用户名: 密码: 验证码:
无机块体忆阻器材料的制备、结构及其电学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
忆阻器是一种具有电阻记忆效应的基本无源电路器件。近年来,与其相关的电路理论、电子器件和材料的研究正日益引起学者的广泛关注。本论文拟在制备新型块体忆阻器材料并就其相应的性能和忆阻机理展开研究。
     发现了Ag|AgI|Ag块体三明治结构中的忆阻现象和研究了其忆阻机理。采用液相化学反应的方法制备了γ-AgI纳米颗粒,并加压获得了块体忆阻器。电学性能测试发现,在三角波电压的加载条件下,样品具有典型的电流-电压(I-V)回线和忆阻特性:I-V回线面积随电压加载频率增大而减小;样品具有超过100的高低阻态阻值比;转折电压随测试电压范围呈正比例增大;样品低阻态的阻值和转折电压均随测试温度的升高而减小。测试了样品在单向和非对称三角波电压下的I-V回线和电阻-电压(R-V)曲线。指出了Ag电极和AgI电介质界面处I-的氧化还原反应是AgI块体中出现忆阻现象的原因;样品低电阻状态的阻值取决于界面处电化学反应速率,而高电阻状态阻值则主要受反应物离子的扩散能力控制。
     研究了Ag|CoO|Ag块体结构中的忆阻回线,电阻转折现象和忆阻机理。通过传统固相烧结的方法在Ar保护气氛中制备了CoO陶瓷块体忆阻器。电学性能实验发现:CoO陶瓷样品电流和I-V回线面积随电压扫描频率的减小而增大,样品电阻随加载电压值和测试温度的升高而减小。提出了基于电阻与温度关系的一阶电流控制型忆阻器的状态方程,成功解释了负温度系数热敏电阻样品中的忆阻行为。电路中电流产生的焦耳热使样品温度上升,电阻减小;样品与环境间的热量耗散则使其温度下降,电阻增大。数值计算结果表明,理想的CoO负温度系数热敏电阻忆阻器具有超过30000的阻值比。指出了所提出的忆阻机理适用于其它负温度系数热敏电阻忆阻器,并通过所制备的NiO和Co3O4陶瓷的测试结果进行了验证。
     实验中首次发现了锰锌铁氧体(ZMFO)陶瓷中的忆阻行为,并研究了其忆阻机制。采用固相烧结的方法制备了尖晶石型ZMFO多晶陶瓷块体忆阻器。研究了Ag|ZMFO|Ag块体结构中的电子传输特性。三角波电压加载下,样品中呈现随频率变化的I-V忆阻回线。常温下样品的忆阻阻值可由外加电场和磁场进行调制,并且调节后的样品电阻在时间上具有可持续性。研究了不同温度下样品I-V回线和交流阻抗谱的变化趋势。指出了样品中电流产生的感应磁场对晶粒中原子自发磁矩方向的调制和样品中的磁滞效应是ZMFO陶瓷产生忆阻性的原因。制备了磁铅石型锶铁氧体,证实了所提出的机理适用于其它铁氧体陶瓷忆阻器。
Memristor is a fundamental circuit element, which keeps a memory of itsresistance over time. Recently, circuit theory, electronic devices and materials related tomemristor are attracting more and more attention from researchers. In this paper, newmaterials for construction of bulk memristors have been prepared, meanwhile,investigations on the corresponding memristive behaviors and mechanism have beencarried out.
     Memristive behaviors, and the corresponding mechanism, have been found inAg|AgI|Ag sandwich structure. The γ-AgI nano-particles were prepared throughreactions in solutions, after which the nano-powders were pressed into bulk memristors.It’s found from the electrical test that the samples showed typical hystereticcurrent-voltage (I-V) characteristics and memristive behaviors, under the loading oftriangular wave voltage. Area of the I-V loop was found to shrink with increase involtage frequency, showing a resistance ratio between high resistance and lowresistance of over100. The switching voltage was measured to increase linearly withtesting voltage range, while decline with temperature increase. Additionally, resistancevalue of the low resistance state was also detected to decrease with temperature. The I-Vand resistance-voltage (R-V) plots under the loading of unidirectional and asymmetricvoltage scan were obtained. It’s revealed that memristive behaviors of AgI bulkmemristor originates from electro-redox reactions of I-at interface between Agelectrode and AgI electrolyte. Moreover, the resistance value of low resistance state isbelieved to depend on reaction speed at the interface, while the resistance value of highresistance state is controlled by the diffusion speed of supplying reactants.
     Investigation has been taken on the memristive I-V loop, resistance switching andmemristive mechanism of AgI|CoO|Ag bulk structure. Bulk memristor was constructedfrom CoO ceramic using a traditional solid reaction method in argon atmosphere.Electrical measurements were applied to investigate circuit properties of samples.Current in the sample and area of I-V loop were measured to decrease with increasingvoltage scan speed, and sample resistance was found to decrease with improvement inboth voltage and temperature. A set of current-controlled memristor state equations were provided, considering the relationship between resistance of negative coefficientthermistor and temperature, which successfully explained the memristive behaviors ofCoO ceramics. Joule heat is believed to improve the sample temperature and decreaseits resistance, while heat dissipation between sample and environment would decreasethe temperature and cause resistance increase. Resistance ratio of an ideal CoOmemristor was calculated to be over30000. The as-proposed memristive mechanismwas found to apply for other negative temperature coefficient thermistor basedmemristors, which was confirmed by results from as-prepared NiO and Co3O4ceramicsamples.
     Memristive behaviors were found for the first time in ZMFO polycrystallineceramics, memristive mechanism of which were analyzed. ZMFO samples wereobtained by solid reactions at high temperature. Electrons transportation properties ofAg|ZMFO|Ag bulk structure have been investigated. Memristive resistance switchingand hysteretic I-V characteristics were found in ZMFO bulk ceramic structure under theloading of triangular wave voltage. Good time retention was detected in resistance ofthe as-obtained sample, which was tunable by both electric field and magnetic field.Results form alternating current impedance measurements and hysteretic I-V loops fromdifferent temperatures confirm that the modulation of current on direction of atomicmagnetic moment, together with magnetic hysteresis effect of ferrite ceramics are bothresponsible for the memristive mechanism in ZMFO ceramics. Experiments operated onthe as-obtained magneto plumbite type strontium ferrite bulk ceramic sample illustratesthat the as-proposed mechanism is applicable for other ferrite ceramics bulk memristor.
引文
[1] Chua L O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory,1971,18(5):507-519.
    [2] Chua L O, Kang S M. Memristive devices and systems. Proc. IEEE,1976,64(2):209-223.
    [3] Chua L O. The fourth element. Proc. IEEE,2012,100(6):1920-1927.
    [4] Di Ventra M, Pershin Y V, Chua L O. Circuit elements with memory: memristors,memcapacitors, and meminductors. Proc. IEEE,2009,97(10):1717-1724.
    [5] Chua L O. Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proc.IEEE,2003,91(11):1830-1859.
    [6] Chua L O. Introduction to nonlinear network theory. McGraw-Hill: New York1969.
    [7] Biolek D, Biolkova V. Mutator for transforming memristor into memcapacitor. Electron. Lett,2010,46(21):1428-1429.
    [8] Wang X Y, Fitch A L, Iu H H C, et al. Design of a memcapacitor emulator based on amemristor. Phys. Lett. A,2012,376(4):394-399.
    [9] Batas D, Fiedler H. A memristor SPICE implementation and a new approach for magneticflux-controlled memristor modeling. IEEE Trans. Nanotechnol.,2011,10(2):250-255.
    [10] Benderli S, Wey T A. On SPICE macromodelling of TiO2memristors. Electron. Lett,2009,45(7):377-378.
    [11] Kavehei O, Iqbal A, Kim Y S, et al. The fourth element: characteristics, modelling andelectromagnetic theory of the memristor. Proc. R. Soc. A-Math. Phys. Eng. Sci.,2010,466(2120):2175-2202.
    [12] Liu Z J, Gan J Y, Yew T R. ZnO-based one diode-one resistor device structure for crossbarmemory applications. Appl. Phys. Lett.,2012,100(15):153503.
    [13] Tayebi N, Narui Y, Franklin N, et al. Fully inverted single-digit nanometer domains inferroelectric films. Appl. Phys. Lett.,2010,96(2):023103.
    [14] Tayebi N, Zhang Y G, Chen R J, et al. An ultraclean tip-wear reduction scheme for ultrahighdensity scanning probe-based data storage. Acs Nano,2010,4(10):5713-5720.
    [15] Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature,2008,453(7191):80-83.
    [16] Jung C M, Choi J M, Min K S. Two-step write scheme for reducing sneak-path leakage incomplementary memristor array. IEEE Trans. Nanotechnol.,2012,11(3):611-618.
    [17] Snider G S. Self-organized computation with unreliable, memristive nanodevices.Nanotechnology2007,18(36):365202.
    [18] Xia Q F, Pickett M D, Yang J J, et al. Impact of geometry on the performance of memristivenanodevices. Nanotechnology,2011:254026.
    [19] Miranda M A, Gomez-Polo C, Gil A. Aging process of unipolar resistive switching inmicroscale cylindrical Fe-base alloy/TiO2/Au-cells. J. Appl. Phys.,2012,112(3):034507.
    [20] Ho Y P, Huang G M, Li P. Dynamical properties and design analysis for nonvolatilememristor memories. IEEE Trans. Circuits Syst. I-Regul. Pap.,2011,58(4):724-736.
    [21] Wang Z Q, Xu H Y, Li X H, et al. Synaptic learning and memory functions achieved usingoxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater.,2012,22(13):2759-2765.
    [22] Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphicsystems. Nano Lett.,2010,10(4):1297-1301.
    [23] Chang T, Jo S H, Lu W. Short-term memory to long-term memory transition in a nanoscalememristor. Acs Nano,2011,5(9):7669-7676.
    [24] Chang T, Jo S H, Kim K H, et al. Synaptic behaviors and modeling of a metal oxidememristive device. Appl. Phys. A,2011,102(4):857-863.
    [25] Pershin Y V, La Fontaine S, Di Ventra M. Memristive model of amoeba learning. Phys. Rev.E,2009,80(2):021926.
    [26] Kim H, Sah M P, Yang C, et al. Memristor bridge synapses. Proc. IEEE,2012,100(6):2061-2070.
    [27] Johnsen G K, Lutken C A, Martinsen O G, et al. Memristive model of electro-osmosis in skin.Phys. Rev. E,2011,83(3):031916.
    [28] Yang J J, Pickett M D, Li X M, et al. Memristive switching mechanism for metal/oxide/metalnanodevices. Nature Nanotechnology,2008,3(7):429-433.
    [29] Yang J J, Borghetti J, Murphy D, et al. A family of electronically reconfigurable nanodevices.Adv. Mater.,2009,21(37):3754-3758.
    [30] Strukov D B, Likharev K K. CMOL FPGA: a reconfigurable architecture for hybrid digitalcircuits with two-terminal nanodevices. Nanotechnology,2005,16(6):888-900.
    [31] Xia Q F, Robinett W, Cumbie M W, et al. Memristor-CMOS hybrid integrated circuits forreconfigurable logic. Nano Lett.,2009,9(10):3640-3645.
    [32] Driscoll T, Kim H T, Chae B G, et al. Memory metamaterials. Science,2009,325:1518-1521.
    [33] Witrisal K. Memristor-based stored-reference receiver-the UWB solution? Electron. Lett,2009,45(14):713-719.
    [34] Driscoll T, Quinn J, Klein S, et al. Memristive adaptive filters. Appl. Phys. Lett.,2010,97:093502.
    [35] Robinett W, Pickett M, Borghetti J, et al. A memristor-based nonvolatile latch circuit.Nanotechnology,2010,21(23):235203.
    [36] Wang X B, Chen Y R, Gu Y, et al. Spintronic memristor temperature sensor. IEEE ElectronDevice Lett.,2010,31(1):20-22.
    [37] Pershin Y V, Di Ventra M. Memristive circuits simulate memcapacitors and meminductors.Electron. Lett,2010,46(7):517-518.
    [38] Lee T W, Nickel J H. Memristor resistance modulation for analog applications. IEEE ElectronDevice Lett.,2012,33(10):1456-1458.
    [39] Iu H H C, Yu D S, Fitch A L, et al. Controlling chaos in a memristor based circuit using atwin-T notch filter. IEEE Trans. Circuits Syst. I-Regul. Pap.,2011,58(6):1337-1344.
    [40] Wey T A, Benderli S. Amplitude modulator circuit featuring TiO2memristor with lineardopant drift. Electron. Lett,2009,45(22):1103-1104.
    [41] Wey T A, Jemison W D. Variable gain amplifier circuit using titanium dioxide memristors.IET Circ. Devices Syst.,2011,5(1):59-65.
    [42] Sacchetto D, De Micheli G, Leblebici Y. Multiterminal memristive nanowire devices for logicand memory applications: A review. Proc. IEEE,2012,100(6):2008-2020.
    [43] Shin S, Kim K, Kang S M. Memristor applications for programmable analog ICs. IEEE Trans.Nanotechnol.,2011,10(2):266-274.
    [44] Gergel-Hackett N, Hamadani B, Dunlap B, et al. A fexible solution-processed memristor.IEEE Electron Device Lett.,2009,30(7):706-708.
    [45] Gergel-Hackett N, Tedesco J L, Richter C A. Memristors with flexible electronic applications.Proc. IEEE,2012,100(6):1971-1978.
    [46] Tedesco J L, Stephey L, Hernandez-Mora M, et al. Switching mechanisms in flexiblesolution-processed TiO2memristors. Nanotechnology,2012,23(30):305206.
    [47] Yu S M, Lee B, Wong H S P. Metal oxide resistive switching memory. In: Wu J,Cao J,HanW-Q, etal, eds. Functional Metal Oxide Nanostructures: Springer New York2012:303-335.
    [48] Driscoll T, Kim H T, Chae B G, et al. Phase-transition driven memristive system. Appl. Phys.Lett.,2009,95(4):043503.
    [49] Duraisamy N, Muhammad N M, Kim H C, et al. Fabrication of TiO2thin film memristordevice using electrohydrodynamic inkjet printing. Thin Solid Films,2012,520(15):5070-5074.
    [50] Pellegrino L, Manca N, Kanki T, et al. Multistate memory devices based on free-standingVO2/TiO2microstructures driven by Joule self-heating. Adv. Mater.,2012,24(21):2929-2934.
    [51] Kundozerova T V, Stefanovich G B, Grishin A M. Binary anodic oxides for memristor-typenonvolatile memory. In: Lourdudoss S,Marcinkevicius S,Kataria H, eds. Physica Status SolidiC: Current Topics in Solid State Physics, Vol9, No7. Weinheim: Wiley-V C H Verlag Gmbh2012:1699-1701.
    [52] Hota M K, Bera M K, Verma S, et al. Studies on switching mechanisms in Pd-nanodotembedded Nb2O5memristors using scanning tunneling microscopy. Thin Solid Films,2012,520(21):6648-6652.
    [53] Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistivememory for ultrafast and high-density memory application. Nano Lett.,2009,9(4):1636-1643.
    [54] Yu S, Guan X, Wong H S P. Conduction mechanism of TiN/HfOx/Pt resistive switchingmemory: A trap-assisted-tunneling model. Appl. Phys. Lett.,2011,99(6):063507.
    [55] Strukov D B, Alibart F, Williams R S. Thermophoresis/diffusion as a plausible mechanismfor unipolar resistive switching in metal-oxide-metal memristors. Appl. Phys. A-Mater. Sci.Process.,2012,107(3):509-518.
    [56] Choi K H, Mustafa M, Rahman K, et al. Cost-effective fabrication of memristive devices withZnO thin film using printed electronics technologies. Appl. Phys. A,2012,106(1):165-170.
    [57] Xu N, Liu L F, Sun X, et al. Characteristics and mechanism of conduction/set process inTiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett.,2008,92(23):232112.
    [58] Kim W G, Sung M G, Kim S J, et al. Dependence of the switching characteristics ofresistance random access memory on the type of transition metal oxide; TiO2, ZrO2, and HfO2.J. Electrochem. Soc.,2011,158(4):417-422.
    [59] Alexandrov A S, Bratkovsky A M, Bridle B, et al. Current-controlled negative differentialresistance due to Joule heating in TiO2. Appl. Phys. Lett.,2011,99(20):202104.
    [60] Borghetti J, Strukov D B, Pickett M D, et al. Electrical transport and thermometry ofelectroformed titanium dioxide memristive switches. J. Appl. Phys.,2009,106(12):124504.
    [61] Miao F, Strachan J P, Yang J J, et al. Anatomy of a nanoscale conduction channel reveals themechanism of a high-performance memristor. Adv. Mater.,2011,23(47):5633-5640.
    [62] Strachan J P, Strukov D B, Borghetti J, et al. The switching location of a bipolar memristor:chemical, thermal and structural mapping. Nanotechnology,2011:254015.
    [63] Yoon I S, Choi J S, Kim Y S, et al. Memristor behaviors of highly oriented anatase TiO2filmsandwiched between top Pt and bottom SrRuO3electrodes. Appl. Phys. Express,2011,4(4):041101.
    [64] Savel'ev S E, Alexandrov A S, Bratkovsky A M, et al. Molecular dynamics simulations ofoxide memory resistors (memristors). Nanotechnology,2011:254011.
    [65] Pickett M D, Borghetti J, Yang J J, et al. Coexistence of memristance and negative differentialresistance in a nanoscale metal-oxide-metal system. Adv. Mater.,2011,23(15):1730-1733.
    [66] Wang Y G, Wang J F, Chen H C, et al. Electrical properties of SnO2-Zno-Nb2O5varistorsystem. J. Phys. D-Appl. Phys.,2000,33(1):96-99.
    [67] Coy H, Cabrera R, Sepulveda N, et al. Optoelectronic and all-optical multiple memory statesin vanadium dioxide. J. Appl. Phys.,2010,108(11):113115.
    [68] Yang J J, Kobayashi N P, Strachan J P, et al. Dopant control by atomic layer deposition inoxide films for memristive switches. Chem. Mater.,2011,23(2):123-125.
    [69] Long S B, Liu Q, Lv H B, et al. Resistive switching mechanism of Ag/ZrO2:Cu/Pt memorycell. Appl. Phys. A,2011,102(4):915-919.
    [70] Miller K, Nalwa K S, Bergerud A, et al. Memristive behavior in thin anodic titania. IEEEElectron Device Lett.,2010,31(7):737-739.
    [71] Nauenheim C, Kuegeler C, Ruediger A, et al. Investigation of the electroforming process inresistively switching TiO2nanocrosspoint junctions. Appl. Phys. Lett.,2010,96(12):122902.
    [72] Panda D, Dhar A, Ray S K. Nonvolatile and unipolar resistive switching characteristics ofpulsed laser ablated NiO films. J. Appl. Phys.,2010,108(10):104513.
    [73] Kyung Min K, Gun Hwan K, Seul Ji S, et al. Electrically configurable electroforming andbipolar resistive switching in Pt/TiO2/Pt structures. Nanotechnology,2010,21:305203.
    [74] Hur J, Lee M J, Lee C, et al. Modeling for bipolar resistive memory switching intransition-metal oxides. Phys. Rev. B,2010,82(15):155321.
    [75] Xia Q F, Yang J J S, Wu W, et al. Self-aligned memristor cross-point arrays fabricated withone nanoimprint lithography step. Nano Lett.,2010,10(8):2909-2914.
    [76] Kim D J, Lu H, Ryu S, et al. Ferroelectric tunnel memristor. Nano Lett.,2012,12(11):5697-5702.
    [77] Williams S. How we found the missing memristor. IEEE Spectr.,2008,45(12):24-31.
    [78] Sun J, Lind E, Maximov I, et al. Memristive and memcapacitive characteristics of aAu/Ti-HfO2-InP/InGaAs diode. IEEE Electron Device Lett.,2011,32(2):131-133.
    [79] Prodromakis T, Michelakis K, Toumazou C. Switching mechanisms in microscale memristors.Electron. Lett,2010,46(1):63-64.
    [80] Marjanovic N S, Vujisic M L, Stankovic K D, et al. Simulated exposure of titanium dioxidememristors to ion beams. Nucl. Technol. Radiat. Prot.,2010,25(2):120-125.
    [81] Bhadra R, Datta P, Sarma K C. Optical and structural studies of chemically synthesized ZnOnanocrystals. J. Dispersion Sci. Technol.,2008,29(8):1138-1142.
    [82] Poddar P, Fried T, Markovich G. First-order metal-insulator transition and spin-polarizedtunneling in Fe3O4nanocrystals. Phys. Rev. B,2002,65(17):172405.
    [83] Versluijs J J, Bari M A, Coey J M D. Magnetoresistance of half-metallic oxide nanocontacts.Phys. Rev. Lett.,2001,8702(2):026601.
    [84] You Y H, So B S, Hwang J H, et al. Impedance spectroscopy characterization of resistanceswitching NiO thin films prepared through atomic layer deposition. Appl. Phys. Lett.,2006,89(22):222105.
    [85] Dearnaley G, Stoneham A M, Morgans D V. Electrical phenomena in amorphous oxide films.Rep. Prog. Phys.,1970,33(11):1129-1191.
    [86] Liu Q, Long S B, Lv H B, et al. Controllable growth of nanoscale conductive filaments insolid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. AcsNano,2010,4(10):6162-6168.
    [87] Wu J, McCreery R L. Solid-state electrochemistry in molecule/TiO2molecularheterojunctions as the basis of the TiO2"memristor". J. Electrochem. Soc.,2009,156(1):29-37.
    [88] Miller K. Fabrication and modeling of thin-film anodic titania memristors.2010:
    [89] Chudnovskii F A, Odynets L L, Pergament A L, et al. Electroforming and switching in oxidesof transition metals: The role of metal-insulator transition in the switching mechanism. J.Solid State Chem.,1996,122(1):95-99.
    [90] Younis A, Chu D W, Li S A. Oxygen level: the dominant of resistive switching characteristicsin cerium oxide thin films. J. Phys. D-Appl. Phys.,2012,45(35):355101.
    [91] Fors R, Khartsev S I, Grishin A M. Giant resistance switching in metal-insulator-manganitejunctions: evidence for mott transition. Phys. Rev. B,2005,71(4):045305.
    [92] Cao X, Li X, Gao X, et al. Forming-free colossal resistive switching effect in rare-earth-oxideGd2O3films for memristor applications. J. Appl. Phys.,2009,106(7):073723.
    [93] Zon I, Shelukhin V. Anomalies in the gadolinium doped ceria resistance below90K. Mater.Chem. Phys.,2012,134(1):219-223.
    [94] Wong H S P, Heng-Yuan L, Shimeng Y, et al. Metal-oxide RRAM. Proc. IEEE,2012,100(6):1951-1970.
    [95] Greenlee J D, Petersburg C F, Calley W L, et al. In-situ oxygen x-ray absorption spectroscopyinvestigation of the resistance modulation mechanism in LiNbO2memristors. Appl. Phys.Lett.,2012,100(18):182106.
    [96] Moradpour A, Schneegans O, Franger S, et al. Resistive Switching Phenomena in LixCoO2Thin Films. Adv. Mater.,2011,23(36):4141-4145.
    [97] Zhao K, Feng J F, He M, et al. Current-voltage characteristics with several threshold currentsin insulating low-doped La1-xSrxMnO3(x=0.10) thin films. J. Rare Earths,2008,26(4):567-570.
    [98] Asamitsu A, Tomioka Y, Kuwahara H, et al. Current switching of resistive states inmagnetoresistive manganites. Nature,1997,388(6637):50-52.
    [99] Coey J M D, Viret M, von Molnar S. Mixed-valence manganites. Adv. Phys.,1999,48(2):167-293.
    [100] Fiebig M, Miyano K, Tomioka Y, et al. Visualization of the local insulator-metal transition inPr0.7Ca0.3MnO3. Science,1998,280(5371):1925-1928.
    [101] Tsui S, Baikalov A, Cmaidalka J, et al. Field-induced resistive switching in metal-oxideinterfaces. Appl. Phys. Lett.,2004,85(2):317-319.
    [102] Waser R, Aono M. Nanoionics-based resistive switching memories. Nat. Mater.,2007,6(11):833-840.
    [103] Yang R, Li X M, Yu W D, et al. The polarity origin of the bipolar resistance switchingbehaviors in metal/La0.7Ca0.3MnO3/Pt junctions. Appl. Phys. Lett.,2009,95(7):072105.
    [104] Moreno C, Munuera C, Valencia S, et al. Reversible resistive switching and multilevelrecording in La0.7Sr0.3MnO3thin films for low cost nonvolatile memories. Nano Lett.,2010,10(10):3828-3835.
    [105] Maksymovych P, Jesse S, Yu P, et al. Polarization control of electron tunneling intoferroelectric surfaces. Science,2009,324(5933):1421-1425.
    [106] Lee S B, Chang S H, Yoo H K, et al. Reversible changes between bipolar and unipolarresistance-switching phenomena in a Pt/SrTiOx/Pt cell. Curr. Appl. Phys.,2012,12(6):1515-1517.
    [107] Watanabe Y, Bednorz J G, Bietsch A, et al. Current-driven insulator-conductor transition andnonvolatile memory in chromium-doped SrTiO3single crystals. Appl. Phys. Lett.,2001,78(23):3738-3740.
    [108] Beltran H, Prades M, Maso N, et al. Voltage-dependent low-field bulk resistivity inBaTiO3:Zn ceramics. J. Am. Ceram. Soc.,2010,93(2):500-505.
    [109] Shkabko A, Aguirre M H, Marozau I, et al. Measurements of current-voltage-induced heatingin the Al/SrTiO3-xNy/Al memristor during electroformation and resistance switching. Appl.Phys. Lett.,2009,95(15):152109.
    [110] Chanthbouala A, Garcia V, Cherifi R O, et al. A ferroelectric memristor. Nat. Mater.,2012,11(10):860-864.
    [111] Kohlstedt H, Pertsev N A, Contreras J R, et al. Theoretical current-voltage characteristics offerroelectric tunnel junctions. Phys. Rev. B,2005,72(12):125341.
    [112] Bozano L D, Kean B W, Beinhoff M, et al. Organic materials and thin-film structures forcross-point memory cells based on trapping in metallic nanoparticles. Adv. Funct. Mater.,2005,15(12):1933-1939.
    [113] Berzina T, Smerieri A, Bernabo M, et al. Optimization of an organic memristor as an adaptivememory element. J. Appl. Phys.,2009,105(12):124515.
    [114] Berzina T, Erokhina S, Camorani P, et al. Electrochemical control of the conductivity in anorganic memristor: a time-resolved X-ray fluorescence study of ionic drift as a function of theapplied voltage. ACS Appl. Mater. Interfaces,2009,1(10):2115-2118.
    [115] Muller K H, Herrmann J, Raguse B, et al. Percolation model for electron conduction in filmsof metal nanoparticles linked by organic molecules. Phys. Rev. B,2002,66(7):075417.
    [116] Agapito L A, Alkis S, Krause J L, et al. Atomistic origins of molecular memristors. J. Phys.Chem. C,2009,113(48):20713-20718.
    [117] Scott J C, Bozano L D. Nonvolatile memory elements based on organic materials. Adv.Mater.,2007,19(11):1452-1463.
    [118] Byung Joon C, Yang J J, Zhang M X, et al. Nitride memristors. Appl. Phys. A-Mater. Sci.Process.,2012,109(1):2-44.
    [119] Yu S M, Wong H S P. Compact modeling of conducting-bridge random-access memory(CBRAM). IEEE Trans. Electron Devices,2011,58(5):1352-1360.
    [120] Chen L, Guo H X, Xia Y D, et al. Resistive switching in the devices of Ag/amorphousAg30Ge17Se53films/Pt. Appl. Phys. A-Mater. Sci. Process.,2010,100(1):309-313.
    [121] Hovel H J, Urgell J J. switching and memory characteristics of ZnSe-Ge heterojunctions. J.Appl. Phys.,1971,42(12):5076-5083.
    [122] Jo S. Nanoscale memristive devices for memory and logic applications [3406295]. UnitedStates--Michigan: University of Michigan;2010.
    [123] Liang X F, Chen Y, Shi L, et al. Resistive switching and memory effects of AgI thin film. J.Phys. D,2007,40(16):4767-4770.
    [124] Liao Z M, Hou C, Zhang H Z, et al. Evolution of resistive switching over bias duration ofsingle Ag2S nanowires. Appl. Phys. Lett.,2010,96(20):203109.
    [125] Hsu K, Ferreira P, Fang N. Controlled directional growth of silver microwires on a solidelectrolyte surface. Appl. Phys. Lett.,2010,96(2):024101.
    [126] Pershin Y V, Di Ventra M. Spin memristive systems: spin memory effects in semiconductorspintronics. Phys. Rev. B,2008,78(11):113309.
    [127] Zeng H, Black C T, Sandstrom R L, et al. Magnetotransport of magnetite nanoparticle arrays.Phys. Rev. B,2006,73(2):020402.
    [128] Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater.,2009,21(25-26):2632-2663.
    [129] Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system. NanoLett.,2009,9(2):870-874.
    [130] Kim T H, Jang E Y, Lee N J, et al. Nanoparticle assemblies as memristors. Nano Lett.,2009,9(6):2229-2233.
    [131] Yun J B, Kim S, Seo S, et al. Random and localized resistive switching observation inPt/NiO/Pt. Phys. Stat. Sol.(RRL),2007,1(6):280-282.
    [132] Pershin Y V, Di Ventra M. Spin blockade at semiconductor/ferromagnet junctions. Phys. Rev.B,2007,75(19):193301.
    [133] Zakhidov A A, Jung B, Slinker J D, et al. A light-emitting memristor. Org. Electron.,2010,11(1):150-153.
    [134] Kim D C, Lee M J, Ahn S E, et al. Improvement of resistive memory switching in NiO usingIrO2. Appl. Phys. Lett.,2006,88(23):232106.
    [135] Chang W Y, Cheng K J, Tsai J M, et al. Improvement of resistive switching characteristics inTiO2thin films with embedded Pt nanocrystals. Appl. Phys. Lett.,2009,95(4):042104.
    [136] Lee B, Wong H S P, Jsap. NiO resistance change memory with a novel structure for3Dintegration and improved confinement of conduction path2009.
    [137] Chen Y S, Lee H Y, Chen P S, et al. Highly scalable hafnium oxide memory withimprovements of resistive distribution and read disturb immunity2009.
    [138] Wang S-Y, Huang C-W, Lee D-Y, et al. Multilevel resistive switching in Ti/CuxO/Pt memorydevices. J. Appl. Phys.,2010,108(11):114110.
    [139] Yoshida C, Tsunoda K, Noshiro H, et al. High speed resistive switching in Pt/TiO2/TiN filmfor nonvolatile memory application. Appl. Phys. Lett.,2007,91(22):223510.
    [140] Uvarov N F, Hairetdinov E F. Unusual transport and structural properties of mechanicallytreated polycrystalline silver iodide.1. Ionic conductivity. Solid State Ion.,1997,96(3-4):219-225.
    [141] Uvarov N F, Hairetdinov E F. Unusual transport and structural properties of mechanicallytreated polycrystalline silver iodide.2. Dielectric properties. Solid State Ion.,1997,96(3-4):227-231.
    [142] Uvarov N F, Hairetdinov E F, Rykov A I, et al. Unusual transport and structural properties ofmechanically treated polycrystalline silver iodide.3. Structural study. Solid State Ion.,1997,96(3-4):233-237.
    [143] Paic M, Paic V. Phases, phase-transitions and excitons of the superionic conductor agi in thetemperature-range between4.2K and761K detected by diffuse reflectance spectrometry.Solid State Ion.,1987,24(1):7-19.
    [144] Patnaik J R G, Sunandana C S. Studies on gamma silver iodide. J. Phys. Chem. Solids,1998,59(6-7):1059-1069.
    [145] Cava R J, Rietman E A. Ionic-conductivity of beta-AgI. Phys. Rev. B,1984,30(12):6896-6902.
    [146] Ida T, Kimura K. Ionic conductivity of small-grain polycrystals of silver iodide. Solid StateIon.,1998,107(3-4):313-318.
    [147] Hao A M, Gao C X, Li M, et al. Conductivity of AgI under high pressure. J. Appl. Phys.,2007,101(5):053701.
    [148] Bührer W, Nicklow R M, Brüesch P. Lattice dynamics of β-(silver iodide) by neutronscattering. Phys. Rev. B,1978,17(8):3362-3370.
    [149] Dick K, Dhanasekaran T, Zhang Z Y, et al. Size-dependent melting of silica-encapsulatedgold nanoparticles. J. Am. Chem. Soc.,2002,124(10):2312-2317.
    [150] Becker J A, Green C B, Pearson G L. Properties and uses of thermistors-thermally sensitiveresistors. Transactions of the American Institute of Electrical Engineers,1946,65:711-725.
    [151] Becker J A, Green C B, Pearson G L. Properties and uses of thermistors-thermally sensitiveresistors. Bell System Technical Journal,1947,26(1):170-212.
    [152] Antontsev S N, Chipot M. The thermistor problem-existence, smoothness, uniqueness,blowup. SIAM J. Math. Anal.,1994,25(4):1128-1156.
    [153] Feteira A. Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: AnIndustrial Perspective. J. Am. Ceram. Soc.,2009,92(5):967-983.
    [154] De Vidales J L M, Garcia-Chain P, Rojas R M, et al. Preparation and characterization ofspinel-type Mn Ni Co O negative temperature coefficient ceramic thermistors. J. Mater. Sci.,1998,33(6):1491-1496.
    [155] Park K, Bang D Y. Electrical properties of Ni-Mn-Co-(Fe) oxide thick-film NTC thermistorsprepared by screen printing. J. Mater. Sci.-Mater. Electron.,2003,14(2):81-87.
    [156] Todorova Z, Dishovsky N, Dimitrov R, et al. Natural rubber filled SiC and B4C ceramiccomposites as a new NTC thermistors and piezoresistive sensor materials. Polym. Compos.,2008,29(1):109-118.
    [157] Kuzma C. The influence of heat treatment on thermistor properties of sintered cobalt andmanganese oxides. Archiwum Elektrotechniki,1963,12(2):463-469.
    [158] Kuzma C. Influence of the copper oxide addition on the thermistor properties of somemanganese and cobalt-oxide sinters. Electron Technology,1975,8(3-4):97-108.
    [159] Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors:Anindustrial perspective. J. Am. Ceram. Soc.,2009,92(5):967-983.
    [160] Massot M, Oleaga A, Salazar A, et al. Critical behavior of CoO and NiO from specific heat,thermal conductivity, and thermal diffusivity measurements. Phys. Rev. B,2008,77(13):134438.
    [161] Dieny B, Speriosu V S, Parkin S S P, et al. Giant magnetoresistance in soft ferromagneticmultilayers. Phys. Rev. B,1991,43(1):1297-1300.
    [162] Valet T, Fert A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys.Rev. B,1993,48(10):7099-7113.
    [163] Jin S, Tiefel T H, McCormack M, et al. Thousandfold change in resistivity inmagnetoresistive La-Ca-Mn-O films. Science,1994,264(5157):413-415.
    [164] Moodera J S, Kinder L R, Wong T M, et al. Large magnetoresistance at room-temperature inferromagnetic thin-film tunnel-junctions. Phys. Rev. Lett.,1995,74(16):3273-3276.
    [165] Kobayashi K L, Kimura T, Sawada H, et al. Room-temperature magnetoresistance in an oxidematerial with an ordered double-perovskite structure. Nature,1998,395(6703):677-680.
    [166] Klinger M I, Samokhvalov A A. Electron conduction in magnetite and ferrites. Physica StatusSolidi B-Basic Research,1977,79(1):9-48.
    [167] Sugimoto M. The past, present, and future of ferrites. J. Am. Ceram. Soc.,1999,82(2):269-280.
    [168] Adam J D, Davis L E, Dionne G F, et al. Ferrite devices and materials. IEEE Trans. Microw.Theory Tech.,2002,50(3):721-737.
    [169] Harris V G, Geiler A, Chen Y, et al. Recent advances in processing and applications ofmicrowave ferrites. J. Magn. Magn. Mater.,2009,321(14):2035-2047.
    [170] Groenou A B V, Bongers P F, Stuyts A L. Magnetism microstructure and crystal chemistry ofspinel ferrites. Materials Science and Engineering,1969,3(6):317-392.
    [171] Kalendova A, Vesely D, Brodinova J. Anticorrosive spinel-type pigments of the mixed metaloxides compared to metal polyphosphates. Anti-Corros. Methods Mater.,2004,51(1):6-17.
    [172] Dillon J F, Earl H E. Domain wall motion and ferrimagnetic resonance in a manganese ferrite.J. Appl. Phys.,1959,30(2):202-213.
    [173] Zhang S F, Levy P M. Conductivity and magnetoresistance in magnetic granular films. J.Appl. Phys.,1993,73(10):5315-5319.
    [174] Li X W, Gupta A, Xiao G, et al. Low-field magnetoresistive properties of polycrystalline andepitaxial perovskite manganite films. Appl. Phys. Lett.,1997,71(8):1124-1126.
    [175] Kiselev S I, Sankey J C, Krivorotov I N, et al. Microwave oscillations of a nanomagnet drivenby a spin-polarized current. Nature,2003,425(6956):380-383.
    [176] Sun J. Applied physics-Spintronics gets a magnetic flute. Nature,2003,425(6956):359-361.
    [177] Zutic I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev. Mod. Phys.,2004,76(2):323-410.
    [178] Fujimori H, Mitani S, Ohnuma S. Tunnel-type GMR in metal-nonmetal granular alloythin-films. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.,1995,31(1-2):219-223.
    [179] Koops C G. On the dispersion of resistivity and dielectric constant of some semiconductors ataudiofrequencies. Phys. Rev.,1951,83(1):121-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700