用户名: 密码: 验证码:
热处理对固相合成ZM6镁合金组织与性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金越来越广泛的应用使镁合金再生技术对于合理回收废料、延长镁合金使用周期具有重要意义。固态回收技术能够很好地节约资源、降低镁制品成本和防止环境污染,并且避免了液态回收过程中镁合金熔液易于氧化燃烧、操作时复杂且缺乏安全性的缺点,是一种很有发展前景的回收方法。本研究利用固相合成方法制备了ZM6镁合金试样并对其进行不同的热处理工艺,在成形过程中不需加入覆盖剂,不需要熔融,操作起来安全简单。该方法是建立在镁合金塑性成形理论、动态再结晶和回复机制、氧化相弥散机制、扩散焊接机理等理论基础上的。
     本研究根据镁合金挤压原理,选择了一套挤压比为25:1、模具模角为60?,工作带长6mm,模具入口处圆角2?,并能满足固相合成材料性能测试的模具。本研究通过改变不同的热处理工艺对挤压合金进行热处理,并对所获得的试样进行微观组织的观察和力学性能的测试。同时还与铸态和热处理后的铸态合金进行了比较。
     通过试验分析最终得出:ZM6镁合金由于在挤压过程中发生了动态再结晶使晶粒得到明显细化;T4处理后,挤压合金的强度和塑性都有所下降,主要是因为固溶处理对合金力学性能提高的绝对值小于晶粒长大所带来的负面影响;T5、T6处理都使合金的强度有所提高,T5处理后,挤压合金的晶粒几乎没有长大,T6处理后合金的晶粒明显长大并且析出第二相,第二相析出是合金强度提高和延伸率下降的主要原因,固溶处理后,当时效时间为16h时,挤压合金的强度达到T6状态下的最高值,达到294.50MPa,此时合金的强度与原挤压合金相比提高了27.00%,尽管塑性有所下降,但13.50%的延伸率仍然是可接受的较高值;铸态合金经T6处理后合金的断裂面形成独特的深坑结构,以脆性相包含基体相的形式存在,同时合金的强度和塑性都有所增加。
As the prevalent application of magnesium alloy, it become more and more important for the recycling of magnesium alloy to recycle scraps appropriately and prolong the lifetime. The solid-state recycling method is good for saving resource, reducing cost, and preventing pollution of environment. The problem of liquid-state recycling which is complicated and unsafe since magnesium alloy are readily oxidized can be solved by solid-state recycling. It has a well development potential. The ZM6 magnesium alloy samples are prepared by hot extruding from machined chips. This method is safe without protective covering and fusion, which is based on plastic deformation theory, dynamic recrystallization and dynamic recovery mechanism, dispersion strengthening and diffusion welding mechanism.
     The study selected a set mould with the extrusion ratio of 25:1, modular angle of 60?, 6mm of working tape, and 2? of rounding at the entrance of mould. It can meet the property test of materials prepared by hot extrusion from recycled machined chips, which is according to the design principle of extrusion mould. The extruded bars were strengthened by different treatment processes, then the microstructure was observed, the mechanical property was tested, and compared with as-cast and the samples prepared by hot extrusion from cast ingot.
     The result shows that, compared with the as-cast ZM6 magnesium alloy, the grain is refined obviously since dynamic recrystallization have taken place in the process of hot extrusion, after T4 heat treatment, the ultimate strength (UTS) and the plasticity of quenched alloy is lower than that of extruded material without any thermal treatment, one of the prime reasons in that the strength loss due to the recrystallization is greater in magnitude than the increase due to solid solution strengthening. Heat treatment of T5 and T6 strengthen the strength of extruded alloy. After heat treatment of T5, the grain is not grow up almost. But at heat treatment of T6, the grain is grow up evidently and separate second phases particles appear in the microstructure. The prime reason of mechanical property changed is the separated second phases particles composed rare earth element. After quenched, the maximum strength increase is achieved after 16h aging, about 294.50MPa. At this time of day, the strength of alloy has been strengthened 27.00% compare with the hot extruded alloy without any heat treatment. Although the values of ductility played down, but the ductility ofδnear 13.50% is quite accepted. The fracture surface of cast alloy with T6 treatment appeared a particular structure of chasm. The phase of brittleness contained the phase of basic. The strength and the ductility increased at the same time.
引文
[1]陈振华.镁合金[M].北京:化学工业出版社, 2004:64-65.
    [2]黄晓艳,周宏.镁合金的研究应用及最新进展[J].材料与冶金学报, 2003, 4(2): 300-306.
    [3]王爱丽,付珍,赵浩峰.镁合金的生产及应用[J].铸造设备研究, 2003, 1: 34-37.
    [4]陈亚军,黄天佑.镁合金应用现状及铸造技术研究进展[J].铜业工程, 2005, 1: 45-49.
    [5] CHINO Y, HOSHIKA T, MABUCHI M. Mechanical and Corrosion Properties of AZ31 Magnesium Alloy Repeatedly Recycled by Hot Extrusion[J]. Materials Transactions, 2006, 47(4): 1040-1041.
    [6] MABUCHI M, KUBOTA K, HIGASHI K. New Recycling Process by Extrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars[J]. Materials Transactions, 1995, 36 (10): 1249-1254.
    [7] CHINO Y, MASAAKI, KOBATA, et al. Blow forming of Mg Alloy Recycled by Solid-state Recycling[J]. Materials Transactions, 2004, 45 (2): 361-364.
    [8] YASUMASA C, LEE J S, YUSUKE N, et al. Mechanical Properties of Mg-Al-Ca Alloy Recycled by Solid-state Recycling[J]. Materials Transactions, 2005, 46 (12): 2592-2595.
    [9]李斗勉,李俊瑞,李智煥. AZ91Dマグネシウム合金切粉押出材の組織および機械的性質[J].軽金属, 1995, 45(7): 391-396.
    [10]千野靖正,岸原竜二,下島康嗣.固体リサイクル法によって再生されたAZ91Dマグネシウム合金の腐食特性および機械的特性[J].日本金属学会誌, 2001, 65(7): 621-626.
    [11]翟秋亚,王智民,袁森,等.挤压变形对AZ31镁合金组织和性能的影响[J].西安理工大学学报, 2002, 3: 254-259.
    [12] LIU Y, LI Y Y, ZHANG D T, et al. Microstructure and Properties of AZ80 Magnesium Alloy Prepared by Hot Extrusion from Recycled Machined Chips[J]. Trans. Nonferrous Met, 2002, 12: 882-885.
    [13]潘复生,张静,汪凌云,等.变形镁合金研究最新进展及应用前景[J].材料科学与工程新进展(上), 2002: 581-589.
    [14]彭键,张丁非,谢槐元,等.国内汽车镁合金应用展望[J].材料导报, 2003, 18(18A): 193-195.
    [15]余琨,黎文献,王日初,等.变形镁合金的开发及应用[J].中国有色金属学报, 2001, 13(2): 277-288.
    [16]周海涛,马春江,曾小琴,等.变形镁合金材料的研究进展[J].材料导报, 2003, 11(17): 16-18.
    [17]增荣昌,柯伟.镁合金的最新发展与应用前景[J].金属学报, 2001, 37(7): 673-685.
    [18]张丁非,彭键,丁培道,等.关于我国镁合金产业发展战略的思考[J].世界有色金属, 2004, a(7): 4-7.
    [19]吉泽升.日本镁合金研究进展及新技术[J].中国有色金属学报, 2004, 14(12): 1977-1984.
    [20]陈振华.耐热镁合金[M].北京:化学工业出版社, 2004: 353-354.
    [21] KAWAMURA Y, INOUE A. Development of High Strength Magnesium Alloys by Rapid Solidification[J]. Materials Science Forum, 2003: 709-714.
    [22]河村能人.長周期積層構造型マグネシウム合金[J].軽金属, 2004, 54(11): 503-504.
    [23] Y KAWAMURA, HAYASHI K, INOUE A, et al. Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600MPa[J]. Materials Transactions, 2001, 42(7): 1172-1180.
    [24] BAE D H, KIM S H, KIM W T, et al. High Strength Mg-Zn-Y Alloy Containing Quasicrystalline Particles[J]. Materials Transaction, 2001, 42(10): 2144-2148.
    [25]諸住正太郎,犀川潔,小山欽一. Mg-Y-Nd合金の時效特性および引張性質[J].軽合金, 1999, (10): 481-486.
    [26] HUMBLE P. Towards a Cheap Resistant Magnesium Alloy[J]. Materials Forum, 1997, 21: 45-56.
    [27]孙扬善,翁坤忠,袁广银. Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报, 1999, 9(1): 55-60.
    [28]袁广银,曾小勤,吕宜振,等.锑合金化对镁铝基合金力学性能的改善作用[J].材料工程, 2001, (4): 10-15.
    [29] LUO A A, PEKGULERYUZ M. Review of Cast Magnesium Alloys for Elevated Temperature Applications[J]. J. Mater. Sci., 1994, 29: 5259-5271.
    [30] PEKGULERYUZ M O, BARIL E. Magnesium-based Casting Alloys Having Improved Elevated Temperature Performance: United States, US6322644[P], 1999-06-09[2008-03-01].
    [31] LEFEBVRE M, PEKGULERYUZ M O, LABELLE P. Magnesium-based Casting Alloys Having Improved Elevated Temperature Properties: United States, US6342180[P]. 2000-03-05[2008-03-03].
    [32] CARBONNEAU Y, COUTURE A, NESTE A V, et al. Communications the Observation of a New Ternary MgSiCa Phase in Mg-Si Alloys[J]. Metallurgical and Materials Transactions A, 1998, 29(6): 1759-1763.
    [33] DRNSCHITZ A P, SHOWALTER E R, JOSEPH B M, et al. Evolution of Structural and High-Temperature Magnesium Alloys[J]. SAE Technological Paper, 2002(1): 0080-0082.
    [34]王祝堂.新型耐热镁合金ACM522[J].轻合金加工技术, 2001, 29(1): 51-53.
    [35] HORIE, TOSHIO, IWAHORI, et al. Creep Properties of Mg-Zn Alloy Improved by Calcium Addition[J]. Journal of Japan Institute of Light Metals, 1999, 49(7): 272-276.
    [36] PARK W W, JARDIM P M, YOU B S, et al. Characterization of Mg-Zn-Ca Alloys for High Temperature Application[C]. MRILTD. Proceedings of the Second Israeli International Conference on Magnesium Science & Technology“Magnesium 2000”, Dead Sea, Israel, 2000: 198-202.
    [37] ZHANG Z, COUTURE A. Investigation of the Properties of Mg-Zn-Al Alloys[J]. Scripta Materialia, 1998, 39(1): 45-53.
    [38] ZHANG Z, TREMBLAY R. Solidification Microstructure of AZ102, ZA104 and ZA106 Magnesium Alloys and Its Effect on Creep Deformation[J]. Canadian Metallurgical Quarterly, 2000, 39(4): 503-512.
    [39] ADACHI M, SATO S, SASAKI H. Si-Containing Magnesium Alloy for Casting with Melt Thereof: United States, US5669990[P]. 1996-08-02[2008-03-02].
    [40] VON B F, LIETZAU J, MORDIKE B L, et al. Development of Mg-Sc-Mn Alloys[J]. Materials Science and Engineering A, 1990, 263(1): 1-7.
    [41] MORDIKE B L. Creep-Resistant Magnesium Alloy[J]. Materials Science and Engineering A, 2002, 224(1-2): 103-112.
    [42]李春梅,钱鑫源,李金桂,等.稀土在航空工业中的应用现状与发展趋势[J].材料工程, 1998, 6: 10-13.
    [43] CHINO Y, KISHIHARA R, SHIMOJIMA K, et al. Superplasticity and Cavitation of Recycled AZ31 Magnesium Alloy Fabricated by Solid Recycling Process[J]. Materials Transactions, 2002, 43(10): 2437-2442.
    [44]陈振华.变形镁合金[M].北京:化学工业出版社, 2004: 353-354.
    [45]姚远程.热处理对挤压态AZ61镁合金组织及力学性能的影响[D].沈阳:沈阳工业大学(硕士学位), 2002: 5-6.
    [46]刘正.镁基轻质材料的研究与应用[J].材料研究学报, 2000: 14(5): 450-455.
    [47]李新林,王慧远,姜启川.颗粒增强镁基复合材料的研究现状及发展趋势.材料科学与工艺, 2001, 9(6): 220-225.
    [48] GALIYEV A, KAIBYSHEV K R, SAKAI T. Continuous Dynamic Recrystallization in Magnesium Alloy[J]. Mater Sci Forum, 2003: 419-422.
    [49] YANG X. MIURA H, SAKAI T. Dynamic Nucleation of New Grains in Magnesium Alloy during Hot Deformation[J]. Mater Sci Forum, 2003: 515-520.
    [50] GALIYEV A, KAIBYSHEV R, GOTTSTEIN G.. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60[J]. Acta Mater, 2001, 49: 1199-1207.
    [51] SITIKOV O, KAIBYSHEV R, SAKAI T. Dynamic Recrystallization Based on Twinning in Coarsed-grained Mg[J]. Materials Science Forum, 2003: 419-422.
    [52] COURET A, CAILIARD D. Prismatic Glide in Divalent H. C. P Metals[J]. Philos Mag A, 1991, 63 (5): 1045-1057.
    [53] BARNRTT M R. Recrystallization and Following Hot Working of Magnesium Alloy AZ31[J]. Materials Science Forum, 2003: 419-422, 503-508.
    [54] KAIBYSHEV R, GALIYEV A, SITDIKOV O. On the Possibility of Producing a Nano-crystalling Structure in Magnesium and Magnesium Alloys[J]. Nano-structured Materials, 1995, 6(5-8): 498-503.
    [55] DOHERTY R D, HUGHES D A, HUMPHREYS F J. Current Issues in Recrystallization[J]. A Review Mater Sci Eng, 1997, A238(2): 238-275.
    [56]陈振华.镁合金[M].北京:化学工业出版社, 2004: 33-34.
    [57]魏军.金属挤压机[M].北京:化学工业出版社, 2006: 205-207.
    [58] POLMEAR I J. Recent Developments in Light Alloys[J]. Transactions JIM, 1996, 37(1): 21-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700