用户名: 密码: 验证码:
新型快速微波烧结微观机理的同步辐射在线实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波烧结是一种优于常规烧结的新型材料快速制备技术,研究微波烧结机理具有重要的理论和实际意义。本文首先阐述了对微波烧结微结构演化进行同步辐射CT(简称"SR-CT")在线观测的必要性和重要性。依此,通过对研制核心设备所存在技术难题的分析和解决,成功构建了一套SR-CT技术专用的微波烧结在线实验系统。基于该实验系统,分别开展了金属和陶瓷单一材料体系,以及金属-陶瓷混合体系微波烧结的SR-CT在线实验,研究了各自的微波烧结微结构演化特征及相应的微观烧结机理。最后,结合本文实验研究结果,对微波的“热效应”和“非热效应”做了进一步的讨论和分析。本文的主要研究内容和创新之处是:
     一、构建了一套同步辐射CT专用的微波烧结在线实验系统,实现了快速微波烧结微结构演化的同步辐射CT在线观测,最高分辨率达亚微米量级。目前,国际上尚未见到与该实验系统相似的报道。
     1)分体式结构设计解决了高衬度、高分辨率SR-CT实验平台的空间限制;
     2)多维精密电控旋转台可实现高温微波场中样品精确定位和高精度旋转,这对于开展多场耦合或极端条件下高分辨率SR-CT实验具有积极意义;
     3)特制的双重保温结构有效解决了小样品在不完全密闭环境中的通光、保温、测温及气氛保护等问题,为拓展该实验系统应用范围提供技术保障。
     二、首次实现了金属、陶瓷等单一体系以及金属-陶瓷混合体系微波烧结SR-CT在线实验研究。观察到诸多不同于常规烧结的表面和界面快速演化现象,定量分析表明微波烧结与常规烧结具有不同的加热特性和物质扩散机制。
     1)实现了金属、陶瓷以及金属-陶瓷混合材料在微波烧结过程中微结构演化的SR-CT在线实验,观测到了诸多不同于常规烧结的特殊烧结现象,并从微波“热效应”和“非热效应”等角度对这些现象进行了机理解释;
     2)通过B样条插值方法提取了颗粒表面曲率参数,统计和分析了混合体系以及纯金属颗粒表面弯曲能的变化规律,结果表明,微波电磁场与材料的耦合机制与材料的物性密切相关,微波磁场有利于金属颗粒表面弯曲能的降低;
     3)利用分水岭算法获得了金属、陶瓷以及金属-陶瓷混合材料的颈长动力学曲线,分析了各自的物质主导扩散机制和相应的微观机理,结果表明微波烧结与常规烧结的物质扩散机制不同,且不同材料之间也存在不同。此外,研究了微波与不同材料体系内部颗粒表面和界面的耦合机制,结果表明当陶瓷加入金属以后,微波将在混合体系中将引起界面极化,从而促进体系的加热。
     三、探索了微波电磁场强度分布、传播方向以及材料微观构型等因素可能引起的“热效应”和“非热效应”,分析表明这些效应将促进物质扩散进程,并引起各向异性烧结。
     1)在微波的“热效应”方面,主要分析了微波电场和磁场强度的不均匀分布,以及材料的微观构型对烧结进程可能产生的促进作用;
     2)在微波的“非热效应”方面,主要分析了微波电场和磁场的方向以及材料的微观构型可能导致的各向异性烧结现象。
     最后,对全文的工作进行了总结,给出了本文的主要研究内容和结果,并对需要进一步深入研究的课题提出了研究思路和方案。
Microwave sintering is a novel rapid material preparation method which is superior to the conventional sintering. It has important practical and theoretical significance to study the microwave sintering mechanism. In this paper, the importance and necessity of carrying out the SR-CT online observation of the microstructure evolution during microwave sintering was represented. According to this, a set of SR-CT technology based microwave sintering analyze system was successfully built. Depending on this system, the SR-CT experimental study on the microwave sintering of metal, ceramic and metal-ceramic hybrid materials were carried out. The microstructure evolution characteristics and the corresponding sintering mechanisms of these materials were analyzed by the comparison between different materials, as well as the microwave sintering and conventional sintering. Finally, the further discussion of the "thermal effects" and "non-thermal effects" of microwave were carried out. The main content and the innovation of this paper are:
     Firstly, a new synchrotron radiation CT technology-based microwave sintering experimental system was built. The online observation of microstructure evolution during the fast microwave sintering by the synchrotron radiation CT technique was realized. The highest resolution reached submicron. At present, the news about such experimental system has not been reported.
     1. The separated structure resolves the problem of the space limitation of the high contrast, high-resolution SR-CT experiment platform;
     2. The multi-dimensional precision electronic control rotary device can realize the high precise of positioning and rotation of the sample in the high-temperature microwave field, which has positive significance for conducting the SR-CT experiment under multi-field coupling or extreme conditions;
     3. The specially designed double insulation structure resolved the problem of light-through, heat insulation, temperature measurement and atmosphere protection. This provides technical support for expanding the application scope of this analytical system.
     Secondly, the first SR-CT experimental study on metals, ceramics and metal-ceramic hybrid materials were realized. The special sintering phenomena and the corresponding sintering kinetics mechanisms were analyzed. The quantitative analysis showed that there were different sintering dominate mass diffusion mechanisms between microwave and conventional sintering.
     1. The SR-CT online experiments and observations on the microstructure evolution of metals, ceramics, and metal-ceramic mixed materials in the microwave sintering were achieved. Various special sintering phenomena that were different from the conventional sintering were observed. The explanation for these phenomena was given from the aspects of "thermal effect" and "non-thermal effect" of the microwave;
     2. The statistics and analysis of the variation of particle surface bending energy of the hybrid system and the pure metal were carried out by adopting the method of B-spline interpolation. The results indicated that coupling mechanism of "microwave-material" is related to the property of materials, the microwave field is good for the decrease of particle surface bending energy.
     3. The watershed algorithm was used to extract the sintering-neck of metals, ceramics and metal-ceramic hybrid materials, and the sintering-neck growth kinetic curves were obtained. Then, the dominant diffusion mechanism and the corresponding microscopic mechanism were analyzed. The results show that there were dominate mass diffusion mechanisms between microwave and conventional sintering, as well as between the different materials. In addition, the study of the coupling mechanism between microwave and the surface and interface of different material systems, it was shown that the addition of ceramic materials will induce interfacial polarization, which will promote the sintering process.
     In addition, the "thermal effects" and "non-thermal effects" that were in connection with the intensity distribution and propagation direction of microwave were further analyzed. The result indicated that these effects will promote the mass diffusion process and induce anisotropic sintering.
     1. As in the aspect of "thermal effects", the main analysis was on the promotion of sintering process induced by the uneven distribution of the microwave electric field and magnetic field, as well as the microscopic configuration of the material;
     2. As in the aspect of "non-thermal effects", the main analysis was on the anisotropic sintering which has relation with the direction of microwave electric field and magnetic field, as well as the microscopic configuration of the material.
     Finally, a summary of the full text was made, the main research contents and results were given, and the research ideas and programs for the problems which need further in-depth study were raised.
引文
[1]Guo S J.1998.Powder sintering theory[M].1th ed. Beijing:Metallurgy Industry Press,41-43.
    [2]Bouvard D.2000.Densification behaviour of mixtures of hard and soft powders under pressure[J]. Powder Technol,111(3):231-239.
    [3]肖艳.2012.特种陶瓷的制备工艺综述及其发展趋势[J].佛山陶瓷,1(3):30-34.
    [4]黄培云.1997.粉末冶金原理[M].北京:冶金工业出版社,266-331.
    [5]刘韩星,欧阳世翕.2006.无机固相微波烧结合成方法与原理[M].北京:科学出版社,20-86.
    [6]Sutton W H.1989.Microwave processing of ceramic materials[J]. Am Ceram Soc Bull,68(2):376-386.
    [7]Binner J.1993.The potential of microwave procesing for ceramics [J]. Mater World, 1(3):152-155.
    [8]Parich N M, Humenik M.1957.Cermets:II, Wettability and microstructure studies in liquid-phase sintering [J]. J Am Ceram Soc,40(9):315-320.
    [9]宋晓岚,黄学辉.2006.无机材料科学基础[M].北京:化学工业出版社,374-400.
    [10]Oghbaei M, Mirzaee O.2010.Microwave versus conventional sintering:A review of fundamentals, advantages and applications [J]. J Alloys Compd,494(1-2): 175-189.
    [11]Bodhak S, Bose S, Bandyopadhyay A.2011.Densification study and mechanical properties of microwave-sintered mullite and mullite-zirconia composites[J]. J Am Ceram Soc,94(1):32-41.
    [12]林伟,白新德,马文军,等.2002.微波在陶瓷加工中的应用与进展[J].清华大学学报:自然科学版,42(5):696-700.
    [13]Domenichini B, Caillot T.2003.Sintering of Fe2NiO4 with an internal binder:a way to obtain a very dense material[J]. Acta Mater,51(16):4815-4821.
    [14]刘平安,王慧,等.2005.陶瓷的微波烧结及研究现状[J].中国陶瓷,41(4):5-7.
    [15]Breval E, Cheng J P, Agrawal D K, et al.2005.Comparison between microwave and conventional sintering of WC/Co composites [J]. Mater Sci Eng A,391(1-2): 285-295.
    [16]Xie Z, Yang J, Huang Y.1998.Densification and grain growth of alumina by microwave processing[J]. Mater Lett,37(4-5):215-220.
    [17]Xie Z, Yang J, Huang X, et al.1999.Microwave processing and properties of ceramics with different dielectric loss[J]. J Eur Ceram Soc,19(3):381-387.
    [18]Valecillos M C, Hirota M, Brite M E, et al.1998.Microstructure and mechanical properties of microwave sintered siliconnitride[J]. J Ceram Soc,106(12): 1162-1166.
    [19]Fujitsu S, Ikegami M, Hyashi T.2000.Sintering of partically stabilized zirconia by microwave heating using ZnO-MnO2-Al2O3 plates in a domestic microwave oven[J]. J Am Ceram Soc,83(8):2085-2087.
    [20]Panneerselvam M, Rao K J.2003.A microwave method for the preparation and sintering of β'-SiAlON[J]. Mater Res Bull,38(4):663-674.
    [21]Mark A, Janney, B. Messing G L, et al.1988.Transactions, Ceramic Powder science[M], American Ceramic Society,919-924.
    [22]Cheng J P, Agrawal D, Zhang Y, et al.2002.Micro wave sintering of transparent alumina[J].Mater Lett,56(4):587-592.
    [23]Roy R, Agrawal D, Cheng J P, et al.1999.Full sintering of powdered-metal bodies in a microwave field[J]. Nature,399:668-670.
    [24]郭颖利,易健宏,罗述东,等.2009.W-Cu触头材料的微波烧结[J].中南大学学报,40(3):670-675.
    [25]Cao S H, Lin X P, Li J Y.2005.Sintering behavior of nano grained W-Cu composite powder[J]. Chin J Nonfer Metal,15(2):248-253.
    [26]Luo S D, Guan C L, Yang Y F, et al.2013.Micro wave heating, isothermal sintering, and mechanical properties of powder metallurgy titanium and titanium alloys[J]. Metall Mater Trans A,44(4):1842-1851.
    [27]Mondal A, Upadhyaya A, Agrawal D.2010.Microwave and conventional sintering of 90W-7Ni-3Cu alloys with premixed and prealloyed binder phase[J]. Mater Sci Eng A,527(26),6870-6878.
    [28]胡晓力,陈楷,尹虹.1995.陶瓷烧结新技术—微波烧结[J].中国陶瓷,31(1):29-32.
    [29]Clark D E, Sutton W H.1996.Microwave processing of materials[J]. Annu Rev Mater Sci,26:299-331.
    [30]林枞,许业文,徐政.2006.陶瓷微波烧结技术研究进展[J].硅酸盐通报,25(3):132-135.
    [31]Birnboim A, Calame J P, Carmel Y.1999.Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing [J]. J Appl Phys,85(1):478-482.
    [32]Janney M A, Kimrey H D, Allen W R, et al.1997. Enhanced diffusion in sapphire during microwave heating[J]. J mater sci,32:1347-1355.
    [33]Demirskyi D, Agrawal D, Ragulya A.2011. Neck growth kinetics during microwave sintering of nickel powder[J].J Alloys Compd,509(5):1790-1795.
    [34]苟斌,吴菊清,李祥萍,等.2001.微波与物质相互作用过程中非热效应的机理分析[J].上海有色金属,22(1):6-8.
    [35]Wilson B A, Lee K Y, Case E D.1997.Diffusive crack-healing behavior in polycrystalline alumina:A comparison between microwave annealing and conventional annealing[J]. Materials Research Bulletin,32(12):1607-1616.
    [36]翟华嶂,李建保,黄向东,等.2003.微波非热效应诱发的陶瓷材料中物质各向异性扩散[J].材料工程,6:29-35.
    [37]黄向东,李建保,谢志鹏,等.1997.微波促进陶瓷烧结的微观机制[J].应用基础与工程科学学报,5(2):187-192.
    [38]Janney M A, Kimrey H D, Schmidt M A, et al.1991.Grain growth in microwave-annealed alumina[J]. J Am Ceram Soc,74(7):1675-1681.
    [39]Yu V, Bykov S V, Egorov A G, et al.2001.Evidence for microwave enhanced mass transport in the annealing of nanoporous alumina membranes[J]. J Mater Sci,36:131-136.
    [40]Rybakov K I, Semenov V E.1995.Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field[J]. Phys Rev B,52(5): 3030-3033.
    [41]Booske J H, Cooper R F, Freeman S A, et al.1998.Microwave ponderomotive forces in solid-sate ionic plasmas[J]. Phys Plasmas,5(5):1664-1670.
    [42]Rybakov K I, Semenov V E.1994.Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field[J]. Phy Rev B,49(1):64-68.
    [43]Saitou K.2006.Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders[J]. Scr Mater,54(5):875-879.
    [44]范景莲.2006.钨合金及其制备新技术[M].北京:冶金工业出版社,200-270.
    [45]郭建亭.2008.高温合金材料学[M].北京:科学出版社,240-350.
    [46]Chukalina M, Golosio B, Simionovici A, et al.2004.X-ray tomography:how to evaluate the reconstruction quality[J]. Spect rochimica Acta Part B, 59(10-11):1755-1758.
    [47]Li X D, Hu X F, Hu Y G, et al.1999.Synchrotron radiation tomography for reconstruction of layer structures and Interna damage of composite material[J]. Chin J Laser B, B8(6):503-508.
    [48]许峰,胡小方,伍小平.2008.基于加窗傅立叶变换的SR-CT滤波反投影重建[J].实验力学,23(2):133-140.
    [49]庄天戈.1992.CT原理与算法[M].上海交通大学出版社,30-40.
    [50]Sakamoto K, Suzuki Y, Hirano T, et al.1988.Improvement of spatial resolution of monoehromatie X-ray CT using synehrotron radiation[J]. Japa J Appl Phys, 27(1):127-132.
    [51]Pahl R, Bonse U, Pekala R W, et al.1991.SAXS investigations on organic aerogels[J]. J Appl Cryst,24(5):771-776.
    [52]Wang M, Hu X F, Wu X P.2006.Internal microstrueture evolution of aluminum foams under compression, materials researeh bulletin[J].41(10):1949-1958.
    [53]Pyzalla A, Camin B, Buslaps T, et al.2005.Simultaneous tomography and diffraction analysis of creep damage[J]. Science,308(57):92-95.
    [54]Kobayashi M, Toda H, Ohgaki T, et al.2008.High-density three-dimensional mapping of internal strain by tracking microstructural features[J]. Acta mater, 56(10):2167-2181.
    [55]Lame O, Bellet D, Michiel M D, et al.2004.Bulk observation of metal Powder sintering by X-ray synehrotron microtomography[J]. Acta Mater,52(4):977-984.
    [56]Lame O, Bellet D, Michiel M C, et al.2003.In situ microtomography investigation of metal powder compacts during sintering[J]. Nucl Instrum Methods Phys Res, Sect B,200:287-294.
    [57]Bernard D, Gendron D, Heintz J M, et al.2005.First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography [J]. Acta Mater,53(13):121-128.
    [58]Vagnon A, Riviere J P, Missiaen J M, Bellet D, et al.2008.3D statistical analysis of a copper powder sintering observed in situ by synchrotron microtomography [J]. Acta Mater,56(5):1084-1093.
    [59]Moreno-Atanasio R, Williams A R, Jia X D.2010.Combining X-ray microtomography with computer simulation for analysis of granular and porous materials[J]. Particuology,8(2):81-99.
    [60]Feng Xu, Xiaofang Hu, Hong Miao, Jianhua Zhao. In Situ Investigation of ceramic sintering by Synchrotron Radiation X-Ray Computed Tomography. Optics and Lasers in Engineering. 2010,48:1082-1088.
    [61]许峰,胡小方,赵建华,袁清习.2009.氮化硅陶瓷烧结微结构演化的同步辐射CT实时研究[J].化学学报,67(11):1205-1210.
    [62]许峰,胡小方,伍小平.2009.碳化硼固相烧结微观结构演化的同步辐射CT观测[J].无机材料学报,24(1):175-181.
    [63]许峰,胡小方,赵建华.2008.铝粉固相烧结过程的微结构演化[J].材料研究学报,22(5):473-478.
    [64]Vagnon A, Lame O, Bouvard D, et al.2006.Deformation of steel powder compacts during sintering:Correlation between macroscopic measurement and in situ microtomography analysis[J]. Acta Mater,54(2):513-522.
    [65]Xu F, Hu X F, Niu Y, et al.2009.In situ observation of grain evolution in ceramic sintering by SR-CT technique[J]. Trans Nonferrous Met Soc China,19(3): 684-688.
    [66]周玉,武高辉.1997.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社结,100-150.
    [67]陆家和,陈长彦.1991.现代分析技术[M].北京:清华大学出版社,50-68.
    [68]Boden S, Bieberle M, Weickert G, et al.2008.Three-dimensional analysis of macroporosity distributions in polyolefin particles using X-ray microtomography[J]. Powder Technol,188(1):81-88.
    [69]张兆镗,钟若青.1988.微波加热技术基础[M].北京:电子工业出版社,240-273.
    [70]周书助,伍小波,高凌燕,等.2012.陶瓷材料微波烧结研究进展与工业应用现状[J].硬质合金,29(3):174-181.
    [71]周建,程吉平,傅文斌,等.1999.2450MHz 5kW改进的单模腔型微波烧结系统研制[J].武汉理工大学学报,21(4):4-6.
    [72]Demirskyi D, Agrawal D, Ragulya A.2010.Densification kinetics of powdered copper under single-mode and multimode microwave sintering [J]. Mater Lett,64: 1433-1436.
    [73]Dube D C, Fu M, Agrawal D, et al.2008.Rapid alloying of silicon with germanium in microwave field using single mode cavity [J]. Mater Res Innovations,12(3):119-121.
    [74]周献庭,周建,刘伟波,等.2006.TE103单模微波谐振腔的有限元数值模拟[J].辽宁石油化工大学学报,26(4):35-37.
    [75]车磊,杨林,肖德满.2003.多模腔双频微波烧结炉的设计[J].大连轻工业学 院学报,22(4):277-280.
    [76]苑中显,陈永昌.2012.工程传热学:基础理论与专题应用[M].北京:科学出版社,100-150.
    [77]苏亚欣.2009.传热学[M].武汉:华中科技大学出版社,70-130.
    [78]杨立,杨桢.2012.红外热成像测温原理与技术[M].北京:科学出版社,100-140.
    [79]李大应,胡小方,夏源明.2006.材料拉压加载试验实时同步辐射CT实验系统[J].实验力学,21(3):292-298.
    [80]Demirskyi D, Ragulya A, Agrawal D.2011.Initial stage sintering of binderless tungsten carbide powder under microwave radiation[J]. Ceram Int,37(2): 505-512.
    [81]艾云龙,刘书红,刘长虹,等.2008.陶瓷材料的微波烧结及研究进展[J].热处理技术与装备,29(3):1-4.
    [82]殷之文.2003.电介质物理学[M].北京:科学出版社,20-80.
    [83]科埃略R,阿拉德尼兹B.2000.电介质材料及其介电性能[M].北京:科学出版社,8-40.
    [84]Stuerga D.2006.Microwave-material interactions and dielectric properties, key ingredients for mastery of chemical microwave processes[M].2th ed, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA,9-15.
    [85]Mishra P, Sethi G, Upadhyaya A.2006.Modeling of microwave heating of particulate metals[J]. Metall. Mater. Trans. B,37(5):839-845.
    [86]易建宏,罗述东,唐新文,等.2002.金属基粉末冶金零件的微波烧结机理[J].粉末冶金材料科学与工程,7(3):180-184.
    [87]苏勉曾.1986.固体化学导论[M].北京:北京大学出版社,172-201.
    [88]Cheng J P, Roy R, Agrawal D.2002.Radically different effects on materials by separated microwave electric and magnetic fields [J]. Mat Res Innovat,5(3-4): 170-177.
    [89]Ma J, Diehl J F, Johnson E J, et al.2007.Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts[J]. J Appl Phys,101(7):074906-074913.
    [90]Demirskyi D, Agrawal D, Ragulya A.2010.Neck growth kinetics during microwave sintering of copper [J]. Scri Mater,62(8):552-555.
    [91]Booske J H, Cooper R F, Ian D.1992.Meehanisms for nonthermal effeets on ionic mobility during mierowave Proeessing of crystalline solids[J]. J Mater Res, 17(2):495-501.
    [92]浙江大学等校编.1980.硅酸盐物理化学[M].北京:中国建筑工业出版社,253-285.
    [93]Katz J D.1992.Microwave sintering of ceramics[J]. Annu Rev Mater Sci,22: 153-170.
    [94]Jacob J, Chia L H, Boey F Y C.1995.Thermal and non-thermal interaction of microwave radiation with materials[J]. J Mater Sci,30(21):5321-5327.
    [95]常爱民,简家文,杨文,等2001.(Ba0.6Sr0.4)TiO3材料的微波烧结[J].功能材料,32:715-718.
    [96]Liu X G, Geng D Y, Meng H, et al.2008.Micro wave-absorption properties of ZnO-coated iron nanocapsules[J]. Appl Phys Lett,92(7):173117-173117-3.
    [97]Mondal A, Shukla A, Upadhyaya A, et al.2010.Effect of Porosity and Particle Size on Microwave Heating of Copper[J]. Sci Sinter,42(2):169-182.
    [98]Dube C L, Kashyap S C, Dube D C, et al.2009.Growth of Sio.75Geo.25 alloy nanowires in a separated H-field by microwave processing[J]. Appl phys lett, 94(21):2131071-21310713.
    [99]Coble R L.1961.Sintering crystalline solid-1 intermediate and final state diffusion models[J]. J App Phys,32(5):787-792.
    [100]Coble R L.1958.Initial sintering of alumina and hematite[J]. J Am Ceram Soc, 41(2):55-62.
    [101]Coble R L.1962.Sintering alumina:Effect of atmospheres[J]. J Am Ceram Soc., 45(3):123-127.
    [102]章毓晋.2005.图像工程(中册)-图像分析[M].北京:清华大学出版社,328-331.
    [103]Medioni G, Yasumoto Y.1987. Corner detection and curve representation using cubic B-splines[J]. Vision C. Computer Vision, Graphics, Image Processing, 39(3):267-278.
    [104]陈孟尧.1989.电磁场与微波技术[M].北京:高等教育出版社,175-176.
    [105]朱凤霞,易健宏,周承商,彭元东,李丽娅.2007.微波烧结对粉末冶金铜材显微组织与性能的影响[J].粉末冶金材料科学与工程,1(6):364-368.
    [106]Purushotham Yadoji, Ramesh Peelamedu, Dinesh Agrawal, Rustum Roy.2003. Microwave sintering of Ni-Zn ferrites:comparison with conventional Sintering[J]. Materials Science and Engineering B,98:269-278.
    [107]Kuczynski G C.1949.Self-diffusion in sintering of metallic Powders[J]. Trans Amer Inst Min Met Eng,185:169-178.
    [108]Niu Y, Xu F, Hu X F, et al.2011.In situ investigation of the silicon carbide particles sintering[J]. J Nanomater,26,1-6.
    [109]Alexeff I, Meek T T.2011.The effect of electric field intensity on the microwave sintering of zirconia[J]. Mater Lett,65(14):2111-2113.
    [110]K I Rybakov, E A Olevskya, V E Semenov.2012. The microwave ponderomotive effect on ceramic sintering,66(12):1049-1052.
    [111]Li J B, Kong X Y, Xie Z P, et al.1999.Improved strength recovery of a titanium carbide/silicon nitride composite from thermal shock damage via microwave heating[J]. J Am Ceram Soc,82(6):1576-1578.
    [112]Xie Z P, Li J B, Huang Y, et al.1996.Microwave sintering behaviour of ZrO2-Y2O3 with agglomerate [J]. J Mater Sci Lett,15(13):1158-1160.
    [113]Xu L H, Xie Z P, Li J B, et al.1997.Microwave annealing of yttria stabilized zirconia ceramics[J]. J Mater Sci Lett,16(15):1249-1251.
    [114]Rybakov K I, Semenov V E, Egorov S V, et al.2006.Microwave heating of conductive powder materials[J]. J Appl Phys,99(2):0235061-9.
    [115]陈鼎,李林,陈振华.2012.金属材料微波烧结的研究现状[J].机械工程材,36(7):7-10.
    [116]Yoshikawa N.2010.Fundamentals and Applications of Microwave Heating of Metals[J]. J. Microwave Power Electromagn. Energy,44 (1):4-13.
    [117]Buchelnikov V D, Louzguine-Luzgin D V, Xie G, et al.2008.Heating of metallic powders by microwaves:Experiment and theory[J]. J Appl Phys,104(11): 1135051-1135051-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700