用户名: 密码: 验证码:
含硅有机—无机杂化硬质薄膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学塑料表面硬度低、不耐刮划,在使用过程中表面易被擦伤起雾,导致材料的透明度下降,使其在许多方面的应用受到限制。在塑料表面涂敷硬质防护薄膜是一种简单有效的提高塑料耐划伤性能的方法。有机/无机杂化硬质透明材料能够兼具有机组分对塑料良好的粘结性及无机组分的高硬度及耐划伤性而成为塑料表面硬质薄膜的发展方向。
     本文以正硅酸乙酯和有机硅氧烷为先驱物,采用溶胶-凝胶法制备了性能良好的透明SiO_2/有机硅杂化材料。在此基础上,为提高SiO_2/有机硅杂化材料的耐碱性、对聚碳酸酯(PC)基材的粘结力和材料环保友好性,通过功能化改性或分子设计,分别制备了热固化型硅/胺杂化材料、聚酯/SiO_2/有机硅杂化材料和光固化型SiO_2/超支化聚氨酯丙烯酸酯杂化材料。系统研究了含硅杂化硬质薄膜的组成、结构与性能及其内在关系,主要研究成果如下:
     1、以正硅酸乙酯(TEOS)为无机相前驱体,甲基三乙氧基硅烷(MTES)、二甲基二乙氧基硅烷(DMDES)和甲基丙烯酰氧基丙基三甲氧基硅烷(MAPTMS)为有机相前驱体,采用溶胶-凝胶法合成出热固化型SiO_2/有机硅杂化材料。确定了各组分的优化配比:n_(TEOS)∶n_(MTES)∶n_(DMDES)∶n_(MAPTMS)=5∶5∶2∶2,n_(IPA)/n_(Si-OR)=0.8,n_(H2O)/n_(Si-OR)=1.1,n_(HAc)/n_(Si-O)=0.008,此条件下制备的杂化涂料可稳定存放360d。由于在高度交联的SiO_2网络中引入线性的Si—O—Si链段,而且有机和无机网络通过共价键结合起来,相容性良好,使得杂化薄膜既有高硬度又有良好的粘结力。按优化配比制备的杂化薄膜的铅笔硬度为2H,附着力为1级,透光率为93.6%。研究发现随着n(R)/n(Si)值减少,杂化材料的热稳定性增强。杂化薄膜对水的接触角随n(R)/n(Si)值的增大和固化时间的延长而增大,具有一定的疏水性。PC涂覆杂化膜层后具有更低的折射率,并且涂层表面光滑致密,从而减少了PC表面的漫反射,使得薄膜对PC具有增透作用。
     2、氨基树脂的种类影响SiO_2/有机硅树脂的性能。氨基树脂中醇碳链增大,硅/胺杂化树脂的相分离程度增加;醚化度增加,相分离程度降低;氨基树脂用量增加,相分离程度先降低后增加。全甲醚化氨基树脂(HMMM)比部分甲醚化氨基树脂和丁醚化氨基树脂能获得硬度与柔韧性的更良好平衡和更优越耐久性。FTIR表明氨基树脂是利用—CH_2OCH_3与SiO_2/有机硅树脂的—OH发生交联反应。SiO_2/有机硅树脂经氨基树脂改性后,具有更为致密的无机-有机网状结构,NaOH等一些小分子不易渗透进去,起到了相当好的抗碱蚀作用。当HMMM的加入量为2wt.%时,与SiO_2/有机硅树脂的相容性最好,粒子形态规则,分散均匀,杂化薄膜在碱液中浸泡24h后,表面仍然平整,失光率最小,仅为0.43%。
     3、合成一种带磺酸基团的聚酯树脂用于改性SiO_2/有机硅树脂,通过共聚和共混法制备了系列聚酯/SiO_2/有机硅杂化涂料。含有磺酸基的聚酯能改善与SiO_2/有机硅树脂的混溶性,极大提高对基材的附着力。聚酯/SiO_2/有机硅杂化涂料能在不经底涂处理的PC上铺展成膜。红外表明杂化薄膜中的-OH和-SO_3H等极性基团与PC基材表面的-C=O键之间发生了化学吸引和氢键耦合作用。两种工艺法都有聚酯链段接枝在SiO_2/有机硅树脂上,杂化树脂的粘度均随聚酯含量的提高而增大,但共聚法接枝的更多,得到的杂化树脂粘度高。共聚法比共混法产生更强的有机/无机相互作用,更高的交联密度,更高的热稳定性和更好的耐磨损性。共混杂化涂层微相分离的程度和表面粗糙度更大,一般可观测到明显的团聚体,而共聚杂化涂层只在聚酯含量较高时才观察到。共聚杂化样品的热分解近似为1级反应,用Ozawa法计算其在40%分解阶段的活化能约为243kJ/mol。XRD表明共聚杂化树脂属典型的非晶相。EDS表明硅相易迁移到杂化涂层的表面,极大地降低其表面能。采用共聚法比共混法得到的杂化涂层具有更低的表面能,其表面能随着SiO_2/有机硅树脂含量的增加而降低。共聚杂化膜比共混体系表现出较好的耐水性,其吸水率随SiO_2/有机硅树脂含量随量的加而降低。
     4、以TEOS和MAPTMS制备的改性硅溶胶为无机组分,以自制的超支化聚氨酯丙烯酸酯(HBPUA)为有机组分,制备了一系列可UV固化的HBPUA/(MAPTMS-SiO_2)杂化涂料。超支化HBPUA/(MAPTMS-SiO_2)杂化材料中的无机和有机组分相容性很好,硅溶胶均匀地分布于有机相中,其储存稳定性明显好于线性PUA/(MAPTMS-SiO_2)杂化涂料。HBPUA/(MAPTMS-SiO_2)杂化膜经UV固化后变得致密透亮、无裂纹和明显的微相分离,但随无机组分用量增加,观察到SiO_2团聚颗粒。HBPUA/(MAPTMS-SiO_2)杂化涂膜的热稳定性和碳碳双键最终转化率比PUA/(MAPTM-SiO_2)杂化涂膜更高,其玻璃化转变温度随着无机组分用量的增加和UV固化时间的延长相应的增大。当以n_(SiO2):n_(MAPTMS)=1:2制备的改性硅溶胶用量为30wt.%,活性单体1,6己二醇二丙烯酸酯用量为20wt.%,复合引发剂(Irgacure184+TPO)用量为3wt.%时,HBPUA/(MAPTMS-SiO_2)杂化涂料的凝胶时间高于180d,UV固化4min后,薄膜性能最优,透光率为92.8%,铅笔硬度为4H,附着力为0级,柔韧性为3mm,冲击强度为46kg·cm,磨耗量为17.5mg。
Due to the low surface hardness, transparent plastic is easy to be scratched in use, whichmakes the loss of operation life and limits extended application. The surface scratch behaviorcan be reduced effectively through coating a hard protective film on it. The organic/inorganichard film can integrate good adhesion to substrate of organic film with excellent hardness ofinorganic film, which has become the hot study spot of hard film on plastic.
     The transparent and hard SiO_2/organosilicone hybrid coatings were prepared onpolycarbonate(PC) with tetraethoxysilane and organosiloxane as the main raw materials bysol-gel method. In order to improve anti-alkali corrosion properties, adhesion andenvironmentally friendly of the SiO_2/organosilicone hybrid materials, heat-curablesilicone/amine hybrid materials, polyester/SiO_2/organosilicone hybrid materials and UVcurable SiO_2/hyperbranched polyurethane acrylate hybrid materials were preparedrespectively. The relationship of composition, structure and properties of hybrid hard filmswith silicon was studied systemically. The detailed research contents and results weredescribed as follows:
     1. With tetraethoxysilane(TEOS) as inorganic precursor, methyltriethoxysilane(MTES),dimethyldiethoxysilane(DMDES) and3-(methacryloxypropyl)trimethoxysilane(MAPTMS)as organic precursor, the heat-curable SiO_2/organosilicone hybrid coatings was synthesized bysol-gel method. When the molar ratio of SiO_2/organosilicone hybrid coating was n_(TEOS):n_(MTES):n_(DMDES):n_(MAPTMS)=5:5:2:2, n_(IPA)/n_(Si-OR)=0.8, n_(H2O)/n_(Si-OR)=1.1, n_(HAc)/nSi-O=0.008, the gelation timeexceeded360days. The hybrid film had high hardness and good adhesion because linearSi-O-Si segmers were introduced into high-density crosslinked SiO_2network. The hybridfilms prepared in accordance with the optimized ratio had optimal properties withtransmittance of93.6%, pencil hardness of2H, adhesion of0degree. It was found that thehybrid coating had excellent thermal stability, which increases gradually with the decrease ofn(R)/n(Si) value. The contact angle of the hybrid coating to the water increased with theincrease of n(R)/n(Si) value and curing time. Higher light transmittance of hybrid coatingswas probably due to lower refractive index of hybrid coatings than that of the PC sheet. It wasalso considered that the hybrid coating reduces light reflection on the surface of the substrate.
     2. The type of amine resin significantly affected the alkali resistance of the SiO_2/organo-silicone film. In comparison with part methoxymethyl and butoxymethyl melamine resin,Hexamethoxymethyl melamine resin(HMMM) had better durability and balance betweenhardness and flexibility for hybrid coatings. FTIR showed that the co-condensation betweenthe methoxymethyl groups in HMMM and the hydroxyl groups in SiO_2/organosilicone resin.The SiO_2/organosilicone resin formed more dense inorganic-organic network after HMMMmodified, resulted in NaOH and other small molecules not easy to penetrate into hybrid films.When the content of HMMM was2wt.%, SiO_2/organosilicone resin had best compatibilitywith HMMM and hybrid particles had regular morphology. The hybrid film was still smoothand had minimum transmittance loss of0.43%after immersion in NaOH solution for24h.
     3. A series of polyester/SiO_2/organosilicone hybrid coatings were synthesized throughcopolymerization and blending method between SiO_2/organosilicone resin and sulfonicgroup-containing polyester made from carefully selected proper monomers in my ownlaboratory. The polyester containing strong polarity of the sulfonic group, which not only toimprove the compatibility with SiO_2/organosilicone resin, but also improve the adhesion toPC, resulted in polyester/SiO_2/organosilicone coatings could be spread on PC without primer.The grafting rate of co-polymerizable resin is greater than that of the blends. The viscosity ofco-polymerizable and blending hybrid resin increased with polyester content increasing. Incomparison with blending method, co-polymerizable method had much stronger interactionsbetween organic phases and inorganic phases, resulting in higher crosslinking density, higherthermal stability and wear resistance for hybrid coatings. The extent of microphase separationand the surface roughness of the blending coatings became bigger. Obvious agglomerateswere observed for the blending coatings while those agglomerates were only observed for theco-polymerizable coatings at relatively high polyester content. The thermal decompositionprocess of the co-polymerizable sample followed one-order kinetics with the higher activationenergy of243kJ/mol. XRD studies showed that the co-polymerizable materials wasamorphous. EDS analysis showed that the silica particles could move towards the surface ofco-polymerizable coatings to lower free energies. The co-polymerizable coating had a lowersurface energy and better water resistance than the blends, and its surface free energy andwater absorption decreased with increasing of SiO_2/organosilicone content.
     4. The modified silicone sol from TEOS and MAPTMS were used as inorganiccomponents and hyperbranched polyurethane acrylate(HBPUA) were used as organiccomponents for preparing a series of UV-curable HBPUA/(MAPTMS-SiO_2) hybrid coatings.The results showed that HBPUA/(MAPTMS-SiO_2) hybrid films hand good interfacialcompatibility and SiO_2were well distributed in organic matrix. The stability ofHBPUA/(MAPTMS-SiO_2) hybrid coatings were higher than that of PUA/(MAPTMS-SiO_2)hybrid coatings. The HBPUA/(MAPTMS-SiO_2) hybrid film became transparent, dense, nocracks and microphase separation after UV curing. However, the gel particles of hybridcoatings increased with the content of inorganic component increasing. The terminalconversion degree of C=C bonds of HBPUA/(MAPTMS-SiO_2) hybrid coatings were higherand thermal stable was better than those of PUA/(MAPTMS-SiO_2) hybrid coatings. The TgofHBPUA/(MAPTMS-SiO_2) hybrid coatings increased with the content of inorganic componentand UV curing time increasing. When the content of modified silicone sol (nTEOS: nMAPTMS=1:2) was30wt.%,1,6-hexanediol diacrylate was20wt.%, composite initiators (Irgacure184+TPO) was3wt.%, the gel time of HBPUA/(MAPTMS-SiO_2) hybrid coatings exceed180days.After UV curing for4min, hybrid coatings had optimal properties with transmittance of92.8%, pencil hardness of4H, adhesion of0degree, flexibility of3mm, impact strength of46kg·cm and abrasion resistance of only17.5mg.
引文
[1]刁春霞,吴和融.塑料镜片材料的发展动向[J].功能高分子学报,1996,9(1):148-15
    [2]官建国,袁润章.光学透明材料的现状和研究进展Ⅰ光学透明高分子材料[J].武汉工业大学学报,1998,20(2):11-13
    [3] Butler, David J. Plastic optics challenge glass[J]. Photonics Spectra,2000,34(5):168-174
    [4]徐炽焕.聚碳酸酯及光学塑料的应用开发[J].江苏化工,2005,28(5):26-28
    [5]杨辉,王家邦,陆静娟.透明塑料用耐磨薄膜材料的研究进展[J].材料科学与工程,2002,20(2):290-293
    [6] Yoshiki Chujo. Organic-inorganic hybrid materials[J]. Curr Opin Solid State Mater Sci,1996,1:906-811
    [7] Yoshiki Chujo. Organic-inorganic nano-hybrid materials[J]. Powder and Particle Journal,2007,25:255-260
    [8] Takeo Saegusa. Organic-inorganic polymer hybrids[J]. Pure Appl Chem,1995,67(12):1965-1970
    [9] Zhou Shuxue, Wu Limin, You Bo, et al. Preparation, structure and properties of organic-inorganic nanocomposite coatings[C]. ACS,2009:193-219
    [10] Frank Samson. Ophthalmic lens coatings[J]. Surface and Coatings Technology,1996,81:79-86
    [11]张翼东,杨光红,孔令豪,等.溶胶-凝胶法制备防腐耐磨杂化涂层的研究进展[J].云南化工,2006,33(6):52-58
    [12]林键.催化剂对正硅酸乙酯水解聚合机理的影响[J].无机材料学报,1997,12(3):363-369
    [13] Baney R H, Itoh M, Sakakibara A, et al. Silsesquioxanes[J]. Chem Rev,1995,95(5):1409-1430
    [14] Fu B X, Yang L, Somani R H, et al. Crystallization studies of isotactic polypropylenecontaining nanostructured polyhedral oligomeric silsesquioxane molecules under quiescentand shear conditions[J]. J Polym Sci Part B: Polym Physics,2001,39(22):2727-2739
    [15] Jenifer G, Russelll S, Hong G J, et al. Applicability of Gradient Liquid Chromatographywith Tandem Mass Spectrometry to the Simultaneous Screening for About100Pesticides inCrops[J]. Inter J Mass Spec,2003,222(1-3):63-73
    [16] Zheng L, Hong S, Cardoen G, et al. Polymer nanocomposites through cont rolledself-assembly of cubic silsesquioxane scaffolds[J]. Macromolecules,2004,37:8606-8611
    [15]魏杰,金养智.光固化涂料[M].北京:化学工业出版社,2005:3
    [18] VOIT B. Hyperbranched polymers—All problems solved after15years of research[J].Journal of Polymer Science Part A: Polymer Chemistry,2005,43(13):2679-2699
    [19] Claesson H, Malmsrtom E, Johansson M. Reological behavior during UV-curing of astar-branched polyester[J]. Progress Inorganaic Coatings,2002,(44):63-67
    [20]寇会光,朱胜武,施文芳.超支化聚酯的改性及其结晶性能的研究[J].高等学校化学学报,2001,22(8):1410-1413
    [21] XU G, SHIW F. Synthesis and characterization of hyperbranched polyurethane acrylatesused as UV curable oligomers for coatings[J]. Progress in Organic Coatings,2005,52(2):110-117
    [22]林金娜,曾幸荣,侯有军.可UV固化的超支化聚酯改性聚氨酯丙烯酸酯的合成[J].聚氨酯工业,2009,24(6):29-32
    [23] XIAO W Q, CHENG W L, HU J Q, et al. Study on synthesis and properties ofhyperbranched aliphatic polyester[J]. Journal of Shaanxi University of Science&Technology,2008,26(2):29-33
    [24]龚春林,王德海.溶胶-凝胶法制备紫外光固化有机无机杂化材料的研究进展[J].轻工机械,2009,27(6):1-4
    [25] Dworak D P, Soucekm D. Effect of mixed sol-gel precursors on themetal-oxo phasewithin a UV-curable silicone hybridmaterial[J]. Macromolecular Chemistry and Physics,2006,207(14):1220-1232
    [26] HE J Y, NEBIOGLU A, ZONG Z G, et al. Preparation of a siloxane acrylic functionalsiloxane colloid for UV-curable organic-inorganic hybrid films[J]. Macromolecular Chemistryand Physics,2005,206(7):732-743
    [27]哈恩华,纪建超,厉蕾,等.航空透明件有机-无机杂化耐磨涂层的应用研究进展[J].化工进展,2010,29(10):1913-1916
    [28] Decker C. Photoinitiated crosslinking polymerization[J]. Prog. Polym. Sci.,1996,21(4):593-596
    [29] Zou K, Soucek M D. UV-curable organic-inorganic hybrid film coatings based onepoxidizedcyclohexene derivatized linseed oil[J]. Macromolecular Chemistry and Physics,2004,205(15):2031-2039
    [30] Muh E, Stieger M, Klee J E, Frey H. Organic-inorganic hybrid network by the sol-gelprocess and subsequent photopolymerization[J]. J. Polym. Sci. A,2001,39(24):4274-4282
    [31] Frank B, Sauerland V, Ernst Glasel H J, et al. Preparation of scratch and abrasionresistant polymeric nanocomposites by monomer grafting onto nanopartices, application ofmaldi-TOF mass spectrometry to the characterization of surface modified nanoparticles[J].Macromol. Chem. Phys.,2003,204(3):375-383
    [32] ZOU J H, ZHAO Y B, SHIW F, et al. Preparation and characters of hyperbranchedpolyester-based organic-inorganic hybrid material compared with linear polyester[J].Polymers For Advanced Technologies,2005,16(1):55-60.
    [33] Zhang L, Zeng Z H, Yang J W, et al. Characterization and properties of UV-curablepolyurethane-acrylate/silica hybrid materials prepared by the sol-gel process[J]. PolymerInternational,2004,53:1431-1435
    [34]张玲,曾兆华,杨建文,等.溶胶-凝胶法制备光固化聚氨酯丙烯酸酯杂化材料的研究[J].功能高分子学报,2004,3(17):442-446
    [35] Xu J W, Pang W M, Shi W F. Synthesis of UV-curable organic inorganic hybrid urethaneacrylates and properties of cured films[J]. Thin Solid Films,2006,514:69-75
    [36] H.A. Clark, US Patent No.3986997,1976
    [37] H.A. Clark, US Patent No.4027073,1977
    [38] LEE Man-Sung, JO Nam-Ju. Coating of methyltriethoxysilane-modified colloidal silicaon polymer substrates for abrasion resistance[J]. Journal of Sol-Gel Science and Technology,2002,24:175-180
    [39] J D Watling, D A Lewis. Condensation of glycidoxypropyltrimethoxysilane to affordsiloxane pre-polymers useful in the preparation of hardcoating resins[J]. Journal of Sol-GelScience and Technology,2003,28:167-174
    [40] Douce J, Boilot J P, Biteau J, et al. Effect of filler size and surface condition ofnano2sized silica particles in polysiloxane coatings[J]. Thin Solid Film,2004,466:114-122
    [41] Gilberts J, Tinnemans A H A, Hogerheide M P, et al. UV curable hard transparenthybrid coating materials on polycarbonate prepared by the sol-gel method[J]. Journal ofsol-gel Science and Technology,1998,(11):153-159
    [42] Eranian Armand, Wilhelm Didie, Vincent Philippe. Silico-acrilic Composition,Methodof Preparent and Application to the Obtaining of Coatings Resistant to Abrasion andScratching[P]. EP1008631,2000
    [43]高长有,杨柏,沈家聰.有机硅耐磨涂层的制备及性能研究[J].功能材料,1994,25(4):313-316
    [44]何涛,高长有.双组分有机硅涂料及其对有机玻璃表面的增强作用[J].有机硅材料,2006,20(6):288-291
    [45]陆静娟,郭兴忠,杨辉.有机/无机复合透明耐磨薄膜的制备[J].高分子材料科学与工程,2006,22(1):211-214
    [46] Wouters M E L, Wolfs D P, Vander L M C, et al. Transparent UV curable antistatic hybridcoatings on polycarbonate prepared by the sol-gel method[J]. Progress in Organic Coatings,2004,(51):312-320
    [47]王生杰,佀庆法,范晓东.功能性有机硅涂层材料[J].涂料工业,2005,35(6):48-53
    [48]冯圣玉,张洁,李美江,等.有机硅高分子及其应用[M].北京:化学工业出版社,2007:172-173
    [49] Jelena D J, Milutin N G. The thermogravimetric analysis of some polysiloxanes[J].Polymer degradation and stability,1998,61:87-93
    [50]邱军,黄裕杰,胡友慧.耐高温梯形聚甲基倍半硅氧烷的合成研究[J].功能高分子学报,1999,12(2):173-176
    [51] Dworak D P, Soucek M D. Protective space coatings: a Creamer approach nanoscalematerials. Progress in organic Coatings,2003,(47):448-457
    [52]闵春英,黄玉东,王磊,等.溶胶-凝胶法制备SiO2杂化有机硅树脂及其耐热性能研究[J].化学与粘合,2006,28(6):372-375
    [53] Hsueh H B, Chen C Y, Wang C C, et al. Preparation and properties of APPSSQ-like/Polyimide hybrid composites[J]. Journal of Applied Polymer Science,2003,89:2865-2874
    [54]贺建芸,孙芳.光固化有机-无机杂化膜性能及其微观形貌[J].北京化工大学学报,2007,34(4):397-340
    [55] Kayaman-Apohan N, Demirci R, Cakir M, et al. UV-curable interpenetrating polymernetworks based on acrylate/vinylether functionalized urethane oligomers[J]. Radiat PhysChem,2005,73:254-259
    [56] ZANDI-ZAND R, ERSHAD-LANGROUDI A, RAHIMI A. Silica basedorganic-inorganic hybrid nanocomposite coatings for corrosion protection[J]. Prog Org Coat,2005,53(4):286-291
    [57] LIU L, HU J M, LENG W H, et al. Novel bis-silane/TiO2bifunctional hybrid films formetal corrosion protection both under ultraviolet irradiation and in the dark[J]. Scr Mater,2007,57(6):549-552
    [58]黄月文.纳米杂化有机硅溶胶在金属防腐中的应用[J].电镀与涂饰,2008,27(1):43-46
    [59] Tammy L M, Olga K, Edward T K. Spect roscopic and corrosion resistancecharacterization of ammine and super acid-cured hybrid organic-inorganic thin films on2014-T3aluminum alloy [J]. Progress in Organic Coatings,2002,44:185-199
    [60] Tammy L M, Olga K, Edward T K. Spect roscopic and corrosion resistancecharacterization of GL YMO-TEOS Ormosil coatings for aluminum alloy corrosioninhibition[J]. Progress in Organic Coatings,2002,44:295-305
    [61] Xing W T, You B, Wu L M. The microst ructure and anticorrosion performance ofphytic acid-catalyzed polysilsesquioxane coatings[J]. Journal of Sol-Gel Science andTechnology,2007,42:187-195
    [62]龚淑玲,梅功雄,孟令芝,等.纳米尺寸硅树脂的制备及性能[J].有机硅材料,2002,16(5):12-14
    [63]陈庆昌,梁志杰.两栖装甲设备新型防腐材料的研究[J].车辆与动力技术,2003,(1):11-15
    [64]李永清,郑淑贞.有机硅低表面能海洋防污涂料的合成及应用研究[J].化工新型材料,2003,(7):1-4
    [65] ChoYong-II, JangSung-Hoon, ParkJung-Ok. Antifogging abrasion resistant coatingcomposition and synthetic resin article coated therewith[P]. EP:620255
    [66]赵镛一,张城勋,朴贞玉.防雾耐磨涂料组合物及用其涂覆的合成树脂制品[P]. CN:1098429A,1995
    [67] Chantal Damia, Patrick Sharrock. Bioactive coatings obtained at room temperature withhydroxyapatite and polysiloxanes[J]. Materials Letters,2006,60(25-26):3192-3196
    [68] Kamitakahara M, Kawashita M, Miyata N, et al. Bioactivity and mechanical propertiesof polydimethylsiloxane(PDMS)-CaO-SiO2hybrids with different PDMS contents[J]. Sol-GelSci Tech,2001,21:75-81
    [69] Gallardo J, Galliano P. Bioactive sol-gel coatings for orthopedic prosthesis[J]. Sol-GelSci Tech,2000,19(4):107-111
    [70] Abdellah L, Boutevin B, Caporiccio G, et al. Study of photocrosslinkable polysiloxanesbearing gem di-styrenyl groups synthesis and thermal properties[J]. Eur Polym J,2002,38:1515-1521
    [71]崔孟忠,李竹云,张叆霞,等.有机硅建筑防水材料的性能与研究进展[J].化学建材,2000,(1):34-36
    [72]杨德,刘洁,张仲康.有机硅示温材料[J].有机硅材料,2001,(2):16-18
    [73] Lee J K, Kookheon C, Rhee H W, et al. Synthetic control of molecular weight andmicrostructure of processible poly(methylsilsesquioxane)s for low-dielectric thin filmapplications[J]. Polymer.,2001,42:9085-9089
    [74] Brutchey R L, Doldberger J E, Koffas T S, et al. Chem Mater[J],2003,15:1040-1046
    [75]史国力,李复生,田红兵.聚碳酸酯在汽车和航空透明材料领域应用的研究进展[J].材料导报,2006,20(S1):404-407
    [76]李复生,魏东炜,崔金华,等.聚碳酸酯光学性能应用及改进研究进展[J].塑料,2003,32(3):65-69
    [77] Richard G Jones, Wataru Ando, Julian Chojnowski.含硅聚合物——合成与应用[M].冯圣玉,栗付平,李美江,等译.北京:化学工业出版社,2008:119-161
    [78] Chenghong Li, Kurt Jordens, Garth L Wilkes. Abrasion-resistant coatings for plastic andsoft metallic substrates by sol-gel reactions of a triethoxysilylated diethylenetriamine andtetramethoxysilane[J]. Wear,2000,242(2):152-159
    [79] H Mayer. The chemistry and properties of silicone resins[J]. Surface CoatingsInternational,1999,(2):77-83
    [80] Hiromitsu Kozuka, Masahiro Fujita, Satohiro Tamoto. Polysilazane as the source ofsilica: the formation of dense silica coatings at room temperature and the new route toorganic-inorganic hybrids[J]. J Sol-Gel Sci Technol,2008,48:148-155
    [81] Xin Zhang, Yiyong Wu, Shiyu He, et al. Structural characterization of sol-gel compositesusing TEOS/MEMO as precursors[J]. Surface&Coatings Technology,2007,201:6051-6058
    [82] Sevim Karata, Zuhal Ho g r, Nilhan-Kayaman Apohan, et al. Preparation andcharacterization of photopolymerizable organic–inorganic hybrid materials by the sol-gelmethod[J]. J Polym Res,2010,17:247-254
    [83] M.A. Fanovich, S.A. Pellice, P.G. Galliano, et al. Organic/inorganic hybrid materialsbased on silsesquioxanes derived from (3-methacryloxypropyl) trimethoxysilane and theirblends with vinylester resins[J]. Journal of Sol-Gel Science and Technology,2002,23:45-52
    [84] Atanacio A J, Latella B A, Barbe C J, et al. Mechanical properties and adhesioncharacteristics of hybrid sol-gel thin films[J]. Surface and Coatings Technology,2005,192:354-364
    [85]林金娜,侯有军,曾幸荣.溶胶-凝胶法制备有机硅/SiO2杂化涂料的稳定性[J].高分子材料科学与工程,2007,23(2):128-131
    [86]陆静娟,郭兴忠,杨辉.表面改性硅溶胶粒子增强聚甲基硅树脂薄膜材料[J].化工学报,2006,57(9):2152-2156
    [87] Teruyuki Sasaki, Kazutaka Kamitani. Preparation of thick and hard coating films viasol-gel process with a low temperature treatment[J]. Journal of Sol-Gel Science andTechnology,2008,46:180-189
    [88] Douglas A Loy, Brigitta M Baugher, Colleen R Baugher, Duane A Schneider, KamyarRahimian. Substituent effects on the Sol-gel chemistry of organotrialkoxysilanes[J].Chemistry of Materials,2000,12(12):3624-3632
    [89] Kim C, Kim H. Synthesis and characterization of end-functionalized carbosiloxanedendrimers[J]. Polym. Sci. Part A: Polym. Chem.,2002,40:326-333
    [90] Andre S, Pietrasanta F G, Ratsimihety A, et al. Synthesis, characterization and thermalproperties of SiH and SiOH terminated hybrid polysiloxanes[J]. Macromolecular Chemistryand Physics,2000,201:2309-2315
    [91] Jovanovic J D, Govedarica M N, Dvornic P R, et al. The thermogravimetric analysis ofsome polysiloxanes[J]. Polymer Degradation and Stability.1998,61:87-93
    [92]王金平,俞志欣,何捷.用Sol-Gel法在PC上制备有机-无机复合耐磨涂层[J].功能材料,1999,30(3):323-325
    [93]井新利,许晓玲,于洁. UV光聚合/溶胶-凝胶法制备有机玻璃耐磨涂层[J].中国塑料,1996,10(1):49-52
    [94]段辉,熊征蓉,汪厚植,等.超疏水涂层的研究进展[J].化学工业与工程,2006,23(1):81-87
    [95] Yu Jimmy C, Yu Jiaguo, Tang Hung Yuk, et al. Effect of surface microstructure on thephotoinduced hydrophilicity of porous TiO2thin film[J]. Journal of Materials Chemistry,2002,12(1):81-85
    [96] Atul Tiwari, Jun Zhu, Lloyd H Hihara. The development of low-temperature hardingsilicone creamer coating for the corrosion protection of metals[J]. Surface and CoatingTechnology,2008,202:4620-4635
    [97] Chenghong Li, Garth L. Wilkes. Silicone/amine resin hybrid materials as abrasionresistant coatings[J]. Chemistry of Materials,2001,13:3663-3668
    [98]邵月刚,詹学贵,姜承永,等.有机硅硬质涂料的制备[J].有机硅材料,2004,18(3):16-19
    [99] Paul S. Surface Coatings, Science and Technology[M]. New York: John Wiley&Sons,1985:167-199
    [100]许声机.氨基树脂的过去、现在和将来[J].土海涂料,1997,(3):141(13)-145(17)
    [101]牛广轶,刘康.涂料用氨基树脂的进展—甲醚化氨基树脂[J].现代涂料与涂装,2000,(6):38-40
    [102]王幸芬.甲醚化氨基树脂的性能及应用概况[J].上海涂料,1996,(3):159(31)-163(35)
    [103]沈一丁,刘敏,赖小娟,等.水性聚氨酯/纳米SiO2杂化材料的制备及性能研究[J].精细化工,2010,27(4):318-322
    [104] D K Chattopadhyay, Dean C Webster. Hybrid coatings from novel silane-modifiedglycidyl carbamate resins and amine crosslinkers[J]. Progress in Organic Coatings,2009,66:73-85
    [105] ZHOU Wen-jun, YANG Hui, GUO Xing-zhong, et al. Thermal degradation behaviorsof some branched and linear polysiloxanes[J]. Polymer Degradation and Stability,2006,91:1471-1475
    [106] WU L Y L, BOON L, CHEN Z, et al. Adhesion enhancement of sol–gel coating onpolycarbonate by heated impregnation treatment [J]. Thin Solid Films,2009,517:4850-4856
    [107] Fustin C A, Sclavons M, Pantoustier N. Reactivity of Si-H and Si-Vinyl endfunctionalized siloxanes toward PBT: A model system study [J]. Polymer Engineering andScience,2005,45(8):1067-1072
    [108]赵宏鑫,俞昊,郭聪,等.涂料用硅系杂化聚酯的原位制备及性能表征[J].上海涂料,2010,48(4):12-15
    [109] Jesson D A, Abel M L, Hay J N. Organic-inorganic hybrid nanoparticles: surfacecharacteristics and interaction with a polyester resin [J]. Langmuir,2006,22(11):5144-5151
    [110] Morote-Martínez V, Pascual-Sánchez V, Martín-Martínez J M. Improvement inmechanical and structural integrity of natural stone by applying unsaturated polyesterresin-nanosilica hybrid thin coating [J]. European Polymer Journal,2008,44:3146-3155
    [111] John S, Timothy E L.现代聚酯[M].赵国樑,等译.北京:化学工业出版社,2007:518-527
    [112] Samar Kumar Medda, Goutam De. Inorganic-organic nanocomposite based hardcoatings on plastics using in situ generated nano-SiO2bonded with≡Si-O-Si-PEO hybridnetwork[J]. Ind Eng Chem Res,2009,48:4326-4333
    [113]张建华,姜其斌,林金火.有机硅改性不饱和聚酯树脂的制备及应用研究[J].绝缘材料,2007,40(1):11-13
    [114]陆静娟,郭兴忠,杨辉. MEMO改性硅溶胶增强甲基硅树脂薄膜结构及性能[J].化工进展,2007,26(7):985-990
    [115]林金娜,侯有军,曾幸荣. UV固化有机硅/SiO2杂化涂料的制备及性能[J].华南理工大学学报(自然科学版),2007,35(6):76-80
    [116]陈曦,于钦学,任文娥,等.聚酯的热分析与热分解动力学的研究[J].绝缘材料2009,42(3):52-55,63
    [117]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985:126-127
    [118] S Frings, H A Meinema, C F van Nostrum, R van der Linde. Organic–inorganic hybridcoatings for coil coating application based on polyesters and tetraethoxysilane[J]. Progress inOrganic Coatings,1998,33:126-130
    [119]陈永春.聚酯聚氨酯/SiO2(TiO2)纳米复合涂层的制备及表征[D].上海:复旦大学,2005
    [120] S Frings, C F van Nostrum, R van der Linde. Morphology of hybrid coatings based onpolyester, melamine resin, and silica and the relation with hardness and scratch resistance[J].2000,72(901):83-89
    [121]周玉,武高辉.材料X射线衍射与电子显微分析[M].黑龙江:哈尔滨工业大学出版社,1998:60-67
    [122]张世举,程延海,邢方方,等.接触角与表面自由能的研究现状与展望[J].煤矿机械,2011,32(10):8-10
    [123] LIU Zhijia, FU Feng, BAO Fucheng. Study on surface free energy of thermochromicwood[J]. Chinese Forestry Science and Technology,2010,9(1):60-66
    [124]李外郎,顾惕人.固体的表面自由能和接触角[J].精细化工,1986,3(3):1-5
    [125]王磊,沈一丁,赖小娟.水性聚氨醋/纳米二氧化硅杂化材料的制备及性能[J].高分子材料科学与工程,2011,27(6):137-141
    [126] Yates C R, Hayes W. Synthesis and applications of hyperbranched polymers[J].European Polymer Journal,2004,40(7):1257-1281
    [127]马晓舒,谢晖,张赛南,等. UV固化超支化聚酯的合成及性能研究[J].热固性树脂,2010,25(1):40-47
    [128]肖文清.脂肪族超支化聚酯的合成、改性及应用研究[J].广州:华南理工大学,2009
    [129] Malmastrom E, Johansson M, Hult A. Hyper-branchd aliphatic polyesters[J].Macromolecules,1995,28:1698-1703
    [130]朱吕民.聚氨酯合成材料[M].江苏:江苏科学技术出版杜,2002:55,59-60
    [131] Lomolder R, Plogmanm F, Speier P. IPDI在聚氨酯反应中对选择性温度、催化过程和反应对象的影响[J].上海涂料,2001,(5):10-14
    [132] Bradley G, Davidsin R S, Howgate G J. Photoinitiated polymerization reactions:application of a new real-time FTIR system for following the rate of polymerization[J].Journal of Photochem and Photobio, A: Chemistry,1996,100:109-18
    [133] Oh S J, Lee S C, Park S Y. Photopolymerization and photobleaching of n-butylacrylate/fumed silica composites monitored by real time FTIR-ATR spectroscopy[J].Vibrational Spectroscopy,2006,42(2):273-277
    [134] Tauber A, Scherzer T, Mehnert R. UV curing of aqueous polyurethane acrylatedispersions. A comparative study by real-time FTIR spectroscopy and pilot scale curing[J].Journal of Coatings Technology,2000,72(911):51-60
    [135] Xuesong Jiang, Hongjie Xu, Jie Yin. Polymeric amine bearing side-chain thioxanthoneas a novel photoinitiator for photopolymerization[J]. Polymer,2004,45(1):133-140
    [136]林金娜. UV固化超支化聚氨酯丙烯酸酯/SiO2杂化涂料的制备、结构与性能研究
    [D].广州:华南理工大学,2007
    [137]张玲.光固化有机/无机杂化体系的研究[D].广州:中山大学,2001
    [138] Ash S G, Findenegg G H. Calculation of the interaction energy between two paralleladsorbing planes immersed in a solution composed of molecules of different size[J].Transaction of the Faraday Society,1971,67:2122-2128
    [139] Romo L A. Stability of non-aqueous dispersions[J]. Journal of Physical Chemistry.1963,67:386-389
    [140] Asha S K, Thirumal M, Kavitha A, et al. Synthesis and curing studies of PPG basedtelechelic urethane methacylic macromonomers[J]. European Polymer Journal,2005,41(1):23-33
    [141] Huang J, Zhang L. Effect of NCO/OH molar ratio on structure and properties ofgraft-interpenetrating polymer networks from polyurethane and nitrolignin[J]. Polymer,2002,43:2287-2294
    [142] A. Shimojima and K. Kuroda, Langmuir,2002,18,1144-1149
    [143] M. Oubaha, M. Dubois, B. Murphy and P. Etienne, J. Sol-Gel Sci.Technol.,2006,38,111
    [144] RANJBAR Z, JANNESARI A, RASTEGAR S, et al. Study of the influence ofnano-silica particles on the curing reactions of acrylic-melamine clear-coats[J]. Progress inOrganic Coatings,2009,66(4):372-376
    [145] ORZESKO A, KOLBRECKI A. Thermal degradation of polyurethanes. Modelcompounds[J]. Journal of Applied Polymer Science,1980,25:2969-2973.
    [146] Yeganeh H, Shamekhi M A. Poly(urethane-imide-imide), a new generation ofthermoplastic polyurthane elastomer with enhanced thermal stability[J]. Polymer,2004,45:359-365
    [147] Kim B S, Park S H. Nanosilica-reinforced UV-cured polyurethane dispersion[J].Colloid Polym SCi,2006,284:1067-1072
    [148] WANG H T, XU P, MENG S. Poly(methylmethacrylate)/silica/titania ternarynanocomposites with greatly improved thermal and ul-traviolet-shielding properties[J].Polymer Degradation and Stability,2006,91(7):1455-1461
    [149]何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版社,1990:228-260
    [150] BAUER F, GLASEL H J, DECKER U, et al. Trialkoxysilane grafting ontonanoparticles for preparation of clear coat polyacrylate system with excellent scratchperform[J]. Progress in Organic Coatings,2003,47(2):147-153
    [151]刘辉,罗英武,李宝芳.溶胶-凝胶法制备紫外光固化纳米复合涂料[J].高校化学工程学报,2004,18(3):329-333
    [152] Oh I S, Park N H, Sun K D. Mechanical and surface hardness properties ofultraviolet-cured polyurethane acrylate anionomer/silica composite film[J]. J Appl Polym Sci,2000,75:968-975

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700