用户名: 密码: 验证码:
微环境酸化通过ASICs调控DC功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸碱平衡是维持机体内环境稳态的重要环节,正常情况下,外周血和各器官组织的pH约为7.2-7.4。某些病理状态(如炎症、肿瘤和自身免疫病)下,病灶部位酸化(pH下降)是参与相关疾病发生、发展的重要因素。因此,探讨酸化对机体免疫系统(主要是各类免疫细胞)功能的影响,具有重要意义。
     抗原提呈细胞(APC)重要的免疫系统组分,在固有免疫和适应性免疫应答中发挥重要作用。树突状细胞(DC)是体内最重要的的专职APC,负责摄取、加工和处理抗原,并将抗原信息提呈给初始T细胞,启动抗原特异性T细胞应答。已证明,DC表面多种膜分子参与抗原提呈过程:DC表面MHC分子与抗原肽结合为复合物(pMHC),将抗原肽提呈给T细胞(产生第一信号);DC表面CD80或CD86与T细胞表面CD28结合,可提供T细胞激活的第二信号(共刺激信号)。此外,DC也参与多种免疫病理过程(如炎症、肿瘤和自身免疫病等)发生、发展。文献已报道,细胞微环境酸化可促进DC吞噬功能和抗原提呈(MHCⅠ类分子途径),但其确切机制尚不清楚。
     酸敏感离子通道(ASICs, acid-sensing ion channels)是一类H+门控的阳离子通道,属上皮钠通道/退化蛋白[ENaC (epithelial sodium channel)/DEG (degenerin)]家族。ASICs主要表达于中枢和外周神经元,与触觉、学习记忆、痛觉和酸味觉形成有关。近年报道,非神经细胞(平滑肌细胞和骨细胞)和淋巴细胞(T细胞)也可表达ASICs,后者参与相关细胞的功能调控。
     本研究以小鼠骨髓来源的DC为研究对象,拟探讨重要的专职APC-DC是否表达ASICs,在此基础上,观察微环境酸化对DC的功能调控作用及其与ASICs的关系。
     一、DC表达功能性ASICs
     1.DC表达ASICs
     体外诱导BMDC分化,提取其总RNA和全蛋白,借助RT-PCR和Western blot证明:DC可表达ASIC1、ASIC2和ASIC3的mRNA和蛋白质。借助免疫荧光双标法和免疫电镜胶体金法检测ASIC在DC内的定位,结果显示:ASIC1和ASIC3分别表达于DC内质网和线粒体,细胞膜未见表达;而ASIC2主要表达于胞膜。
     2.DC表面ASICs的电生理功能
     借助全细胞膜片钳检测DC所表达ASICs的电生理功能,结果显示:细胞外pH6.0可激活DC胞膜表面ASICs样内向电流,该电流包含早期快速激活和晚期慢速失活两个时相,且能被ASICs阻断剂阿米洛利可逆性阻断(n=6,p<0.05)。pH6.0激活的ASICs样电流具有如下特点:平均幅度为329.63±52.36 pA;该内向电流具有pH依赖性:激活电流的最大pH值在7.0左右,产生最大电流的pH值为5.0;pH50为6.08±0.05,Hill系数为1.03±0.07(n=6)。
     二、细胞外酸化诱发的DC内向电流依赖于ASICs
     1.细胞外酸化诱发的DC内向电流不依赖于TRPV1
     瞬时受体电位香草酸亚型1(TRPV1, transient receptor potential vanilloid-1)亦称VR1,属非选择性阳离子通道。细胞外pH值低于6.0,可在细胞膜产生内向电流。以皮层神经元为阳性对照,TRPV1激动剂辣椒素不能诱发DC产生TRPV1电流,提示DC不表达功能性TRPV1。另外,借助RT-PCR也未能在DC检出TRPV1 mRNA表达。上述实验结果提示:细胞外pH值降低诱发DC所产生的电流并非TRPV1介导,其为ASICs依赖性(见前述)。
     2.非甾体抗炎药抑制DC表面ASICs的电生理功能
     文献报道,非甾体抗炎药可抑制海马和感觉神经元ASICs的功能。本研究借助全细胞膜片钳技术,观察非甾体抗炎药(布洛芬和双氯芬酸)对DC表面ASICs电生理功能的影响。结果显示:布洛芬(200μM)和双氯芬酸(200μM)均可明显降低DC的ASICs电流(前者从364.17±57.15 pA降低为176.07±28.77 pA,抑制率51.49±3.75%;后者从353.97±51.58 pA降低为166.7±18.57 pA,抑制率51.67±8.3%),该抑制效应为可逆性。上述结果提示,非甾体抗炎药可抑制DC表面ASICs的电生理功能。
     三、细胞外酸化通过ASICs调控DC功能
     1.细胞外酸化通过ASICs上调DC表面抗原提呈相关分子表达
     用ASICs阻断剂阿米洛利(100μM)预处理培养7天的DC(30 min,37℃,5%CO2),然后在pH6.5的培养基中培养4 h(37℃,7%CO2),流式细胞术检测DC表面CD11c、MHCIⅡ、CD80和CD86表达。结果显示:与对照组(pH6.5单独刺激4 h)相比,阿米洛利可明显抑制DC表面相关分子表达(n=6,p<0.05),提示微环境酸化可通过ASICs而调控DC表面抗原提呈相关分子表达。
     2.非甾体抗炎药通过抑制ASICs功能而影响细胞外酸化对DC表面抗原提呈相关分子表达的调控作用
     前面实验结果已证实,非甾体抗炎药可抑制DC表面ASICs的电生理功能,提示其如同阿米洛利,具有ASICs阻断剂的效应。据此,本实验应用非甾体抗炎药探讨细胞外酸化对DC表面抗原提呈相关分子表达的调控作用与ASICs的关系。
     培养7天的DC用非甾体抗炎药布洛芬或双氯芬酸(均为200μM)预处理30 min(37℃,5%CO2),然后在pH6.5培养基培养4h(37℃,7%CO2),流式细胞术检测表面分子CD11c、MHCⅡ、CD80和CD86表达。结果显示:与对照组(pH6.5单独刺激4h)相比,布洛芬和双氯芬酸处理组的分子表达水平明显降低(n=6,p<0.05),提示细胞外酸化对DC表面抗原提呈相关分子表达的调控作用为ASICs依赖性。
     结论
     1. BMDC可表达功能性ASICs,后者参与细胞外酸化对DC表面抗原提呈相关分子表达的调控作用。
     2.非甾体抗炎药可调控DC表面ASICs的电生理功能,并影响微环境酸化对DC表面抗原提呈相关分子表达的调节作用,提示ASICs可能是非甾体抗炎药发挥免疫抑制效应的新靶点。
pH value is an important physiological indicator of internal environment homeostasis. Under normal conditions, pH values in Peripheral blood, tissues and organs are usually 7.2-7.4. However, in some diseases, such as inflammation, autoimmune disease and tumors, the values of extracellular pH are much lower than that of normal tissues, and low pH values play an important role in developments of these diseases. Therefore, it is necessary to clarify the effects of extracellular pH on immune cells and their function.
     As the most potent antigen-presentation cells (APCs) of the immune system, dendritic cells (DCs) are specialized to capture, process and present antigens to T lymphocytes to initiate Ag-specific T cell response. Some surface molecules of DCs are involved in the process of antigen presentation, such as MHC, costimulatory molecules CD80 and CD86. Many reports have showed that DCs play an important role in the developments of inflammatory diseases, tumors and autoimmune diseases. Although it has been reported that acidosis improves the uptake of antigens and MHC I-restricted presentation by DCs, the molecular mechanism through which DCs are regulated by acidosis has remained unknown.
     Acid-sensing ion channels (ASICs) represent an H+-gated subgroup of the degenerin/epithelial Na+ channel (DEG/ENaC) family of cation channels and are activated by extracellular protons. They are widely expressed in peripheral sensory neurons and in the neurons of the central nervous system. ASICs are involved in nociception, mechanosensation, learning and memory and formation of sour taste. Recent studies have reported that ASICs are also expressed in non neuronal cells and have important effects on their physiological and pathological function.
     We proposed that ASICs served as sensors for extracellular acidosis and mediate the responses of DCs to acidosis. In the present study, we investigated the expression of ASICs in mouse DCs and the role of ASICs in the effect of acidosis on DCs function.
     1. ASICs are functional expressed in DCs
     We first performed RT-PCR and western blot to detect the expression of ASIC1、ASIC2 and ASIC3 at mRNA and protein levels, respectively. As a result, mRNAs and proteins for all the three ASICs were detected in DCs. Furthermore, we used immunocytochemistry and electron microscope to determine cellular and subcellular distributions of ASICs in DCs. The results showed that ASIC1 and ASIC3 were expressed in endoplasmic reticulum and mitochondria, while ASIC2 existed in cell membrane.
     To determine whether the expression of the ASIC proteins in DCs has function, we performed whole-cell patch clamp recordings. In the 85%(n=36/42) of the recorded DCs, the rapid drop of extracellular pH elicited inward ASICs-like currents, indicating the presence of functional ASIC channels. Usually, this transient inward current contained two phases:early fast and late slow inactivation. The mean amplitude of ASICs-like currents induced by pH 6.0 was 329.63±52.36 pA. The ASICs-like currents in DCs were reversibly inhibited by amiloride (100μM), a blocker of ASICs (n=6, P<0.05). The response of DCs to the drop of pH was in a dose-dependent manner. The threshold extracellular pH to elicit the inward current was about 7.0 and the maximum response appeared at 5.0. The extracellular pH producing 50% effect (pHso) was 6.08±0.05, and the Hill coefficient was 1.03±0.07 (n=6).
     2. Acidosis induced the currents in DCs via ASICs
     As a non-selective cation channel, TRPV1 also can evoke membrane currents at low extracellular pH (<6.0). Thereby, we examined the effect of Capsaicin (Cap), a selective agonist of TRPV1, on DCs with whole cell patch clamp technique. As a result,10μM Cap significantly evoked an inward current in cortex neurons. However,10μM Cap, even 100μM Cap failed to induce any inward currents in DCs. Moreover, we did not detect the TRPV1 mRNA expressing in DCs by PT-PCR. These results suggest that, the inward currents induced by decrease of extracellular pH are mediated by ASICs and not TRPV1 channels in DCs.
     Previous studies have demonstrated that NSAIDs significantly inhibited ASICs currents in hippocampus and sensory neurons. To investigate the effect of NSAIDs on ASICs in DCs, we tested the responses of ASICs currents to NSAIDs, ibuprofen or diclofenac. Extracellular application of 200μM ibuprofen significantly reduced ASICs currents from 364.17±57.15 pA to 176.07±28.77 pA. The inhibitory percentage was 51.49±3.75% and the inhibition could be reversed by extensive washes with bath solution. Similarly, diclofenac (200μM) also significantly reduced ASICs currents from 353.97±51.58 pA to 166.7±18.57 pA. The inhibition was also reversible and the inhibitory percentage was 51.67±8.3%. These data suggested that ASICs currents in DCs are also sensitive to NSAIDs.
     3. ASICs are involved in the up-regulation of surface molecules CD11c, MHCⅡ, CD80 and CD86 induced by acidosis in DCs
     We incubated DCs in pH7.3 for 30 min at 37℃in the presence of amiloride (100μM), a blocker of ASICs, before exposuring to pH6.5 for 4 h at 37℃, and examined the MFI of surface molecules CD11c, MHCⅡ, CD80 and CD86 by flow cytometry. The up-regulations of CD11c, MHC classⅡ, CD80 and CD86 expressing stimulated by acidosis were significantly inhibited by amiloride, suggesting that ASICs are involved in up-regulation of surface molecules CD11c, MHCⅡ, CD80 and CD86 expressings in DCs induced by acidosis.
     Since we have confirmed that NSAIDs can inhibit the function of ASICs in DCs, we next examined the effect of NASIDs on up-regulation of CD11c, MHCⅡ, CD80 and CD86 expressing in DCs induced by acidosis. DCs were pre-incubated with Ibuprofen (200μM) or Diclofenac (200μM) in pH7.3 for 30 min at 37℃, and then exposured to pH6.5 for 4 h. As a result, the expressings of CD11c, MHCⅡ, CD80 and CD86 were significantly lower than that of pH6.5 treated alone, indicating that NASIDs can inhibited the up-regulation of CD11c, MHCⅡ, CD80 and CD86 expressings induced by acidosis.
     Conclusions
     1. ASICs are functional expressed in DCs.
     2. ASICs mediated the up-regulation of cell surface molecules CD11c, MHC classⅡ, CD80 and CD86 expressings induced by acidosis.
     3. ASICs may be a new therapeutic target for regulating function of DCs in inflammation, tumors and autoimmune disease.
引文
[1]Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu Rev Immunol,2000,18:767-811.
    [2]Guermonprez P, Valladeau J, Zitvogel L et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol,2002,20:621-667.
    [3]Niess JH, Reinecker HC. Lamina propria dendritic cells in the physiology and pathology of the gastrointestinal tract. Curr Opin Gastroenterol,2005,21(6):687-691.
    [4]Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol, 2000,18:245-273.
    [5]Radstake TR, van Lieshout AW, van Riel PL et al. Dendritic cells, Fcγ receptors, and Toll-like receptors:potential allies in the battle against rheumatoid arthritis. Ann Rheum Dis,2005,64(11):1532-1538.
    [6]Blanco P, Palucka AK, Pascual V et al. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev,2008, 19(1):41-52.
    [7]Abbot NC, Spence VA, Swanson-Beck J et al. Assessment of the respiratory metabolism in the skin from transcutaneous measurements of pO2 and pCO2:potential for non-invasive monitoring of response to tuberculin skin testing. Tubercle,1990, 71(1):15-22.
    [8]Simmen HP, Blaser J. Analysis of pH and PO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am. J. Surg,1993,166(1):24-27.
    [9]Mansson B, Geborek P, Saxne T et al. Cytidine deaminase activity in synovial fluid of patients with rheumatoid arthritis:relation to lactoferrin, acidosis, and cartilage proteoglycan release. Ann Rheum Dis,1990,49(8):594-597.
    [10]Hunt JF, Fang K, Malik R et al. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med,2000,161(3 Pt 1):694-699.
    [11]Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res,1989,49(16):4373-4384.
    [12]Lardner A. The effects of extracellular pH on immune function. J Leukoc Biol,2001, 69(4):522-530.
    [13]Vermeulen M, Giordano M, Trevani AS et al. Acidosis improves uptake of antigens and MHC class I-restricted presentation by dendritic cells. J Immunol,2004, 172(5):3196-3204.
    [14]Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels:advances, questions and therapeutic opportunities. Trends Neurosci,2006,29(10):578-586.
    [15]Wemmie JA, Chen J, Askwith CC et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron,2002, 34(3):463-477.
    [16]Jahr H, van Driel M, van Osch Gj et al. Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun,2005,337(1):349-354.
    [17]Grifoni SC, Jernigan NL, Hamilton G et al. ASIC proteins regulate smooth muscle cell migration. Microvasc Res,2008,75(2):202-210.
    [18]Inaba K., Inaba M, Romani N et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med,1992,176(6):1693-1702.
    [19]Lutz MB., Kukutsch N, Ogilvie AL et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods,1999,223(1):77-92.
    [20]Page AJ, Brierley SM, Martin CM et al. Acid sensing ion channels 2 and 3 are required for inhibition of visceral nociceptors by benzamil. Pain,2007, 133(1-3):150-160.
    [21]O'Connell PJ, Pingle SC, Ahern GP. Dendritic cells do not transduce inflammatory stimuli via the capsaicin receptor TRPV1. FEBS Lett,2005,579(23):5135-5139.
    [22]Yu G, Fang M, Gong M et al. Steady state dendritic cells with forced IDO expression induce skin allograft tolerance by upregulation of regulatory T cells. Transpl Immunol, 2008,18(3):208-219.
    [23]Chen J, Daggett H, De Waard M et al. Nitric oxide augments voltage-gated P/Q-type Ca(2+) channels constituting a putative positive feedback loop. Free Radic Biol Med, 2002,32(7):638-649.
    [24]Yermolaieva O, Chen J, Couceyro PR et al. Cocaine-and amphetamine-regulated transcript peptide modulation of voltage-gated Ca+ signaling in hippocampal neurons.J Neurosci,2001,21(19):7474-7480.
    [25]Dorofeeva NA, Barygin OI, Staruschenko A et al. Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons. J Neurochem,2008,106(1):429-441.
    [26]Voilley N, de Weille J, Mamet J et al. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci,2001,21(20):8026-8033.
    [27]Le Bitoux MA., Stamenkovic I. Tumor-host interactions:the role of inflammation. Histochem Cell Biol,2008,130(6):1079-1090.
    [28]Gonda TA, Tu S, Wang TC. Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle,2009,8(13):2005-2013.
    [29]Centonze D, Muzio L, Rossi S et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci,2009, 29(11):3442-3452.
    [30]Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol,2009,5(4):219-226.
    [31]Martinez D, Vermeulen M, von Euw E et al. Extracellular acidosis triggers the maturation of human dendritic cells and the production of IL-12. J Immunol,2007, 179(3):1950-1959.
    [32]Friese MA, Craner MJ, Etzensperger R et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med,2007,13(12):1483-1489.
    [33]Pingle SC, Matta JA, Ahern GP. Capsaicin receptor:TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol,2007, (179):155-171.
    [34]Toth BI, Benko S, Szollosi AG et al. Transient receptor potential vanilloid-1 signaling inhibits differentiation and activation of human dendritic cells. FEBS Lett,2009, 583(10):1619-1624.
    [35]Basu S, Srivastava P. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc Natl Acad Sci U S A,2005,102(14):5120-5125.
    [1]Oh-hora M, Rao A. Calcium signaling in lymphocytes. Curr Opin Immunol,2008, 20(3):250-258.
    [2]Liu JO. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Immunol Rev,2009,228(1):184-198.
    [3]Liu Q-H, Liu X, Wen Z et al. Distinct calcium channels regulate responses of primary B lymphocytes to B cell receptor engagement and mechanical stimuli. J Immunol, 2005,174(1):68-79.
    [4]Gwack Y, Srikanth S, Oh-Hora M et al. Hair loss and defectiveT-and B-cell function in mice lacking ORAI1. Mol Cell Biol,2008,28(17):5209-5222.
    [5]Partida-Sanchez S, Gasser A, Fliegert R et al. Chemotaxis ofmouse bone marrow neutrophils and dendritic cells is controlled by ADP-ribose,the major product generated by the CD38 enzyme reaction. J Immunol,2007,179(11):7827-7839.
    [6]Hsu Sf, O'Connell PJ, Klyachko VA et al. Fundamental Ca2+ signaling mechanisms in mouse dendritic cells:CRAC is the major Ca2+ entry pathway. J Immunol,2001, 166(10):6126-6133.
    [7]Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol,2008,8(8):607-618.
    [8]Sansonetti PJ. The innate signaling of dangers and the dangers of innate signaling. Nat Immunol,2006,7(12):1237-1242.
    [9]Steinman RM. Some interfaces of dendritic cell biology. APMIS,2003, 111(7-8):675-697.
    [10]Netea MG, van der Graaf C, Van der Meer JW et al. Toll-like receptors and the host defense against microbial pathogens:bringing specificity to the innateimmune system. J Leukoc Biol,2004,75(5):749-755.
    [11]Mazzoni A, Segal DM. Controlling the Toll road to dendritic cell polarization. J Leukoc Biol,2004,75(5):721-730.
    [12]Boes M, Cuvillier A, Ploegh H. Membrane specializations and endosome maturation in dendritic cells and B cells. Trends Cell Biol,2004,14(4):175-183.
    [13]Tsan MF, Gao B. Endogenous ligands of Toll-like receptors. J Leukoc Biol,2004, 76(3):514-519.
    [14]Pe'trilli V, Dostert C, Muruve DA et al. The inflammasome:a danger sensing complex triggering innate immunity. Curr Opin Immunol,2007,19(6):615-622.
    [15]Shaw MH, Reimer T, Kim YG et al. NOD-like receptors (NLRs):bona fide intracellular microbial sensors. Curr Opin Immunol,2008,20(4):377-382.
    [16]Ting JP, Willingham SB, Bergstralh DT. NLRs at the intersection of cell death and immunity. Nat Rev Immunol,2008,8(5):372-379.
    [17]Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from Toll-like receptors. Science,2004,304(5673):1014-1018.
    [18]Blander JM, Medzhitov R. On regulation ofphagosome maturation and antigen presentation. Nat Immunol,2006,7(10):1029-1035.
    [19]Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature,2006,440(7085):808-812.
    [20]Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol,1997,9(1):10-16.
    [21]Czerniecki B, Carter C, Rivoltini L et al. Calcium ionophoretreated peripheral blood monocytes and dendritic cells rapidly display characteristics of activated dendritic cells. J Immunol,1997,159(8):3823-3837.
    [22]Dauer M, Obermaier B, Herten Z et al. Mature dendritic cells derived from human monocytes within 48 hours:A novel strategy for dendritic cell differentiation from blood precursors. J Immunol,2003,170(8):4069-4076.
    [23]Koski GK, Schwartz GN, Weng DE et al. Calcium mobilization in human myeloid cells results in acquisition of individual dendritic cell-like characteristics through discrete signaling pathways. J Immunol,1999,163(1):82-92.
    [24]St. Louis DC, Woodcock JB, Franzoso G et al. Evidence for distinct intracellular signaling pathways in CD34+ progenitor to dendritic cell differentiation from a human cell line model. J Immunol,1999,162(6):3237-3248.
    [25]Anderson ME. Calmodulin kinase signaling in heart:an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther,2005, 106(1):39-55.
    [26]Merrill MA, Chen Y, Strack S et al. Activity-driven postsynaptic translocation of CaMKII. Trends Pharmacol Sci,2005,26(12):645-653.
    [27]Poggi A, Rubartelli A, Zocchi MR. Involvement of dihydropyridine-sensitive calcium channels in human dendritic cell function. Competition by HIV-1 TAT. J Biol Chem, 1998,273(13):7205-7209.
    [28]Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol,2008,8(10):753-763.
    [29]Hugh Rosen PG-C, Marsolais D, Cahalan S et al. Modulating tone:the overture of S1P receptor immunotherapeutics. Immunol Rev,2008,223:221-235.
    [30]Massberg S, Schaeril P, Knezevic-Maramica I et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell,2007,131(5):994-1008.
    [31]Martino A, Volpe E, Auricchio G et al. Sphingosine 1-phosphate interferes on the differentiation of human monocytes into competent dendritic cells. Scand J Immunol, 2007,65(1):84-91.
    [32]Hook SS, Means AR. Ca2+/CaM-DEPENDENT KINASES:from activation to function. Annu Rev Pharmacol Toxicol,2001,41:471-505.
    [33]Hudmon A, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinase II:the role of structure and autoregulation in cellular function. Annu Rev Biochem,2002, 71:473-510.
    [34]Means AR. Regulatory cascades involving calmodulin-dependent protein kinases. Mol Endocrinol,2000,14(1):4-13.
    [35]Fujisawa H. Regulation of the activities of multifunctional Ca2+/calmodulin-dependent protein kinases. J Biochem,2001,129(2):193-199.
    [36]Barbet G, Demi on M, Moura IC et al. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol,2008,9(10):1148-1156.
    [37]Nilius B, Prenen J, Tang J et al. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem,2005,280(8):6423-6433.
    [38]Prawitt D, Moriteilh-Zoller MK, Brixel L et al. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca+]i. Proc Natl Acad Sci USA,2003, 100(25):15166-15171.
    [39]Hu PQ, Tuma-Warrino RJ, Bryan MA et al. Escherichia coli expressing recombinant antigen and listeriolysin O stimulate class I-restricted CD8+ T cellsfollowing uptake by human APC. J Immunol,2004,172(3):1595-1601.
    [40]Salter RD, Tuma-Warrino RJ, Hu PQ et al. Rapid and extensive membrane reorganization by dendritic cells following exposure to bacteria revealed by high-resolution imaging. J Leukoc Biol,2004,75(2):240-243.
    [41]Salter RD, Watkins SC. Dynamic properties of antigen uptake and communication between dendritic cells. Immunol Res,2006,36(1-3):211-220.
    [42]Jin T, Xu X, Fang J et al. How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum. Immunol Res, 2009,43(1-3):118-127.
    [43]Handley ME, Pollara G, Chain BM et al. The use of targeted microbeads for quantitative analysis of the phagocytic properties of human monocyte-derived dendritic cells. J Immunol Methods,2005,297(1-2):27-38.
    [44]Li X, Udagawa N, Takami M et al. p38 mitogenactivated protein kinase is crucially involved in osteoclast differentiation but not in cytokine production, phagocytosis, or dendritic cell differentiation of bone marrow macrophages. Endocrinology,2003, 144(11):4999-5005.
    [45]Stent G, Reece JC, Baylis BC et al. Heterogeneity of freshly isolated human tonsil dendritic cells demonstrated by intracellular markers, phagocytosis, and membrane dye transfer. Cytometry,2002,48(3):167-176.
    [46]Watkins SC, Salter RD. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity,2005,23(3):309-318.
    [47]West MA, Wallin RP, Matthews SP et al. Enhanced dendritic cell antigen capture via Toll-like receptorinduced actin remodeling science. Science,2004, 305(5687):1153-1157.
    [48]Dubyak DR. Activation of inositol phospholipid-specific phospholipase C by P2-purinergic receptors in human phagocytic leukocytes. Ann NY Acad Sci,1990, 603:227-244.
    [49]Baba M, Nishimura O, Kanzaki N et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA,1999,96(10):5698-5703.
    [50]Yoshida R, Nagira M, Kitaura M et al. Secondary lymphoidtissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem,1998, 273(12):7118-7122.
    [51]Civitelli R. Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys,2008,473(2):188-192.
    [52]Laird DW. Life cycle of connexins in mhealth and disease. Biochem J,2006,394(Pt 3):527-543.
    [53]Michon L, Nlend Nlend R, Bavamian S et al. Involvement of gap junctional communication in secretion. Biochim Biophys Acta,2005,1719(1-2):82-101.
    [54]Stains JP, Civitelli R. Gap junctions in skeletal development and function. Biochim Biophys Acta,2005,1719(1-2):69-81.
    [55]Prochnow N, Dermietzel R. Connexons and cell adhesion:a romantic phase. Histochem Cell Biol,2008,130(1):71-77.
    [56]Schalper KA, Palacios-Prado Ns, Orellana JA et al. Currently used methods for identification and characterization of hemichannels. Cell Commun Adhes,2008, 15(1):207-218.
    [57]Neijssen J, Herberts C, Drijfhout JW et al. Cross-presentation by intercellular peptide transfer through gap junctions. Nature,2005,434(7029):83-88.
    [58]Handel A, Yates A, Pilyugin SS et al. Gap junction-mediated antigen transport in immune responses. Trends Immunol,2007,28(11):463-466.
    [59]Zimmerli SC, Masson F, Cancela J et al. Cutting edge:lack of evidence for connexin-43 expression in human epidermal Langerhans cells. J Immunol,2007, 179(7):4318-4321.
    [60]Anselmi F, Hernandez VH, Crispino G et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA,2008,105(48):18 770-18 775.
    [61]Banks EA, Toloue MM, Shi Q et al. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J Cell Sci,2009,122(Pt 3):378-388.
    [62]Belliveau DJ, Bani-Yaghoub M, McGirr B et al. Enhanced neurite outgrowth in PC 12 cells mediated by connexin hemichannels and ATP. J Biol Chem,2006, 281(30):20920-20931.
    [63]Dbouk H, Mroue R, El-Sabban M et al. Connexins:a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal,2009,7:4.
    [64]Davalos D, Grutzendler J, Yang G et al. ATP mediates rapid microglial response to local brain injury in vivo. Neuroscience,2005,8(6):752-758.
    [65]Kang J, Kang N, Lovatt D et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci,2008,28(18):4702-4711.
    [66]Retamal MA, Froger N, Palacios-Prado N et al. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci,2007,27(50):13781-13792.
    [67]Fonseca PC, Nihei OK, Savino W et al. Flow cytometry analysis of gap junction-mediated cell-cell communication:Advantages and pitfalls. Cytometry,2006, 69(6):487-493.
    [68]Rustom A, Saffrich R, Markovic I et al. Nanotubular highways for intercellular organelle transport. Science,2004,303(5660):1007-1010.
    [69]Onfelt B, Nedvetzki S, Yanagi Ket al. Cutting edge:membrane nanotubes connect immune cells. J Immunol,2004,173(3):1511-1513.
    [70]Galkina SI, Molotkovsky JG, Ullrich V et al. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide. Exp Cell Res, 2005,304(2):620-629.
    [71]Galkina SI, Sud'ina GF, Klein T. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin. Exp Cell Res,2006,312(13):2568-2579.
    [72]Gupta N, DeFranco AL. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell,2003, 14(2):432-444.
    [73]Gerdes HH, Bukoreshtliev NV, Barroso JF. Tunneling nanotubes:a new route for the exchange of components between animal cells. FEBS Lett,2007,581(11):2194-2201.
    [74]Onfelt B, Nedvetzki S, Benninger RK et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol,2006,177(12):8476-8483.
    [75]Sherer NM, Mothes W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol,2008.18(9):414-420.
    [76]Ko K, Arora P, Lee W et al. Biochemical and functional characterization of intercellular adhesion and gap junctions in fibroblasts. Am J Physiol Cell Physiol, 2000,279(l):C147-C157.
    [77]Griffith TM, Chaytor AT, Edwards DH. The obligatory link:role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization. Pharmacol Res,2004,49(6):551-564.
    [78]Wang H, Yang H, Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med,2004,255(3):320-331.
    [79]Lotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol,2007,124(1):1-4.
    [80]Yang D, Chen Q, Schmidt AP et al. LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med,2000,192(7):1069-1074.
    [81]Yang D, Chen Q, Chertov O et al. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol,2000,68(1):9-14.
    [82]Yang D, Chen Q, Gertz B et al. Human dendritic cells express functional formyl peptide receptor-like-2 (FPRL2) throughout maturation. J Leukoc Biol,2002, 72(3):598-607.
    [83]Yang D, Chertov O, Bykovskaia SN et al. Defensins:linking innate and adaptive immunity through dendritic and T cell CCR6. Science,1999,286(5439):525-528.
    [84]DeFranco AL. Dangerous Crystals. Immunity,2008,29(5):670-671.
    [85]Martinon F. Detection of immune danger signals by NALP3. J Leukoc Biol,2008, 83(3):507-511.
    [86]Benko S, Philpott DJ, Girardin SE. The microbial and danger signals that activate Nod-like receptors. Cytokine,2008,43(3)368-373.
    [87]Lamkanfi M, Kanneganti T-D, Franchi L et al. Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol,2007,82(2):220-225.
    [88]Pope RM, Tschopp J. The role of interleukin-1 and the inflammasome in gout: implications for therapy. Arthritis Rheum,2007,56(10):3183-3188.
    [89]Willart MA, Lambrecht BN. The danger within:endogenous danger signals, atopy and asthma. Clin Exp Allergy,2009,39(1):12-19.
    [90]Pellegatti P, Raffaghello L, Bianchi G et al. Increased level of extracellular ATP at tumor sites:in vivo imaging with plasma membrane luciferase. PLoS ONE,2008, 3(7):e2599.
    [91]Trautmann A. Extracellular ATP in the immune system:more than just a "danger signal". Sci Signal,2009,2(56):pe6.
    [92]Skelton L, Cooper M, Murphy M et al. Human immature monocyte-derived dendritic cells express the G protein-coupled receptor GPR105 (KIAA0001, P2Y14) and increase intracellular calcium in response to its agonist, uridine diphosphoglucose. J Immunol,2003,171(4):1941-1949.
    [93]Georgiou JG, Skarratt KK, Fuller SJ et al. Human epidermal and monocyte-derived langerhans cells express functional P2X7 receptors. J Invest Dermatol,2005, 125(3):482-490.
    [94]Baroni M, Pizzirani C, Pinotti M et al. Stimulation of P2 (P2X7) receptors in human dendritic cells induces the release of tissue factor-bearing microparticles. FASEB J, 2007,21(8):1926-1933.
    [95]Bodin P, Burnstock G. Purinergic signalling:ATP release. Neurochem Res,2001, 26(8-9):959-969.
    [96]Duan S, Neary JT. P2X(7) receptors:properties and relevance to CNS function. Glia, 2006,54(7):738-746.
    [97]Sowinski S, Jolly C, Berninghausen O et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol,2008,10(2):211-219.
    [98]Sherer NM, Lehmann MJ, Jimenez-Soto LF et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol,2007, 9(3):310-315.
    [99]Favoreel HW, Van Minnebruggen G, Adriaensen D et al. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirusare associated with enhanced spread. Proc Natl Acad Sci USA,2005,102(25):8990-8995.
    [100]Gousset K, Schiff E, Langevin C et al. Prions hijack tunneling nanotubes for intercellular spread. Nat Cell Biol,2009, 11(3):328-336.
    [101]Hsiung F, Ramirez-Weber FA, David Iwaki D et al. Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature,2005,437(7058):560-563.
    [102]Rami'rez-Weber FA, Kornberg TB. Cytonemes:cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell,1999, 97(5):599-607.
    [103]Chinnery HR, Pearlman E, McMenamin PG. Cutting edge:membrane nanotubes in vivo:a feature of MHC class Ⅱ+ cells in the mouse cornea. J Immunol,2008, 180(9):5779-5783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700