to 1-Butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids [J]. Advanced Synthesis & Catalysis.2005,347(10):1404-1412.
    [177]Visser A. E., Swatloski R. P., Reichert W. M, Mayton R., Sheff S., Wierzbicki A., Davis J. H., Rogers R. D. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions [J]. Chemical Communications.2001,1:135-136.
    [178]Chisholm D. M., McIndoe J. S. Charged ligands for catalyst immobilisation and analysis [J]. Dalton Transactions.2008, (30):3933-3945.
    [179]Yang X., Fei Z., Zhao D., Ang W. H., Li Y., Dyson P. J. Palladium nanoparticles stabilized by an ionic polymer and ionic liquid:A versatile system for C-C cross-coupling reactions [J]. Inorganic Chemistry.2008,47(8):3292-3297.
    [180]Hu Y., Yu Y., Hou Z., Li H., Zhao X., Feng B. Biphasic hydrogenation of olefins by functionalized ionic liquid-stabilized palladium nanoparticles [J]. Advanced Synthesis & Catalysis.2008,350(13):2077-2085.
    [181]Hu Y., Yang H., Zhang Y., Hou Z., Wang X., Qiao Y., Li H., Feng B., Huang Q. The functionalized ionic liquid-stabilized palladium nanoparticles catalyzed selective hydrogenation in ionic liquid [J]. Catalysis Communications.2009,10(14):1903-1907.
    [182]Schulz J., Roucoux A., Patin H. Stabilized rhodium(0) nanoparticles:A reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system [J]. Chemistry-A European Journal.2000,6(4):618-624.
    [183]Lu F., Liu J., Xu J. Fast aqueous/organic hydrogenation of arenes, olefins and carbonyl compounds by poly(N-vinylpyrrolidone)-Ru as amphiphilic microreactor system [J]. Advanced Synthesis & Catalysis.2006,348(7-8):857-861.
    [184]Zhang R., Ding W., Tu B., Zhao D. Mesoporous silica:An efficient nanoreactor for liquid-liquid biphase reactions [J]. Chemistry of Materials.2007,19(18):4379-4381.
    [185]Bergbreiter D. E., Sung S. D. Liquid/liquid biphasic recovery/reuse of soluble polymier-supported catalysts [J]. Advanced Synthesis & Catalysis.2006,348(12-13): 1352-1366.
    [186]Hu Y., Yu Y., Hou Z., Yang H., Feng B., Li H., Qiao Y., Wang X., Hua L., Pan Z., Zhao X. Ionic Liquid Immobilized Nickel(0) Nanoparticles as Stable and Highly Efficient Catalysts for Selective Hydrogenation in the Aqueous Phase [J]. Chemistry-An Asian Journal. 2010,5(5):1178-1184.
    [187]Singla M. L., Negi N., Mahajan V., Singh K. C., Jain D. V. S. Catalytic behavior of nickel nanoparticles stabilized by lower alkylammonium bromide in aqueous medium [J]. Applied Catalysis A.2007,323:51-57.
    [188]Boyer B., Hambardzoumian A., Roquea J. P., Beylerianb N. Reaction in biphasic water/organic solvent system in the presence of surfactant:Inverse phase transfer catalysis versus interfacial catalysis [J]. Tetrahedron.2000,56(2):303-307.
    [189]Menger F. M., Keiper J. S. Gemini surfactants [J]. Angewandte Chemie International Edition.2000,39:1906-1920.
    [190]Briggs D., Seah M.P. in Practical Surface Analysis, John Wiley and Sons, Chischester, 2nd edn.,1990, vol.1.
    [191]Ariyaprakai S., Dungan S. R. Contribution of molecular pathways in the micellar solubilization of monodisperse emulsion droplets [J]. Langmuir.2008,24(7):3061-3069.
    [192]Kumar S., Sharma D., Ghosh G., Kabir-ud-Din. Structural modifications of aqueous ionic micelles in the presence of denaturants as studied by DLS and viscometry [J]. Langmuir. 2005,21(21):9446-9450.
    [193]Bonnemann H., Braun G., Brijoux W., Brinkmann R., Tilling A. S., Seevogel K., Siepen K. Nanoscale colloidal metals and alloys stabilized by solvents and surfactants-Preparation and use as catalyst precursors [J]. Journal of Organometallic Chemistry.1996,520(1-2): 143-162.
    [194]Vriezema D. M., Aragones M. C., Elemans J. A. A. W., Cornelissen J. L. M., Rowan A. E., Nolte R. J. M. Self-assembled nanoreactors [J]. Chemical Reviews.2005,105(4): 1445-1489.
    [195]Beletskaya I. P., Kashin A. N., Litvinov A. E., Tyurin V. S., Valetsky P. M., van Koten G. Palladium colloid stabilized by block copolymer micelles as an efficient catalyst for reactions of C-C and C-heteroatom bond formation [J]. Organometallics.2006,25(1): 154-158.
    [196]Zhang H., Cui H. Synthesis and Characterization of Functionalized Ionic Liquid-Stabilized Metal (Gold and Platinum) Nanoparticles and Metal Nanoparticle/Carbon Nanotube Hybrids [J]. Langmuir.2009,25(5):2604-2612.
    [197]Biffis A., Zecca M., Basato M. Palladium metal catalysts in Heck C-C coupling reactions [J]. Journal of Molecular Catalysis A:Chemical,2001,173(1-2):249-274.
    [198]Chen C., Chen H., Cheng W. Study of selective hydrogenation of acetophenone on Pt/SiO2 [J]. Applied Catalysis A.2003,248(1-2):117-128.
    [199]Hamada T., Kobayashi Y. The first stereoselective total synthesis of lankanolide. Part 2 [J]. Tetrahedron Letters.2003.44(23):4347-4350.
    [200]Zhu W., Hou Z. Ionic Liquid Stabilized Metal Nanoparticles:Synthesis and Catalytic Hydrogenation [J]. Current Inorganic Chemistry,2012,2(2):213-227.
    [201]Vasylyev M. V., Maayan G., Hovav Y., Haimov A., Neumann R. Palladium nanoparticles stabilized by alkylated polyethyleneimine as aqueous biphasic catalysts for the chemoselective stereocontrolled hydrogenation of alkenes [J]. Organic Letters.2006,8(24): 5445-5448.
    [202]Dupont J., Fonseca G. S., Umpierre A. P., Fichtner P. F. P., Teixeira S. R. Transition-metal nanoparticles in imidazolium ionic liquids:recycable catalysts for biphasic hydrogenation reactions [J]. Journal of the American Chemical Society,2002,124(16): 4228-4229.
    [203]Murata M., Tanaka Y., Mizugaki T., Ebitani K., Kaneda K. Palladium-platinum bimetallic nanoparticle catalysts using dendron assembly for selective hydrogenation of dienes and their application to thermomorphic system [J]. Chemistry Letters.2005,34(2): 272-273.
    [204]Bergbreiter D. E., Sung S. D. Liquid/liquid biphasic recovery/reuse of soluble polymier-supported catalysts [J]. Advanced Synthesis & Catalysis.2006,348(12-13): 1352-1366.
    [205]Klemet I., Liitjens H., Knochel P. Transition metal catalyzed oxidations in perfluorinated solvents [J]. Angewandte Chemie International Edition in English,1997, 36(13-14):1454-1456.
    [206]Ikegami S., Hamamoto H. Novel recycling system for organic synthesis via designer polymer-gel catalysts [J]. Chemical Reviews,2009,109(2):583-593.
    [207]Yang Y., Jiang J., Wang Y., Liu C., Jin Z. A new thermoregulated PEG biphasic system and its application for hydroformylation of 1-dodecene [J]. Journal of Molecular Catalysis A: Chemical,2007,261(2):288-292.,
    [208]Zhi H., Lu C., Zhang Q., Luo J. A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans [J]. Chemical Communications,2009, (20):2878-2880.
    [209]Yu F., Zhang R., Xie C., Yu S. Polyether-substituted thiazolium ionic liquid catalysts-a thermoregulated phase-separable catalysis system for the Stetter reaction [J]. Green Chemistry,2010,12(7):1196-1200.
    [210]Wei L., Jiang J., Wang Y., Jin Z. Selective hydrogenation of SBS catalyzed by Ru/TPPTS complex in polyether modified ammonium salt ionic liquid [J]. Journal of Molecular Catalysis A:Chemical.2004,221(1):47-50.
    [211]Yu F., Zhang R., Xie C., Yu S. Synthesis of thermoregulated phase-separable triazolium ionic liquids catalysts and application for Stetter reaction [J]. Tetrahedron.2010,66(47): 9145-9150.
    [212]Tan B., Jiang J., Wang Y., Wei L., Chen D., Lin Z. Thermoregulated ionic liquids and their application for the hydroformylation of 1-dodecene catalyzed by Rh/TPPTS complex [J]. Applied Organometallic Chemistry,2008,22(11):620-623.
    [213]Zeng Y., Wang Y., Jiang J., Jin Z. Rh nanoparticle catalyzed hydrogenation of olefins in thermoregulated ionic liquid and organic biphase system [J]. Catalysis Communications. 2012,19,70-73.
    [214]Ott L. S., Cline M. L., Deetlefs M., Seddon K. R., Finke R. G. Nanoclusters in ionic liquids:Evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by H-2 NMR [J]. Journal of the American Chemical Society.2005,127(16): 5758-5759.
    [215]Ott L. S., Campbell S., Seddon K. R., Finke R. G. Evidence that imidazolium-based ionic ligands can be metal(0)/nanocluster catalyst poisons in at least the test case of iridium(0)-catalyzed acetone hydrogenation [J]. Inorganic Chemistry.2007,46(24): 10335-10344.
    [216]Amatore C, Blart E., Genet J. P., Jutand A., Lemaire-Audoire S., Savignac M. New synthetic applications of water-soluble acetate Pd/TPPTS catalyst generated in situ. Evidence for a true Pd(0) species intermediate [J]. The Journal of Organic Chemistry.1995,60(21): 6829-6839.
    [217]Son S. U., Jang Y., Yoon K. Y., Kang E. Facile synthesis of various phosphine-stabilized monodisperse palladium nanoparticles through the understanding of coordination chemistry of the nanoparticles [J]. Nano Letters.2004,4(6):1147-1151.
    [218]Luska K. L, Moores A. Ruthenium nanoparticle catalysts stabilized in phosphonium and imidazolium ionic liquids:dependence of catalyst stability and activity on the ionicity of the ionic liquid [J]. Green Chemistry.2012,14(6):1736-1742.
    [219]Weddle K. S., Aiken J. D., Finke R. G. Rh(0) nanoclusters in benzene hydrogenation catalysis:Kinetic and mechanistic evidence that a putative [(C8H17)3NCH3]+[RhCl4]- Ion-pair catalyst is actually a distribution of Cl- and [(C8H17)3NCH3]+ stabilized Rh(0) nanoclusters [J]. Journal of the American Chemical Society.1998,120(23):5653-5666.
    [220]Bagal D. B., Qureshi Z. S., Dhake K. P., Khan S. R., Bhanage B. M. An efficient and heterogeneous recyclable palladium catalyst for chemoselective conjugate reduction of a, β-unsaturated carbonyls in aqueous medium [J]. Green Chemistry.2011,13(6):1490-1494.
    [221]Nuithitikul K., Winterbottom M. Crucial parameters in the selective biphasic hydrogenation of cinnamaldehyde by biphasic Ru-TPPTS and RhCl(TPPTS)3 catalysts [J]. Catalysis Today.2007,128(1):74-79.
    [222]Cimpeanu V., Kocevar M., Parvulescu V. I., Leitner W. Preparation of rhodium nanoparticles in carbon dioxide induced ionic liquids and their application to selective hydrogenation [J]. Angewandte Chemie International Edition.2009,48(6):1085-1088.
    [223]Chheda J. N., Huber G. W.. Dumesic J. A. Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals [J]. Angewandte Chemie International Edition.2007,46(38):7164-7183.
    [224]Zhou C.-H., Xia X., Lin C.-X., Tong D.-S., Beltramini J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels [J]. Chemical Society Reviews.2011, 40(11):5588-5617.
    [225]Harmer M. A., Fan A., Liauw A., Kumar R. K. A new route to high yield sugars from biomass:phosphoric-sulfuric acid [J]. Chemical Communications.2009,43:6610-6612
    [226]Stahlberg T., S(?)rensen M. G., Riisager A. Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts [J]. Green Chemistry. 2010,12(2):321-325
    [227]Onda A., Ochi T., Yanagisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts [J]. Green Chemistry.2008,10(10):1033-1037.
    [228]Tucker M. H., Crisci A. J., Wigington B. N., Phadke N., Alamillo R., Zhang J. P., Scott S. L., Dumesic J. A. Acid-functionalized SBA-15-type periodic mesoporous organosilicas and their use in the continuous production of 5-hydroxymethylfurfural [J]. ACS Catalysis.2012, 2(9):1865-1876.
    [229]Lai D. M., Deng L., Li J., Liao B., Guo Q. X., Fu Y. Hydrolysis of cellulose into glucose by magnetic solid acid [J]. ChemSusChem.2011,4(1):55-58.
    [230]Vyver S. Van de, Peng L., Geboers J., Schepers H., Clippel F. de, Gommes C. J., Goderis B., Jacobs P. A., Sels B. F. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose [J]. Green Chemistry.2010,12(9):1560-1563.
    [231]Kusserow B., Schimpf S., Claus P. Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts [J]. Advanced Synthesis & Catalysis.2003,345(1-2):289-299.
    [232]Crezee E., Hoffer B. W., Berger R. J., Makkee M., Kapteijn F., Moulijn J. A. Three-phase hydrogenation ofd-glucose over a carbon supported ruthenium catalyst-mass transfer and kinetics [J]. Applied Catalysis A.2003,251(1):1-7.
    [233]Fukuoka A., Dhepe P. L. Catalytic conversion of cellulose into sugar alcohols [J]. Angewandte Chemie International Edition.2006,45(31):5161-5163.
    [234]Liu M., Deng W. P., Zhang Q. H., Wang Y. L., Wang Y. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions [J]. Chemical Communications. 2011,47:9717-9719.
    [235]Luo C., Wang S., Liu H. C. Cellulose Conversion into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water [J]. Angewandte Chemie International Edition.2007,46(40):7636-7639.
    [236]Han J. W., Lee H. Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution [J]. Catalysis Communications.2012,19:115-118.
    [237]Wu Z. J., Ge S. H., C. X. Ren, M. H. Zhang, A. Yip and C. M. Xu, Selective conversion of cellulose into bulk chemicals over Bronsted acid-promoted ruthenium catalyst:one-pot vs. sequential process [J]. Green Chemistry.2012,14(12):3336-3343.
    [238]Gong L. F., Lu Y., Ding Y. J., Lin R. H., Li J. W., Dong W. D., Wang T., Chen W. M. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media [J]. Applied Catalysis A.2010,390(1-2):119-126.
    [239]Miao S. D., Liu Z. M., Han B. X., Huang J., Sun Z. Y., Zhang J. L., Jiang T. Ru Nanoparticles Immobilized on Montmorillonite by Ionic Liquids:A Highly Efficient Heterogeneous Catalyst for the Hydrogenation of Benzene [J]. Angewandte Chemie International Edition.2006,45(2):266-269.
    [240]Palkovits R., Tajvidi K., Procelewska J., Rinaldi R., Ruppert A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts [J]. Green Chemistry.2010, 12(6):972-978
    [241]Sun J., Liu H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts [J]. Green Chemistry.2011,13(1):135-142.
    [242]Huber G. W., Cortright R. D., Dumesic J. A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates [J]. Angewandte Chemie International Edition. 2004,43(12):1549-1551.
    [243]Wang J., Masui Y., Onaka M. Conversion of triose sugars with alcohols to alkyl lactates catalyzed by Br(?)nsted acid tin ion-exchanged montmorillonite [J]. Applied Catalysis B: Enviromental.2011,107(1-2):135-139.
    [244]Melero J. A., van Grieken R., Morales G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials [J]. Chemical Reviews.2006,106(9):3790-3812.
    [245]Darmstadt H., Summchen L., Ting J. M., Roland U., Kallaguine S., Roy C. Effects of surface treatment on the bulk chemistry and structure of vapor grown carbon fibers [J]. Carbon.1997,35(10):1581-1585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700