用户名: 密码: 验证码:
固体润滑涂层抗微动磨损研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微动损伤普遍存在于航空航天、核反应堆、电力电子、交通运输工具和人工植入器件等工程领域的关键零部件中,随着高技术领域对高精度、长寿命和高可靠性的要求,微动损伤的危害日益凸现。固体润滑涂层作为抗微动损伤的主要防护措施之一,已在工程领域得到了广泛应用,但尚未见到有关固体润滑涂层抗微动磨损特性与机理深入系统的研究。
     本文在高精度液压式微动磨损试验机上,采用球/平面接触模式,在不同载荷和位移振幅条件下,对基材(调质42CrMo钢)和4种固体润滑涂层(粘结MoS_2涂层、粘结石墨涂层、粘结聚四氟乙烯(PTFE)涂层和电刷镀Pb涂层)进行了微动磨损试验。在动力学分析基础上,利用表面轮廓仪、激光共焦扫描显微镜(LCSM)、扫描电子显微镜(SEM)、电子能谱仪(EDX)、x射线光电子能谱(XPS)、x衍射分析(XRD)、傅立叶红外光谱仪和划痕测试仪等材料表面分析测试设备,系统研究了不同固体润滑涂层的微动摩擦特性和磨损行为,建立了微动磨损的物理模型。针对16V280型柴油机连杆齿型结合面的微动损伤,通过表面工程设计,成功地应用固体润滑涂层减缓了微动损伤。本研究取得的主要结果和结论如下:
     1、粘结MoS_2涂层微动摩擦特性强烈地依赖于位移幅值、法向载荷和循环次数,微动运行于部分滑移区和滑移区,混合区消失。按摩擦系数随循环次数的变化可将其磨损行为划分为三个阶段:即(a)磨损的初期,表面转移膜与表面塑性流动层在两接触副之间形成,摩擦发生在MoS_2晶体的滑移面间,摩擦系数较低,XRD分析结果表明在塑性流动层形成的再结晶过程中,具有明显的择优取向;(b)随循环次数增加,在反复疲劳应力作用下塑性流动层发生加工硬化和氧化,润滑作用下降,摩擦系数上升,并可观察到龟裂现象;同时,微裂纹沿滑移面(平行于表面)间扩展,并逐步相互贯通,导致涂层呈片层状剥落;(c)颗粒严重脱落,磨损率增加,中心区大面积基体裸露出来,表面严重损伤,摩擦系数达到基体材料稳定阶段的数值,涂层失去保护作用。粘结石墨涂层的微动磨损特性与MoS_2涂层相似。
     2、系统研究了MoS_2粘结涂层制备工艺(基体材料、涂层厚度、固化温度和表面粗糙度)、环境因素(湿度、温度和润滑油介质)对涂层微动磨损寿命的影响。结果表明,选择较硬基体、增加涂层厚度、对基体表面进行表面
    
    第11页 西南交通大学博士研究生学位论文
    喷砂预处理以及对涂层进行高温固化均有利于提高涂层的微动磨损寿命,其
    中固化温度对涂层磨损寿命的影响最为显著。随着位移幅值的减小,微动趋
    向于部分滑移区,上述因素的影响更显著;环境湿度增加,加剧涂层在磨损
    过程中的氧化,磨损寿命降低,在高位移幅值条件下更明显;温度对磨损寿
    命有重要影响;在滑移区,加润滑油的混合润滑大大降低了磨损寿命,但是,
    在较低位移和较高载荷条件下,混合润滑却表现出良好的润滑性能。
     3、粘结PTFE涂层的微动摩擦磨损性能取决于载荷的变化,存在一个临
    界载荷,当低于临界载荷时,摩擦系数随载荷的增加而减小,磨损率几乎不
    变,当高于临界载荷时,摩擦系数随载荷增加而增加,磨损率急剧增加。涂
    层微动损伤主要表现为分子链承受过大应力而断裂,长时间承受交变疲劳应
    力作用导致微裂纹的萌生和扩展,涂层呈剥落破坏。润滑油与PTFE涂层的混
    合润滑可以在比较宽的载荷范围内表现出良好的减摩性能。
     4、电刷镀的涂层的摩擦系数随位移幅值或循环次数的增加而有所增加,
    三个微动区域均可观察到。在部分滑移区,表面损伤轻微;进入混合区域,
    在早期阶段,由于涂层的润滑作用,接触表面处于相对滑移状态,随着循环
    次数的增加,涂层逐渐丧失润滑效果,相对运动趋向于部分滑移;在滑移区,
    涂层磨损早期有明显塑性流动特征,涂层破坏表现为按剥层机制呈片状剥落。
     5、润滑涂层改变了42CrMo钢基材的微动特性,MoS。、石墨、PTFE涂层
    的混合区消失,电刷镀N涂层的微动区域左移。比较不同涂层的磨损机制
    发现,MOS。、PTFE和 Ph涂层在磨损过程中发生了摩擦化学作用,导致涂层
    氧化,其润滑性能逐渐丧失。四种涂层的微动磨损主要表现为:在往复疲劳
    应力作用下裂纹萌生和扩展,按剥层机制呈层状剥落。采用极坐标法综合比
    较了涂层的机械和微动磨损性能,结果显示,MOS。涂层综合抗微动磨损性能
    最佳,然后依次是PTFE涂层、石墨涂层和 Ph涂层。
     6、在对16VZSO型柴油机连杆齿型结合面失效分析、动力学、接触应力
    及相对位移分析的基础上,认为齿面裂纹的产生归因于齿面间的微动疲劳作
    用。通过表面工程设计,选用MoS。粘结涂层可以减缓齿面的微动损伤。现已
    装车进行实际考察,目前运行状况良好。
Fretting may occur in many engineering key structures, such as space mechanisms, nuclear power plants, electrical equipments, and even orthopaedic implants. Fretting may result in two kinds of damage: wear and rapid crack nucleation and propagation. Some of the failures initiated by fretting have tragic consequence. Solid lubricant coatings are usually used to mitigate fretting damage. However, their effects on preventing fretting wear behaviors and mechanism have rarely been investigated systemically.
    Four solid lubricant coatings, i.e. MoSi bonded coating, graphite bonded coating, PTFE bonded coating and Electro-brush Plating Plumbum Coating, together with their substrate material (E4142 steel), have been tested under ball-on-flat contact with various normal loads and displacement amplitudes. Dynamic analyses have been performed to study fretting friction and wear behaviors in detail, and a physical model on fretting wear was built. The result is used to solve the fretting problem of the connecting rods for 16V280 diesel engine. The main research works and results are concluded in the follow:
    1. Under the fretting condition, only partial slip regime and gross slip regime exist with MoS2 bonded coating. According to the variation of the friction coefficient with the increase of number of cycle, the degradation of the coating is outlined as three stages: (1) During early stage, the transfer film and plastic flow layer form between two contact pairs. Friction occurs between two slip planes of MoSa crystals. XRD show that MoSa crystals exhibit significant orientation during the formation of the plastic flow layer. (2) The plastic flow layer occurs work-hardening and oxidation, which can be identified by the following phenomenon: lubricating effect becomes weak; friction coefficient increases; micro cracks initiate, propagate along sliding planes, and then particles spall in the shape of flake. (3) The wear rate increases rapidly as severe detachment of particles occur at contact center. The coating almost lost its protective effect as a lubricant. The fretting wear performance of bonded graphite coating is similar to that of MoSa bonded coating.
    
    
    
    Various factors including preparation processes (substrate material, thickness, curing temperature, and surface roughness) and environmental condition (temperature, relative humidity and mixed lubricant with oil) effect on the fretting wear life of MoS2 bonded coating have been investigated. The test results exhibit enhancing substrate hardness, increasing coating thickness, sandblasting substrate surface, and especially heat curing are favorable to extend the wear life of the coating. For all the condition, the wear life increases with decreasing displacement amplitude. It helps to prolong service duration of MoS2 coating by reducing relative humidity, especially at lower displacement amplitudes. The effect of temperature on wear life is marked. With lubricant oil, the wear life reduces with increasing displacement amplitude or decreasing normal load, however, adding oil could be beneficial for improving wear life at quite low displacement amplitudes.
    2. PTFE bonded coating has excellent anti-friction and wear-resistant performance. Friction and wear characters of the coating depend strongly on normal loads. There is a critical normal load below which the change of wear rate is slight, while above that, severe surface damage is observed. The degradation of the coating on account of mechanical and chemical factors is as follows: the fracture of molecular chains; the nucleation and propagation of micro-cracks, which cause particles detachment in lame shape afterwards. It is favorable to improve PTFE coating protective fretting damage effect by adding oil.
    3. For electro-brush plating Plumbum coating, three fretting regimes can be observed under fretting condition. In mixed fretting regime, relative micro-silp occurs between contact interfaces in early stage, with increasing the number of cycles, micro-silp occurs at the contact edge as the lubricant
引文
[1] R.B. Waterhouse. Fretting corrosion. Pergamon Press, Oxford, 1972.
    [2] R.B. Waterhouse. Fretting fatigue. Elsevier Applied Science, London,1981.
    [3] 周仲荣,罗唯力,刘家浚.微动摩擦学的发展现状与趋势.摩擦学学报,17(3),1997:272-280
    [4] 周仲荣,L.Vincent.微动磨损,科学出版社,2002
    [5] 赵锁宗,王大智.车轴的微动腐蚀与对策,铁道车辆,33(7),1995:10-13
    [6] 朱旻昊,周仲荣.交通运输领域微动损伤及对策,第三界全国交通运输领域青年学术会议论文集,1999
    [7] 宋子濂,史建平主编,车轴断裂失效分析图谱,中国铁道出版社,1995
    [8] 阎顺德,张仕才 16V280ZJ型柴油机连杆故障分析及处理措施 内燃机车,9,2000:31-33
    [9] H.J. Connors, Flow-induced vibration and wear of steam generator tubes,Nucl. Technol., 55,1981:311-331
    [10] E.M. Eden, W.N.Rose and F. L. Cunningham. The endurance of metals.Proc. Instn. Mech. Eng., 4,1911:839-074
    [11] G.A. Tomlinson. The rusting of steel surface in contact. Proc. R. Soc. A, 115, 1927:472-483
    [12] G.A. Tomlinson, P. L. Thorpe and H. J. Gough. An investigation of the fretting corrosion of closely fitting surface. Proc. Instn. Mech. Eng., 141,1939:223-249
    [13] Warlow-davies, E. J., Fretting corrosion and fatigue strength: Brief results of preliminary experiments, Proc. Instn mech. Engrs, 146,1941:32-43
    [14] R.D. Mindlin, Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics, 16,1949:259-268
    [15] Ming Feng and B. G. Rightmire. The mechanism of fretting. Mass. Inst. Of Tech., Cambridge, Mass., Ad4463
    [16] H.H. Uhlig. Mechanism of fretting corrosion. J. Appl. Mech.,21, 1954: 401-407
    [17] K. Nishioka,S. Nishimura and K. Hirakawa. Fundamental investigation of fretting fatigue. Bull.JSME, 12,1969:180-187,397-414,692-697
    [18] P. L. Hurricks. The mechanism of fretting -a review. Wear, 15, 1970: 389-409
    [19] Y. Berthier, L. Vincent and M. Godet. Velocity accommodationin in fretting. Wear, 125, 1988:25-38
    [20] M. Godet. Third-bodies in tribology. Wear, 136,1990:29-45
    [21] Z.R.Zhou, S. Fayeulle and L. Vincent. Cracking behavior of various aluminium alloys during fretting wear. Wear, 155,1992:317-330
    [22] R.B. Waterhouse and A. Iwabuchi. High temperature fretting wear of four titanium alloys. Wear, 1106,1985:303-313
    [23] Iwabuchi, Y. Tatsuyanagi, K. Yoshido and M. Sugimoto.Tribology
    
    properties of cryogenic materials at 4K in liquid helium under fretting conditions. Wear, 159,1992:1107-114
    [24] K. Sato, T. A. Stolarski and Y. Lida. The effect of magnetic field on fretting wear. Wear, 241,2000:99-108
    [25] N.C. Horswill, K. Sridharan and J. R. Conrad.A fretting wear study of a nitrogen implanted titanium alloy. Journal of Materials Science Letter, 14, 1995:1349-1351
    [26] Beard, J.. An investigation into the mechanisms of fretting fatigue, Ph.D.thesis, University of Salford, 1982
    [27] Dobromirski J.M.. Variables of fretting process: are there 50 of them? ASTM STP, 1992,1159:60-65.
    [28] D. Godfrey and J. M. Bailey. Coefficient of friction and damage to contact area during the early stages of fretting, I-Glass, copper, or steel against copper. NACA, TN-3011,1953
    [29] R. B. Waterhouse. Fretting, Friction, Lubrication, and Wear Technology. P.J.Blau volume chairman, ASM Handbook, Vol. 18,ASM Internationaal Edit., 1992
    [30] Y. Berthier, L. Vincent and M. Godet. Fretting fatigue and fretting wear. Tribology International, 22,1989:235-241
    [31] N. Dahmani, L. Vincent and Vannes. Velocity accommodation in polymer fretting. Wear, 158,1992:15-28
    [32] Vingsbo and S. Soderberg. On fretting maps. Wear, 126,1988:131-147
    [33] Z.R. Zhou and L. Vincent. Effect of external loading on wear maps of aluminium alloys. Wear, 162-164, 1993:619-623
    [34] Z. R. Zhou and L. Vincent. Mixed fretting regime. Wear, 181-183, 1995:531-536
    [35] Z. R. Zhou and L. Vincent. Cracking induced by fretting of aluminium alloys. Journal of Tribology, ASME, 119, 1997:36-42
    [36] Vingsbo, M. Odfaalk and N. E. Shen, Fretting maps and fretting behavior of some FCC metal alloys. Wear, 133,1989:275-282
    [37] L. Vincent,Y. Berthier, M. C. Dubourg and M. Godet. Mechanics and materials in fretting. Wear, 153, 1992:135-148
    [38] P. Blanchard, C. Colombie, V. Pellerin, S. Feyeulle and L. Vincent. Material effects in fretting wear:application to iron, titanium and aluminium alloys. Metallurgical Trans. A22, 1991:1535-1544
    [39] J.M. Dobromirski. Variables of fretting process: are they 50 of them in: M. H. Attia, R. B. Waterhouse(Eds.), Staandarization of fretting fatigue test methods and equipment. ASTM STP 1159, ASTM, Philadelphia, 1992:60-66
    [40] J.Beard. Palliatives for fretting fatigue, in: R.B. Waterhouse, T. C. Lindley(Eds.), Fretting fatigue, ESIS 18. Mechanical Engineering publications, London, 1994:419-436
    [41] 戴振东,薛群基,王珉.摩擦磨损过程中的非平衡态热力学研究,自然杂志,20(4),1998:220-228
    [42] 戴振东,薛群基,王珉.摩擦问题的热力学研究.摩擦学进展,2(3),1997:1-9.
    
    
    [43] R.F. Baker and A. V. Olver. Direct observations of fretting of steel. Wear, 203-204, 1997:425-433
    [44] W. Wang and S. Wen. In situ observation of the unlubricated wear process. Wear, 171, 1994:19-23
    [45] Y. Q. Fu and A. W. Batchelor, Study on fretting wear bahavior of laser treated coating by X-ray imaging. Wear, 218, 1998:250-260
    [46] Y. Q. Fu, A. W. Batchelor and N.L.Loh. Revealing the hidden world of fretting wear processes of advanced surface coatings by X-ray imaging. Surf. Coat. Technology. 107, 1998:133-141
    [47] Sato J. Fretting wear of stainless steel. Wear, 1981,69(12):1467-178
    [48] Antler N. The influence of polymer composition on the wear of the metal surface during fretting of steel on polymer. Wear, 1978, 47:71-78
    [49] 俞仲傅,黄东明,廖曼青.抗微动磨损的高分子材料SF-2.机械工程材料,5(1),1981:21-27
    [50] S. C. Gordelier and T. C. Chiver. A literature review of palliatives for fretting fatigue. Wear, 56, 1967:177-190
    [51] 何明鉴.微动磨损疲劳——燕尾联接应力分布及裂纹位置预测.航空动力学报,4(4),1989:135-139
    [52] R. B. Waterhouse. The effect of surface treatment on the fatigue and fretting fatigue of metallic materials, in: Metal traetments against wear, corrosion, fretting and fatigue. Pergamon Press, Oxford, 1988:31-40
    [53] L. Xue, A. K. Koul, M. Bibby, W. Wallace, M. Islam. A survey of surface treatments to improve the fretting fatigue resistance of Ti-6Al-4V. Computer Methods and Experimental Measurements for Surface Treatment Effects, Ⅱ. Computational Mechanics Pub., USA, 1995:265-272
    [54] J. Sato, M. Shima and T. Sugawara. Effect of lubricants on fretting wear of steel. Wear, 110, 1988:83-95
    [55] 刘启跃博士学位论文.润滑工况微动磨损特性的研究.西南交通大学,1999
    [56] Y. Qiu and B. J. Roylance. The effect of lubricant additives on fretting wear. Lubrication Eng.. 48, 1992:801-808
    [57] N. Ohmae, T. Nakai and T. Tsukizoe. Prevention of fretting by ion plated film. Wear, 30, 1974:299-309
    [58] N. Ohmae, T. Tsukizoe and T. Nakai. Ion-plated thin films for anti-wear applications. J. Lub. Technol.. 100, 1978:129-135
    [59] R.B. Waterhouse, R. C. Cobb. The fretting wear of certain hard coating including TiN applied to a 0.4 C steel. Fif Years on Tribology-Friction, Lubrication and Wear, Vol. 2, Mechanical Engineering Publications, London, UK, 1-3 July 1987:629-636
    [60] S. Fouvry, Ph. Kapsa and H. Zahouani and L. Vincent. Wear analysis in fretting of hard coating through a dissipated energy concept. Wear, 203-204,1997:393-403
    [61] B. Waterhouse. Plastic deformation in fretting processes-a review. Fretting Fatigue: Current Technology and Practices, ASTM STP 1367, D. W. Hoeppner, Ⅴ. Chandrasekaren and C. B. Elliott, Eds., American Society for Testing and Materials, Weat Conshohocken, PA, 2000:3-18
    
    
    [62] B. Blanain, H. Mohrbacher, E. Liu, J. P. Celis and J. R. Ross, Hard coating under vibration contact conditions. Surf. Coat. Technol.. 74-75, 1995:953-958R.
    [63] J. Wei, S. Fouvry, P. Kapsa and L. Vincent. Fretting behavior of TiN coatings. Surface Engineering, 13, 1997:227-232
    [64] H. Mohrbacher, B. Blanpain, J. P. Cellis and J. R. Roos. The influence of humidity on the fretting behavior of PVD TiN coatings. Wear, 180, 1995: 43-52
    [65] K. De Bruyn, J. P. Celis, J. R. Roos, L. M. Stals and M. Van Stappen. Fretting behavior and porosity of TiN coatings. Wear, 181-183, 1995: 856-861
    [66] K. Schouterden, B. Blanpain, J. P. Celis and O. Vingsbo. Fretting of titanium nitride and diamond-like carbon coating at high frequencies and low amplitude. Wear, 181-183,1995:86-93
    [67] B. Blanpain, J. P. Celis, J. R. Roos, J. Ebberink and J. Smeets. A comparative study of the fretting wear of hard carbon coatings. Thin Solid Films, 223, 1993: 65-71
    [68] J. Wei, S. Fouvry, P. Kapsa and L. Vincent. Tribological behavior of DLC coating during fretting, Proceedings of Processing and Fabrication of Advanced Materials. Ⅵ, Singapore, November 1997
    [69] H. Mohrbacher, B. Blanpain, J. P. Cellis and J. R. Roos. Low amplitude oscillating sliding wear on chemical wear on the chemical vapor deposited diamond coating. Diamond Related Materals 2, 1993:879
    [70] S. Fouvry, P. Kapsa and L. Vincent. Fretting behavior of hard coating under high normal load. Surface Coatings and Technology, 68-69, 1994:494-499
    [71] J. P. Cellis. A system approach to the tribological testing of coating materials. Surface Coatings and Technology. 74-75, 1995:15-22
    [72] K. Sato, S. Kodama. Effect of TiN coating by the CVD and PVD processes on fretting fatigue characteristics in steel. In: R. B. Waterhouse, T. C. Lindley(Eds.), Fretting Fatigue, ESIS 18, Mechanical Engineering Publications, London, 1994:513-526
    [73] 刘家浚.材料磨损原理及其耐磨性.清华大学出版社.北京,1993
    [74] 刘伟,何庆复,陈善忠.热喷涂层抗车轴微动疲劳的研究.摩擦学学报,19,1999:234-238
    [75] S.J. Harris, M. P. Overs and A. J. Gould. The use of coating to control fretting wear at ambient and elevated temperatures. Wear, 106, 1985:33-52
    [76] D. E. Taylor and R. B. Waterhouse. Sprayed molybdenum coatings as a protection against fretting fatigue. Wear, 20, 1972:401-407
    [77] M.P. Overs, S. J. Harris and R. B. Waterhouse, Development of coating based on Fe-Cr-Ni-Al for resisting fretting wear in the temperature range 20-700oC. Wear, 75, 1980:251-258
    [78] G. Syers. The protection of certain titanium alloys against fretting fatigue. Rolls Royce Laboratory, Research Report 10245/FS/78118..
    [79] Y.Q. Fu, A. W. Batchelor, H. T. xing and Y. W. Gu. Wear behavior of laser treated plasma-sprayed ZrO2 coating. Wear, 210, 1997:157-164
    [80] Y. Q. Fu, A. W. Batchelor, Y. Wang and K. A. Khor. Fretting wear
    
    behaviors of thermal sprayed hydroxyatite (HA) bioceramic coating under unlubricated condition. Wear, 217, 1998:132-139
    [81] Y. Q. Fu, A. W. Batchelor, Y. Wang and K. A. Khor. Fretting wear behaviors of thermal sprayed hydroxyatite (HA) bioceramic coating lubricated with bovine albumin. Wear, 230, 1999: 98-102
    [82] Y. Q. Fu, A. W. Batchelor, Y. Wang and K. A. Khor. Hot isostatic pressing of hydroxyapatite coating for improved fretting wear resistance. J. Mater. Sci. Lett. 17, 1998:1695-1696
    [83] K.A. Khor and N. L. Loh. Hot isostatic pressing of plasma sprayed thermal barrier coating systems. J. Mater. Manuf. Process, 10, 1995:1241-1256
    [84] D.H. Yang, X. S. Zhang and Q. J. Xue. Fretting wear bahavior of 2Cr13 stainless steel before and after laser treatment. Wear, 171, 1994:13-18
    [85] W. Batchelor, G. W. Stachowiak and G. B. Stachowiak, Control of fretting wear of roping wire by laser surface alloying aand physical vapor deposition coating. Wear, 152, 1992:127-150
    [86] Y. Q. Fu, A. W. Batchelor. Investigation on laser alloying of aluminum alloy A6061 with Ni, Cr. Part Ⅱ. Effects of laser alloying on fretting wear resistance. Surface Coatings and Technology, 102, 1998:119-126
    [87] Y.Q. Fu, A. W. Batchelor. Laser nitriding of pure titanium with Ni, Cr for improved wear performance. Wear, 214, 1998:82-90
    [88] J. E. Elder, R. Thamburraj and P. C. Patnaik. Optimizing ion implantation conditions for improving wear, fatigue and fretting fatigue of Ti-6Al-4V. Int. Mater. Rev., 33, 1988:289-313
    [89] J.S. Ross, J. P. Celis and M. Frank. Fretting wear of carbon-ion implanted physical-vapor-deposited TiN coatings. Surface Coatings and Technology. 45, 1991:89-98
    [90] S. Saritas, R. P. M. Proctor and W. A. Grant. Effect of ion implantation on fatigue, fretting and fretting corrosion of Ti-6Al-4V. Material Science Engineering, A115, 1989:307-314
    [91] J. Perry. Ion implantation of alloys for biomaterials and other applications. Surface Engineering, 3, 1987:154-160
    [92] G.S. Was and J. D. Demaree. Corrosion and mechanical behavior of ion implanted bearing steel for improved fretting behavior. Surface Coatings and Technology, 66, 1994:446-452
    [93] N.C. Horswill, K. Sridharan and J. R. Conrad. A fretting wear study of a nitrogen implanted titanium alloy. J. Mater. Sci. Lett.. 14, 1995:1349-1351
    [94] Y.Q. Fu. PH. D. Thesis, Nanyang Technological university, 1998
    [95] Y.Q. Fu., N. L. Loh, A. W. Batchelor, etc. Comparison of different surface engineering methods on improvement of fretting wear and fretting fatigue resistance of Ti-6Al-V. Surface Coatings and Technology, 106, 1998:193-197
    [96] 徐桂珍博士学位论文.表面改性技术防止材料微动磨损的效果与机理.清华大学,1999
    [97] Z.R.Zhou, Ph. Kapsa and L. Vincent. Grease lubrication in fretting. Journal of Tribology, 120, 1998:737-743
    [98] Q.Y. Liu and Z. R. Zhou. Effect of displacement amplitude in oil-lubricated
    
    fretting. Wear, 239, 2000:237-243
    [99] Z. R. Zhou and L. Vincent. Lubrication by thin polystyrene coating in fretting. Wear, 231, 1999:179-184
    [100] Z. R. Zhou and L. Vincent. Proceeding of international symposium on fretting. In: Z. R. Zhou (Ed.), Southwest Jiaotong University Press, 1998: 173-187
    [101] Z.R.Zhou, M. Fiset, A. Cardou, L. Cloutier and S. Goudreau. Effect of lubricant in electrical conductor fretting fatigue. Wear, 189, 1995:51-57
    [102] A. Neyman, Wear, 152, 1992:171-181
    [103] 刘启跃,朱旻昊,周仲荣,陈光雄.油润滑对微动摩擦特性影响的研究.机械工程学报,36,2000:1-4
    [104] McColl. I.R.,Waterhouse. R.B., etc. Lubricanted fretting wear of a highstrength eutectoid steel rope wire. Wear, 185, 1996:203-212
    [105] Z. R. Zhou, S. Goudreau, M. Fiset. Single wire fretting tests for electrical conductor bending fatigue evaluation. Wear, 181-183, 1995: 537-543
    [106] F.P. Bowden and D.Tabor. The Friction and Lubrication of Solids. Oxford University Press, 1954
    [107] Wei Zhang, Qunji Xue. Fretting wear characteristics of Ni/Cu multilayers eletrodeposited on beryllium bronze substrate. Wear, 214, 1998: 23-29
    [108] J. F. Carton, A. B. Vannes and L. Vincent. Basis of a coating methodology in fretting. Wear, 185, 1995:47-57
    [109] J. F. Carton, A. B. Vannes G. Zambelli and L. Vincent. An investigation of the fretting behavior of low friction coatings on steel. Tribology International, 29, 1996:445-455
    [110] T.C. Chivers, S. C. Gordelier. Fretting fatigue palliatives:some comparative experiments. Wear, 96, 1984:153-175
    [111] M.B.K. Gabel, J. J. Bethke. Wear, 46, 1978:81-96
    [112] 聂明德,吴伟忠.干膜固体润滑及其在航空工业上的应用.固体润滑,2,1982:124-128
    [113] M. H. Zhu, Z. R. Zhou. An investigation of molybdenum disulfide bonded solid lubricant coatings in fretting conditions. Surface Coatings and Technology, 141, 2001:240-245
    [114] Tomoharu Shimizu, Akira Iwabuchi, and Hidenobu Mifune, The frictional properties of a spray-bonded MoS2/Sb2O3 film under the fretting in vacuum, Lubrication Engineering, 12(1995): 943-948
    [115] P. A. Gaydos, N. S. Eiss, M. J. Furey and H. H. Mabile. Wear of materials, in: K. Ludema (Eds.). ASME, 1989:529-535
    [116] C. Kang, N. S. Eiss. Fretting of polyimide coatings part Ⅰ: structure and moisture effect. Wear, 181-183, 1995:94-100
    [117] R. A. L. Rorrer, H. H. Mabile, N. S. Eiss, and M. J. Furey. The wear and friction of polyvinyl chloride coatings under fretting conditions. Tribology Transaction, STLE, 31(1), 1988:98-104
    [118] C. Langlade, B.Vannes, M. Taillandier, M. Pierantoni, Fretting behavior of low-fricition coatings: contribution to industrial selection, Tribology International, 34,1994:49-56
    [119] Q. He, S.Guo and W. Liu. Analysis chemical valence of the elements of the
    
    oxidized surface layer of a thermally sprayed Ni-Cr coating under fretting. Surface Coatings and Technology. 106, 1998:91-93
    [120] C.Colombie, Y. Berthier, A. Floquet, L. Vincent aand M. Godet. Fretting: load-carrying capacity of wear debris. ASME Journal of Tribology. 106,1984:185-194
    [121] L.Vincent. Materials and fretting, in: R. B. Waterhouse, T. C. Lindley(Eds.), Fretting Fatigue, ESIS 18, Mechanical Engineering publications, London, 1994:323-327
    [122] Johnson K.L. Contact Mechanics. Cambridge University Press,1985
    [123] Matthews, K. Holmberg and S. Franklin. A methodology for coating selection, in: D. Dowson (Eds.), Thin Films in Tribology, Elsevier, Amsterdam, 1993:422-439
    [124] Charles J. Beall, Solid film lubricants, Metal Finishing, 98, 2000:513-514
    [125] 陈建敏,冶银平,党鸿辛.粘结固体润滑膜及其应用.摩擦学学报,14(2),1994:180-189
    [126] 徐缤士.表面工程与维修.北京:机械工业出版社,1996
    [127] 徐桂珍,刘家浚,周仲荣.表面改性技术在微动摩擦学领域的应用.摩擦学学报,18(2),1998:185-190
    [128] 朱有利,黄元林等.摩擦力—划痕法评定PVD多层薄膜结合强度研究.中国机械工程,13(11),2002:984-986
    [129] Valli J, Makela U. A review of adhesion test methods for thin TiN coating. J. Vac. Sci. technol, A3(6) ,1985:2411-2414
    [130] 石淼森编著.固体润滑技术.北京:中国石化出版社,1998
    [131] E.F. Finkin, A wear equation for bonded solid lubricant films: estimating film wear life. J. Lubr. Technol., 1970,92:274-280
    [132] Vern Hopkins, Film thickness effect on the wear life of a bonded solid lubricant film, Lubricant Engineering. January, 1969:15-24
    [133] Robert P. Pardee, The effect of humidity on low-load properties of a bonded solid film lubricant. ASLE Transaction, 15,1971:130-142
    [134] 王均安,于德洋,欧阳锦林.二硫化钼溅射膜在潮湿空气中贮存润滑性能的退化与失效机理.摩擦学学报,14(1),1994:25-32
    [135] 石淼森编著.固体润滑材料.北京:化学工业出版社,2000
    [136] 陈战,王家序,郑小光等.聚四氟乙烯工程材料的摩擦磨损性能研究.机械工程学报,38(4),2002:74-77
    [137] S.K. Biswas, Kalyani, Friction and wear of PTFE— a review. Wear, 158, 1992:193-211
    [138] 中西香尔,P.H.索罗曼 著,王绪明译.红外光谱分析100例,北京:科学出版社,1984
    [139] Yan F Y, Xue Q J. Yang S R. Debris formation process of PTFE and its composites. J Appl. Polym Sci., 61,1996:1223-1229
    [140] 江晓禹,金学松.考虑表面微观粗糙度的轮轨接触弹塑性分析.西南交通大学学报,36(6),2001:588-560

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700