用户名: 密码: 验证码:
铅锌冶炼渣硫化处理新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅锌冶炼企业每年会产生大量的重金属废渣,历年的堆存量已经过亿吨,此类重金属废渣的治理一直是环保领域的重大课题。然而,现有处理技术难以同时实现废渣中重金属的资源化和稳定化,例如浸出等回收技术在提取金属的同时会产生大量的废水和浸出渣;而水泥固化等稳定化技术又难以将废渣中的金属提取,造成资源的浪费,因此,迫切需要一种兼顾重金属资源化和稳定化的处理方法。硫化技术处理废渣不仅能将其中的重金属转化为硫化物通过浮选的方式加以回收,同时处理后的重金属也具有良好的稳定性,是重金属废渣处理的一种新思路。基于对铅锌冶炼企业废渣产生情况调研及废渣组分分析结果,本文采用三种堆置类废渣(挥发窑渣,常压富氧浸锌渣,重金属废水中和渣)为主要研究对象。首次采用干磨自蔓延硫化、湿式球磨硫化以及水热硫化法对上述废渣进行硫化处理,并对三种新型硫化方法的反应机制及过程特征进行探讨。
     三种堆置类废渣的化学成分及环境活性分析结果表明:挥发窑渣中Zn, Pb等重金属含量为2%-3%,且Pb、Cd等金属的浸出毒性存在超标风险;锌浸出渣的Zn含量为5%,Pb含量为5%,其金属的浸出毒性远远超过国家标准;中和渣的Zn含量在15-20%之间,但其中的重金属性质较稳定,且浸出毒性低于国家标准。根据上述分析结果,并结合重金属氧化物的硫化探索性实验,本文确定了以上三种堆置类废渣的硫化工艺:挥发窑渣采用干式球磨硫化-硫磺固化处理,采用硫磺作为硫化剂;常压富氧浸锌渣采用湿式球磨硫化-浮选分离稳定化处理,以硫化钠为硫化剂;中和渣采用水热硫化-浮选回收处理,以硫磺为硫化剂。
     系统地研究了重金属的机械诱发的自蔓延硫化反应机制,实现了挥发窑渣的稳定化转变。研究结果表明,机械干磨挥发窑渣的最佳工艺参数为:硫磺添加量为4.5%,球磨时间为1小时,球料比为20:1,最优情况下Zn的硫化率可达95.4%,Pb的硫化率可达94.2%,处理后各重金属浸出毒性达标。通过分析球磨过程中重金属化合物晶体结构变化以及废渣中其他组分的行为特征,研究认为反应体系的绝热温度(Tad)是机械力诱发白蔓延硫化反应的主要决定因素,而球磨过程中晶体性质的变化仅起到促进或阻碍硫化反应的作用。挥发窑中的Fe等单质是诱发ZnO的实现自蔓延硫化反应的主要原因,其作用机制是提高了整个反应体系的绝热温度。硫化后的废渣可以制备成硫磺建材,最优的制备工艺为:采用分步投加方式加热,硫磺添加量40%,原料粒径小于150μm,骨料添加量控制在15%以内,在最优制备条件下,硫磺固化体的抗压强度为35MPa,吸水率为4%,满足建材要求。
     利用湿式球磨的界面活化作用,实现了常压富氧浸锌渣的深度硫化,废渣中铅硫化率可达73.2%。湿式球磨硫化的最佳工艺为:Na2S·9H2O添加量为8.4%,球料比10:1,硫化时间1小时。利用收缩核模型揭示了机械力促进重金属硫化的原因。研究认为,PbSO4硫化反应受内扩散控制,球磨作用可以通过降低颗粒粒径,提高硫化剂进入反应物内核的速率。后续的浮选处理可以分离废渣中50%以上的Pb, Cu, Cd等重金属,然而废渣硫磺含量大、生成硫化物粒径细小是影响浮选回收率提高的主要原因。TCLP和连续淋洗实验表明,处理后的常压富氧浸锌渣重金属浸出毒性低于相关标准,并且具有长期稳定性。
     利用水热条件下的溶解-再结晶机制,实现了重金属废水中和渣中重金属的高效硫化。其水热硫化的最佳工艺条件为:水热硫化温度200℃;水热硫化时间2小时;硫磺添加量15%;矿浆浓度300g·L-1;pH大于10。在此最优条件下,中和渣的锌硫化率可以达到85%以上,铅的硫化率可以达到75.4%以上。水热硫化中和渣的反应历程包括硫磺歧化、重金属溶解、CaSO4的生成、重金属含硫配合物的生成、降温结晶等阶段。水热硫化处理后锌的浮选回收率为33.3%,铅为58.9%,铜为68.8%。锌的可浮性较差主要是由其晶体性质造成的。水热合成的ZnS晶粒较小,团聚严重,表面粗糙,呈球状,这些性质都将降低其可浮性。为了提高ZnS的可浮性,实验考察了ZnS的晶型调控技术及其对可浮性的影响,结果表明,提高反应温度至260℃,延长反应时间至4小时,控制初始锌含量为10%后,ZnS回收率由33.3%提高至72.8%。重金属的稳定性检测结果表明,经过水热硫化-浮选处理后,废渣中的重金属浸出毒性低于国家标准,且重金属具有长期稳定性。
     研制了“重金属废渣硫化-浮选处理中试系统”,并开展水热硫化-浮选技术处理废水中和渣的中试实验研究。实验结果表明该系统具有运行稳定,硫化率高,二次污染小等优点。现有的实验结果表明,处理后,中和渣中Zn的重金属硫化率达到87.34%,浮选处理可以从废水中和渣中回收铅锌综合品位为40%的人造硫化物精矿,回收率达65%。
Tons of heavy metal containing wastes are generated every year by zinc-lead smelters, whose total amount is more than100million tons. The management of these wastes is one of the great subject in environmental protection field. However, current methods are difficult to realize the resourcelization and stablization of heavy metals. For example, the widely-used direct extraction technique leads to a large quantity of wastewater and residue containing unstable state heavy metals; while cement solidification often causes the losses of heavy metal. Sulfidation treatment is a novel method to deal with heavy metal containing wastes. Through this approach the heavy metal can be converted into metal sulfide, the metal in which, subsequently, can be separated and recycled by means of floatation technique, and moreover the managed wastes are fairly stabilized after the treatment. According to the survey and the analysis of the heavy metal containing wastes from zinc-lead smelters, the stockpile wastes—namely volatilization kiln slag (VKS), atmospheric enriched-oxygen leaching residue (AELR) and neutralization (NZ)—are determined as research contents. In this research, three methods of dry-milling sulfidation, wet-milling sulfidation and hydrothermal sulfidation are firstly applied to deal with these wastes and the reaction mechanism of the three methods and the characteristics of reaction process are discussed.
     The analysis on chemical composition and on environmental activation of the three categories reveals that the total composition of Zn&Pb in VKS is up to2%-3%and its heavy metal leaching concentration exceeds the national limits; the AELR contains5%of Zn and5%of Pb, in which the leaching concentration is also far beyond the national requirement. Though in NS, the contents of zinc is as high as15%-20%, the leaching concentration, however, can stay under the national limits since the heavy metal remains a stable property. Based on the results gained above together with the exploratory experiments on sulfidation of heavy metal oxide, three sulfidation technologies are introduced respectively to manage the three kinds of stockpiles. The dry-milling sulfidation is suitable for VKS with sulfur as sulfidizer, the wet-milling sulfidation is for AELR with sodium sulfide (Na2S) as sulfidizer and the hydrothermal sulfidation for NS with sulfur as sulfidizer.
     The mechanism of the mechanically induced self-propagating sulfidation reaction (MSR) is systematically investigated in this research and the conversion of VKS is stabilized. The result of the dry-milling method shows that the optimum parameter is:sulfur:4.5%; milling time:1hour; ball-to-material ratio:20:1, and after the treatment95.4%of Zn and94.2%of Pb can be vulcanized, and the heavy metal concentration in leachate of the treated waste is under the allowable limit. The research also goes to study the crystal oxide structure variation of the heavy metal compounds as well as the features of other components. It is found that the vital factor to determine the mechanically induced self-propagating sulfidation reaction is adiabatic temperature (Tad) in the reactor, while the variation of crystal structure during the milling process can promote or hinder the reaction. The existence of iron powder (Fe) can induce the self-propagating sulfidation reaction, whose mechanism can be explained by the increasing of the Tad. The treated VKS can be used to make prefabricated sulfur materials for building. The optimal approach to solidification is heating step by step with40%of sulfur addition, particle size less than150μm and15%of aggregate in the filler. Under the conditions above, the compressive strength of solidified stuff can reach up to35MPa, and water absorption up to4%.
     Heavy metal in AELR can be efficiently converted into metal sulfide when the surface active effect is caused by wet-milling sulfidation. The optimum parameters in operating process of the wet-milling sulfidation are established as the following:the reagent dosage of Na2S:8.4%, B/M:10:1, ball-milling time:1hour. Under these experimental conditions,73.2%of Pb in leaching residue can be converted to PbS. The shrinking core model discloses the cause that mechanic force can promote the heavy metal sulfidation, and the research shows that the sulfidation of PbSO4is controlled by inner diffusion of the reactants and the intensive mechanical stressing would result in faster kinetics by using fine particles to minimize diffusion problems. Flotation test indicates that up to50%of Pb, Cu and Cd could be recovered from the sludge. But the amount of sulfur in the sludge and the size of sulfide particles generated will determine the recovery during the process of flotation. TCLP and continuous leaching test reveal that the heavy metal concentration in leachate from the treated sludge is lower than the allowable limit. And the heavy metal left in the tailings is in a long-term stable state.
     The Zn in the NS can efficiently be converted to zinc sulfide through dissolution-recrystallization process under hydrothermal conditions. The optimum parameters of operating process for hydrothermal sulfidation are: reaction time:2hours; temperature:200℃; sulfur concentration:15%; pulp density:300g·L-1; pH value:10plus. The result of the above shows that85%of Zn and75.4%of Pb in the sludge can be vulcanized. The entire course of hydrothermal sulfidation consists of the following stages: disproportionation reaction of sulfur, dissolution of metals, formation of CaSO4, synthesis of complexes with ligands containing sulphur atoms, and crystallization.33.3%of Zn,58.9%of Pb and68.8%of Cu can be recovered from the sludge by floatation. The lower recovery of ZnS is due to the small ball-shaped and heavily clustered particles with rough surface, which decline the floatability. But the poor floatability of ZnS can be improved by crystal modification. With an increase of temperature to260℃, reaction time to4hours, and adjusting initial Zn concentration to10%, the recovery is raised from33.3%to72.8%. The TCLP results indicate that all the leached heavy metal concentrations form floatation tailings are under the allowable limit. And the heavy metal in the tailings possesses a property of a long-term stability.
     During the research, the "Hydrothermal Sulfidation and Floatation Treatment of Heavy-Metal-Containing Waste Pilot Experimental System" is developed and the pilot sulfidation experiment on NS is implemented as well. A series of experiments have witnessed that this pilot system is very well-functioning in terms of operative stability, a high rate of sulfdation and low secondary pollution. After floatation, the Zn sulfidation extent can reach up to87.34%. NS can produce Zn&Pb sulfide concentrate with a grade about40%and a recovery above65%.
引文
[1]陶遵华,关晓余,汪清.有色金属工业资源综合利用态势分析[J].矿冶,2001,10(2):82-84,89.
    [2]范文虎.我国工业固体废物现状及管理对策研究[J].科技情报开发与经济,2007,17(33):93-94.
    [3]蒋继穆.我国铅锌冶炼现状与持续发展[J].中国有色金属学报,2004,14:52-62.
    [4]侯晓波.铅锌冶炼渣处理的系统分析及研究[J].云南冶金,2011,40:42-46.
    [5]李剑,李赋屏,张万益,等.中国有色金属资源约束问题的研究[J].中国矿业,2004,10(13):8-12.
    [6]刘清,招国栋,赵由才.有色冶金废渣中有价金属回收的技术及现状[J].有色冶金设计与研究,2007,23(28):22-26.
    [7]芈振明,高忠爱,祁梦兰.固体废物的处理与处置[M].北京:高等教育出版社,1993.
    [8]周北海,朱雷.中国工业固体废物的现状和对策探讨[J].环境科学研究,1998,3(11):1-4.
    [9]Michael B M, Kathryn C S, Kinneberg D J. Challenging the traditional hydrometallurgy curriculum—an industry perspective[J]. Hydrometallurgy,2005, 79(1-2):80-88.
    [10]Guo X Y, Zhong J Y, Song Y, et al. Substance flow analysis of zinc in China. Resources, Conservation and Recycling [J].2010,54:171-177.
    [11]《铅锌冶金学》编委会.铅锌冶金学.北京:科学出版社2003.
    [12]李若贵.我国铅锌冶炼工艺现状及发展[J].中国有色冶金,2010,6:102-106.
    [13]殷志伟.含重金属离子酸性废水石灰法处理后回用技术研究[J].矿冶,2002,2(11):77-80.
    [14]刘志刚.石灰中和法处理含重金属离子酸性废水[J].江西冶金,2003,6(23):109-110.
    [15]John G D, Frank L B, Lanouette K H. Removing heavy metals from waste water[J]. Environmental Science & Technology,1972,6(6):518-522.
    [16]Weber T J. Wastewater treatment[J]. Metal Finishing,1999,97(1):797-816.
    [17]McLay W J, Reinhard F. Waste minimization and recovery technologies[J]. Metal Finishing,1999,97(1):817-850.
    [18]杨少辉,闵小波,柴立元,等.硫固定法处理重金属废渣制作硫磺建材的研究[J].中南大学学报(自然科学版),2011,42(11):3262-3269.
    [19]金延才,李卫东,董安君.浅议固体废弃物的污染现状及防治对策[J].中国科技信息,2008,7:22-25.
    [20]吴攀,刘丛强,杨元根,等.炼锌固体废渣中重金属(Pb、Zn)的存在状态及环境影响[J].地球化学,2003,32(2):139-134.
    [21]董保澍.我国工业固体废弃物现状和处理对策[J].中国环保产业,2001,(5):20-21.
    [22]王明玉,刘晓华,隋智通.冶金废渣的综合利用技术[J].矿产综合利用技术,2003,6:28-32.
    [23]Guo X Y, Xiang D, Duan G H. A review of mechanochemistry applications in waste management[J]. Waste Management,2010,30:4-10.
    [24]Parga J R, Valenzuela J L, Muzquiz G G. Recycling lead to recover refractory precious metals[J]. JOM,2001,53 (12):19-21.
    [25]Jha M K, Kumar V, Singh R J. Review of hydrometallurgical recovery of zinc from industrial wastes[J]. Resources, Conservation and Recycling,2001,33(1): 1-22.
    [26]Aparajith B, Ashish K, Duncan H. Recovery of cadmium from hydro-metallurgical zinc smelter by selective leaching[J]. Hydrometallurgy,2010,102: 31-36.
    [27]Basir S M A, Rabah M A. Hydrometallurgical recovery of metal values from brass melting slag[J]. Hydrometallurgy,1999,1(53):31-44.
    [28]Zhang C L; Zhao Y C. Mechanochemical leaching of sphalerite in an alkaline solution containing lead carbonate[J]. Hydrometallurgy,2009,100 (1-2):56-59.
    [29]Andrews D, Raychaudhuri A, Frias C. Environmentally sound technologies for recycling secondary lead[J]. Journal of Power Sources,2000,88:124-129.
    [30]Gaballah I, Allain E, Djona M. Extraction of tantalum and niobium from tin slags by chlorination and carbochlorination[J]. Metallurgical and Materials Transactions B,1997,3(28):359-369.
    [31]Havuz T, Donmez B, Celik C. Optimization of removal of lead from bearing lead anode slime[J]. Journal of Industrial and Engineering Chemistry,2010,16: 355-358.
    [32]赵由才.实用环境工程手册——固体废物污染控制与资源化[M].北京:化学工业出版社,2002.
    [33]奥特洛什德诺娃.浸出浮选联合法从锌渣中回收银[J].国外金属矿选矿, 1996,8:22-24.
    [34]张平.湿法炼锌浸出渣中回收银的影响因素综述[J].有色金属科学与工程,2011,2(4):26-28.
    [35]邓朝勇,张谊,杨茂麟,等.用硫脲从含银湿法炼锌废渣中浸出银[J].湿法冶金,201 1,30(3):232-233.
    [36]刘庆杰,贾玲,李广海.从湿法炼锌锑盐净化钴渣中回收钴、锌、镉、铜[J].资源再生,2010,9:39-41.
    [37]程华月,陈少纯,邹家炎.从铅锌冶炼炉渣中回收镓的工艺方案研究及可行性分析[J].矿冶,2007,1 6(3):58-61.
    [38]何启贤,覃毅力.烟化处理铅锑鼓风炉渣回收锌铟的生产实践[J].江西有色冶金,2008,22(2):29-32.
    [39]顾立民,付一鸣.含铅烟灰的处理方法.中国,98114118[P],1998-06-30
    [40]杨建军,丁朝,李永祥,等.湿法炼锌渣综合利用工艺现状及分析[J].世界有色金属,2011,6:44-46.
    [41]李光辉,黄柱成,郭宇峰.从湿法炼锌渣中回收镓和锗的研究(上)——浸锌渣的还原分选[J].矿冶,2004,6:61-64.
    [42]向平,冯其明,刘朗明,等.物理方法从锌阳极泥中分离锰与铅银矿物工艺研究[J].矿冶工程,2010,30(4):54-58.
    [43]Irene B, Josep T, Miquel R,etc. Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals[J]. Journal of Hazardous Materials,2010,175:789-794.
    [44]贾永忠,孙进贺,景燕,等.锌冶炼废渣浸出液硫化法除砷的研究[J].环境工程学报,2011,5(4):812-814.
    [45]Rashchi F, Dashti A M, Arabpour Y. Anglesite flotation:a study for lead recovery from zinc leach residue[J]. Minerals Engineering,2005,18 (2): 205-212.
    [46]Nedwed T, Clifford D A. Feasibility of extracting lead from lead battery recycling site soil using highconcentration chloride solutions[J]. Environmental Progress,2000,19:197-206.
    [47]Kosson D S, Van der Sloot H A, Sanchez F A C, et al. An integrated, framework for evaluating leaching in waste management and utilization of secondary materials[J]. Environmental Engineering Science,2002,19:159-177.
    [48]Shen H T, Forssberg E. An overview of recovery of metals from slags[J]. Waste Management.23 2003:933-949.
    [49]Liang Y J, Chai L Y, Min X B, et al. Preparation of building material using elemental sulfur and heavy metal containing slag [C], TMS,2010:725-732.
    [50]周洪平.工业废渣在水泥生产中的具体应用[J].江西建材,2000,4:15-17.
    [51]伍贺东.鼓风炉炼铅炉渣烟化挥发锌的研究[D].昆明:昆明理工大学,2008.
    [52]Liu Y S, Jiang Y P, Li X D. Leachability of heavy metals in MSW incineration slag under simulated acid rain condition[J]. Journal of Basic Science and Engineering,2005,13:43-50.
    [53]Malviya R, Chaudhary R. Factors affecting hazardous waste solidification/ stabilization:A review[J]. Journal of Hazardous Materials,2006,137:267-276.
    [54]李悦,王玲.废橡胶粉改性硫磺混凝土的研究[J].粉煤灰,2007,2:27-28,37.
    [55]汪莉,柴立元,闵小波,等.重金属废渣的硫固定稳定化[J].中国有色金属学报,2008,18(11):2105~2110.
    [56]芈振明,高忠爱,祁梦兰,等.固体废物的处理与处置[M].北京:高等教育出版社,1992.
    [57]Palomo A J I, Lopez D L F. Alkali-activated cementitous materails:Alternative matrices for the immoilisation of hazardous wastes. Part Ⅰ. Stabilisation of boron[J]. Cement and Concrete Research,2003:281-288.
    [58]王继元.电镀重金属污泥的水泥固化处理试验研究[J].化工时刊,2006,1:44-47.
    [59]朱能武.固体废物处理与利用.北京:北京大学出版社,2006.
    [60]Minocha A K, Neeraj J, Verma C L. Effect of organic materials on the solidification of heavy metal sludge[J]. Construction and Building Materials, 2003,17:77-81.
    [61]Gougar M L D, Scheetz B Z, Roy D M. Ettringite and C-S-H Portland cement phases for waste ion immobilization:A review[J]. Waste Management,1996, 16(4):295-303.
    [62]包健.在沸石对高放废液水泥固化体中Cs+浸出率的影响[J].环境科学与技术,2009,7:160-162.
    [63]李江波,石正坤,范国琪,等.硅灰在放射性废物水泥固化中的应用[J].中国非金属矿工业导刊,2006,5:17-20.
    [64]周立新.粘土水泥固化浆液在某垃圾卫生填埋场防渗帷幕注浆工程中的应用[J].化工矿产地质,2006,4:251-254.
    [65]韩怀芬,黄玉柱,金漫彤.铬渣水泥固化及固化体浸出毒性研究[J].环境污染治理技术与设备,2002,7:9-12.
    [66]朱伟,林城,李磊,等.以膨润土为辅助添加剂固化/稳定化污泥的试验研究[J].环境科学研究,2007,5:1020-1025.
    [67]周少奇.固体废物污染控制原理与技术[M].北京:清华大学出版社,2009.
    [68]车春霞,滕元成,桂强.放射性废物固化处理的研究及应用现状[J].材料导报,2006,2:94-101.
    [69]罗上庚.玻璃固化国际现状及发展前景[J].硅酸盐通报,2003,1:42-48.
    [70]Karamberi A, Moutsatsou A. Vitrification of lignite fly ash and metal slags for the production of glass and glass ceramics[J]. China particuology,2006,4: 250-253.
    [71]王琦,王起,闵海华.我国危险废物固化处理技术的探讨[J].环境卫生工程,2007,10:57-59.
    [72]刘富尧.沥青固化医疗废物焚烧飞灰的实验研究[D].成都:西南交通大学,2007.
    [73]Pereira F C, Rodnguez-Pinero M, Vale J. Solidification/stabilization of electric arc furnace dust using coal fly ash analysis of the stabilization process [J]. Journal of Hazardous Materials,2001, B82:183-195.
    [74]Kayo S, Hitoki M, Makoto M. Immobilization of lead compounds in fly ash by mixing with ssphalt, sulfur and sodium hydroxide[J]. Chemical engineering of Japan,2001,34:878-883.
    [75]李悦,王玲.废橡胶粉改性硫磺混凝土的研究[J].粉煤灰,2007,2:27-37.
    [76]株式会社猪狩环境科学研究所,株式会社西田矿业,田中铁工株式会社.硫化物的成形材料的制造方法和在该方法中使用的装置:日本,CN 96110058.3[P].1997-04-30.
    [77]Chai L Y, Wang L, Min X B. Influence of additives on immobilization process of heavy-metal containing waste residues using elemental sulfur [C]. TMS Annual Meeting,2009,3:359-367.
    [78]张妍,蒋建国,邓舟.焚烧飞灰磷灰石药剂稳定化技术研究[J].环境科学研究,2006,1:189-192.
    [79]Yin C Y, Md G S, Hilmi B M. Chemical stabilization of scrap metal yard contaminated soil using ordinary portland cement:Strength and leachability aspects[J]. Building and Environment,2007,42:794-802.
    [80]Zhou R, Chander S. Kinetics of sulfidization of malachite in hydrosulfide and tetrasulfide solutions[J]. International Journal of Mineral Processing,1993,37: 257-272.
    [81]库建刚,王安理,张文彬,等.四川某低品位氧化铅锌矿石浮选试验研究[J].金属矿山,2008.389(11):52-54.
    [82]Raghavan S E A, Lee L. Sulfidization and flotation of chrysocolla and brochantite[J]. International Journal of Mineral Processing,1984,12:173-191.
    [83]Fa K Q, Miller J, Jiang T. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores[J]. Transactions of Nonferrous Metals Society of China, 2005,15(5):1138-1144.
    [84]Lewis A E. Review of metal sulphide precipitation[J]. Hydrometallurgy,2010, 104:222-234.
    [85]曾懋华,奚长生,彭翠红,等.浮选含铅废渣富集铅的研究[J].有色金属,2004,1:12-18.
    [86]Kuchar D, Fukuta T, Onyango M S, et al. Sulfidation of zinc plating sludge with Na2S for zinc resource recovery[J]. Journal of Hazardous Materials,2006,137 (1):185-191.
    [87]Kuchar D, Fukuta T, Onyango M S, et al. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery[J]. Chemosphere,2007,67(8):1518-1525.
    [88]Kuppayee M, Nachiyar G K V, Ramasamy V. Synthesis and characterization of Cu2+doped ZnS nanoparticles using TOPO and SHMP as capping agents[J]. Applied Surface Science,2011,257:6779-6786.
    [89]Vanthuyne M, Maes A.The removal of heavy metals from contaminated soil by a combination of sulfidisation and flotation[J]. Science of the Total Environment, 2002,269(1-3):69-80.
    [90]Nomura Y, Fujiwara K, Takada M. Lead immobilization in mechanochemical fly ash recycling[J]. Journal of Material Cycles and Waste Management,2008.10: 14-18.
    [91]Birke V, Mattik J, Runne D. Mechanochemical reductive dehalogenation of hazardous poly halo-genated contaminants[J]. Journal of Materials Science, 2004,39:5111-5116.
    [92]陈鼎,陈振华.机械力化学[M].北京:化学工业出版社,2007.
    [93]Wang J, Lu J F, Zhang Q W, et al. Mechanochemical sulfidization of nonferrous metal oxides by grinding with sulfur and Iron[J]. Industrial & Engineering Chemistry Research,2003,23(42):5813-5818.
    [94]Zhang Q W, Wang J, Saito F, et al. Sulphidization of metal oxides by means of mechanochemical solid reaction[J]. Chemistry Letters,2002,11:1094-1095.
    [95]Takacs L. Reduction of magnetite by alumium:a displacement reaction induced by mechanical alloying [J]. Material letter,1992,13:119-124.
    [96]Takacs L. Self-sustaining reactions induced by ball milling[J]. Progress in Materials Science,2002,47:355-414.
    [97]陈鼎,陈振华.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006.
    [98]Chen Q H, Shi S X, Liu X L, et al. Studies on the oxidation reaction of 1-cysteine in a confined matrix of layered double hydroxides [J]. Chemical Engineering Journal,2009,153(1-3):175-182.
    [99]Banza A N, Gock E. Mechanochemical processing of chrysocolla with sodium sulphide [J]. Minerals Engineering,2003,16:1349-1354.
    [100]Min X B, Yang S H, Chai L Y, et al. Mechanochemical sulfidation of heavy-metal containing waste residue for stabilization[C].5th. ICWMT. Beijing: 2010.555-558.
    [101]Erdemoglu M, Aydogan S, Canbazoglu M. A kinetic study on the conversion of celestite (SrSO4) to SrCO3 by mechanochemical processing [J]. Hydrometallurgy,2007,86:1-5.
    [102]Marques A F A, Barriga F J A S, Scottb S D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system:From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides [J]. Marine Geology,2007. 245:20-39.
    [103]施尔畏.水热结晶学[M].北京:科学出版社,2004.
    [104]Fang X S, Zha T Y, Gautam U K. ZnS nanostructures:From synthesis to applications [J]. Progress in Materials Science,2011,56:175-287.
    [105]Wang L, Dai J H, Liu X Z, et al. Morphology-controlling synthesis of ZnS through a hydrothermal/solvthermal method [J]. Ceramics International,2012, 3(38):1873-1878.
    [106]张玉芹,赵高凌,韩高荣.枝蔓晶硫化锌的水热合成[J].硅酸盐学报,2005,7(33):892-897.
    [107]陈广义,张万喜,魏志勇,等.表面具有孔洞的硫化铅微立方体的制备及表征[J].功能材料,2009,12(40):2100-2102.
    [108]Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology[J]. Progress in Crystal Growth and Characterization of Materials,2007,53:117-166.
    [109]陈继斌.铜录山氧化铜铁矿水热硫化—温水浮选试验[J].矿业工程,1983.4(8):33-35.
    [110]杨耀宗,王宗荣,金继祥.处理难选氧化铜矿石新工艺一氨浸硫化沉淀浮选法和水热硫化浮选法的研究[J].云南冶金,1989(1):18-21.
    [111]Vinals J, Fuentes G, Hernandez M C, et al. Transformation of sphalerite particles into copper sulfide particles by hydrothermal treatment with Cu(II) ions[J]. Hydrometallurgy,2004,75:177-187.
    [112]Kiwamu S, Yukiya H, Richard L. Solubility of Lead(II) Oxide and Copper(II) Oxide in Subcritical and Supercritical Water[J]. Journal of Chemical Engineering Data,1999,44:1422-1426.
    [113]David J W, Pascale B, Donald A P. ZnO Solubility and Zn2+Complexation by Chloride and Sulfate in Acidic Solutions to 290℃ with In-Situ pH Measurement J]. Geochim. Cosmochim. Acta.,1998,62 (6):971-984.
    [114]李勇,王吉坤,魏昶,等.低品位氧化锌矿硫化预处理—浮选新工艺研究[J].中国稀土学报,2008,26:620-624.
    [115]李勇,王吉坤,魏昶,等.水热法硫化低品位氧化锌矿的正交试验研究[J].有色金属(冶炼部分),2009,5:6-11.
    [116]Tagirov B R, Seward T M. Hydrosulfide/sulfide complexes of zinc to 250℃ and the thermodynamic properties of sphalerite[J]. Chemical Geology,2010. 269(3-4):301-311.
    [117]Tagirov B R, Suleimenova O M, Sewarda T M. Zinc complexation in aqueous sulfide solutions:Determination of the stoichiometry and stability of complexes via ZnS(cr) solubility measurements at 100℃ and 150 bars[J]. Geochimica et Cosmochimica Acta,2007,71(20):4942-4953.
    [118]许贤敏,张旻晟.硫磺混凝土的发展动态[J].工程设计与建设,2003,35(4):41-45.
    [119]Franco S, Stefania M, Alberto A. Sulfur-polymermatrix composites from particulate wastes:A sustainable route to advanced materials[J]. Composites, 2005,37(5):695-702.
    [120]Lin S L, James S L, Edward S K, et al. Modificaiton of sulfur polymer cement(SPC) stabilization and solidification(S/S) process[J]. Waste Management,1995,15:441-447.
    [121]Fuhrmann M D M, Kalb D, Adams J W. Sulfur Polymer Solidification/ Stabilization of elemental mercury waste[J]. Waste Management,2002,22: 327-333.
    [122]汪莉,重金属废渣硫固定稳定化研究[D].长沙:中南大学,2009.
    [123]迪季莱大学,从转炉渣与浮选废渣中回收铜与钴[J].湖南冶金,1997,5:23.
    [124]从电镀废渣中回收有价金属[J].化工环保,2007,1(27):11.
    [125]Li Y, Wang J K, Wei C, et al. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur[J]. Minerals Engineering,2010,23(7):563-566.
    [126]Giilgonul I, Karaguzel C, Celik M S. Surface vs. bulk analyses of various feldspars and their significance to flotation[J]. International Journal of Mineral Processing,2008,86:68-74.
    [127]陈建华,曾小钦,陈晔,等.含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J].中国有色金属学报,2010,4(20):765-771.
    [128]陈建华,王檑,陈晔,等.空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论[J].中国有色金属学报,2010,9(20):1815-1821.
    [129]Ye X, Gredelj S, Skinner W. Regrinding sulphide minerals Breakage mechanisms in milling and their influence on surface properties and flotation behaviour[J]. Powder Technology,2010,203:133-147.
    [130]胡熙庚.浮选理论与工艺[M].长沙:中南工业大学出版社,1989.
    [131]Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation[J]. Minerals Engineering.2010,23:420-437.
    [132]陈玉平.微细粒铅锑锌硫化矿浮选研究[M].长沙:中南大学,2008.
    [133]Koh T L, Hao F P, Smith L K, et al. The effect of particle shape and hydrophobicity in flotation[J]. International Journal of Mineral Processing,2009, 93:128-134.
    [134]Boulton A, Fornasiero D, Ralston J. Effect of iron content in sphalerite on flotation[J]. Minerals Engineering,2005,18:1120-1122.
    [135]Wei Y, Sandenbergh R F. Effects of grinding environment on the flotation of Rosh Pinah complex Pb/Zn ore[J]. Minerals Engineering,2007,20:264-272.
    [136]魏以和,周高云,罗廉明.捕收剂与磨矿环境对铅锌矿浮选的影响[J].金属矿山,2007,6:34-38.
    [137]Bruckard W J, Sparrow G J, Woodcock J T. A review of the effects of the grinding environment on the flotation of copper sulphides[J]. International Journal of Mineral Processing,2011,100:1-13.
    [138]Halfyard J E, Hawboldt K. Separation of elemental sulfur from hydro-metallurgical residue:A review[J]. Hydrometallurgy 2011,109(1-2):80-89.
    [139]邱冠周,胡岳华.颗粒间相互作用与细粒浮选.长沙:中南工业大学出版社,1993.
    [140]Li K F, Wang Q J, Cheng X Y, et al. Hydrothermal synthesis of transition-metal sulfide dendrites or microspheres with functional imidazolium salt[J]. Journal of Alloys and Compounds,2010,504(2):L31-L35.
    [141]Zhang Y C, Wang H, Wang Bo, et al. Hydrothermal synthesis of metastable y-manganese sulfide crystallites[J]. Optical Materials,2003,23(1-2):433-437.
    [142]Cheng Z G, Wang S Z, Si D J, et al. Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route[J]. Journal of Alloys and Compounds,2010,492:L44-L49.
    [143]Chen Q W, Qian Y T, Chen Z Y, et al. Preparation of zinc sulfide thin films by the hydrothermal method[J]. Thin Solid Films,1996.272(1):1-3.
    [144]郭莉,王丹军,李东升,等.ZnS微球的水热法合成与光催化活性[J].材料工程,2008,10:291-295.
    [145]Piao H, Bishop L. Stabilization of mercury-containing wastes using sulfide[J]. Environmental Pollution,2006,139:498-506.
    [146]Lee P K, Kang M J, Choi S H. Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine Korea[J]. Applied Geochemistry,2005,20:1687-1703.
    [147]Li M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China:A review of research and practice[J], Science of the Total Environment.2006,357:38-53.
    [148]USEPA, Office of Solid Waste and Emergency. Method 1311, Toxicity Characteristic Leaching Procedure, Methods for Evaluating Solid Waste [M]. U.S. Environmental Protection Agency, Washington. DC:1992.
    [149]美国环境保护局编,中国环境监测总站,等译.固体废弃物试验分析评价手册[M].北京:中国环境科学出版社,1992.63-65
    [150]OzverdI A, Erdem M. Environmental risk assessment and stabilization/ solidification of zinc extraction residue:Ⅰ. Environmental risk assessment J], Hydrometallurgy,2010,100:103-109.
    [151]Razzell W.E. Chemical fixation, solidification of hazardous waste[J]. Waste Management Research,1990,8(2):105-111.
    [152]Lin S L, James S L, Chian E S K. Modifications of sulfur polymer cement (SPC) stabilization and solidification(S/S) process[J]. Waste Management,1995,15: 441-447.
    [153]Nomura Y, Okada T, Nakai S, et al. Inhibition of heavy metal elution from fly ashes by mechanochemical treatment and cementation[J]. Kagaku Kogaku Ronbunshu,2006,32(2):196-199.
    [154]段华波,黄启飞,黄琪,等.危险废物浸出毒性鉴别标准比较研究[J].环境科学与技术,2005,28:1-3.
    [155]刘源源.铅锌矿选矿尾砂化学萃取技术研究[D].长沙:湖南大学,2010.
    [156]Long Y Y, Hua L F, Wang J, et al. Effect of sample pretreatment on speciation of copper and zinc in MSW[J]. Journal of Hazardous Materials,2009,168: 770-776.
    [157]Li M Q Sun C J, Gau S H, et al. Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash[J]. Journal of Hazardous Materials,2010,174:586-591.
    [158]Rauret G, Lopez-Sanchez J F, Sahuquillo A. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content[J]. Journal of Environmental Monitoring,2000,2: 228-233.
    [159]Jameel A B, Tasneem G K, Muhammad B A, Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods[J]. Journal of Hazardous Materials,2009,167:745-751.
    [160]Donna L J, Marinus L O. Long-term effects of submergence and wetland vegetation on metals in a 90-year old abandoned Pb-Zn mine tailings pond[J]. Environmental Pollution,2004,130:337-345.
    [161]Tony J, Parry D L. Evaluation of the stability of arsenic immobilized by microbial sulfate reduction using TCLP extractions and long-term leaching techniques[J]. Chemosphere,2005,60:254-265.
    [162]有色金属工业分析丛书编辑委员会:有色金属工业分析丛书.矿石工业产品化学物相分析[M].北京:冶金工业出报社,1992.
    [163]国家环境保护总局.固体废物浸出毒性浸出方法醋酸缓冲溶液法[M].HJ/T300-2007.
    [164]国家环境保护总局,固体废物浸出毒性浸出方法硫酸硝酸法[M].HJ/T209-2007.
    [165]李俊翰,邱克辉,张佩聪,等.攀钢水淬含钛高炉渣热处理过程相变特征探讨[J].矿物岩石,2010,30(2):29-32.
    [166]盖国胜.超细粉碎分级技术[M].北京:中国轻工业出版社,2000.
    [167]殷声.燃烧合成[M].北京:冶金工业出版社,2004.
    [168]Balaz P. Mechanical Activation in Processes of Extractive Metallurgy. Veda Bratislava,1997.
    [169]Schnatz R. Optimization of continuous ball mills used for finish-grinding of cement by varying the L/D ratio, ball charge filling ratio, ball size and residence time[J]. International Journal of Mineral Processing,2004,74(SUPPL): S55-S63.
    [170]郑雅杰,汪蓓,史建远,等.铜阳极泥预处理富集金银的研究[J],中南大学学报(自然科学版),2010,41(3):855-860.
    [171]Achimovicova M. Selective leaching of metals from mechanically activate sulfides[J].Acta moutainsticd slovaca,1998,2:172-176.
    [172]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [173]Gutman E M. Mechanochemistry of Solid Surfaces[M]. Singapore:World Scientific Publishing Co.1994.
    [174]Vida S, Gilnaz A, Fereshteh R, et al. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica[J]. International Journal of Mineral Processing,2009.93(1):79-83
    [175]Chalkley M E, Collins M J, Ozberk E. The behaviour of sulphur in the Sherritt Zinc Pressure Leach Process[C]. International Symposium-World Zinc, Hobart, 1993.
    [176]Lotens J P, Wesker E. Wesker. Behaviour of sulphur in the oxidative leaching of sulphidic minerals【J]. Hydrometallurgy,1987,18 (1):39-54.
    [177]Stephen G. The critical importance of the grinding environment on fine particle recovery in flotation[J]. Minerals Engineering,2009,22:386-394.
    [178]Cauwenberg P, Verdonckt F, Maes A. Flotation as a remediation technique for heavily polluted dredged material.1.Characterisation of flotated fractions. [J].Science of the Total Environment,1998,209:121-131.
    [179]施尔畏,夏长泰,王步国,等.水热法制备陶瓷粉体的聚集生长[J].中国科学,1997,27:126-133.
    [180]Jiri H, Thomas A, Thomas H. Christensen. Long-term leaching from MSWI air-pollution-control residues:Leaching characterization and modeling[J]. Journal of Hazardous Materials,2009,162:80-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700