用户名: 密码: 验证码:
比例边界有限元法在势流理论中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在计算流体力学研究领域,许多数值模拟方法已经非常成熟,如有限差分法,有限元法,边界元法,有限体积法等。近些年采用无网格计算的粒子法也得到了广泛应用。比例边界有限元法是一种新的数值方法,最早应用在固体力学领域,它是一种结合了有限元法和边界元法优点的数值模拟方法。在应用比例边界有限元法进行计算时,采用了一个新的坐标系,即辐射坐标和环向坐标。单元离散的时同边界元法一样只需要在计算区域的边界环向坐标方向上进行离散,大大减少了计算量。此外比例边界有限元法在其辐射坐标上保持了解析性,因此其模拟精度较高。该方法的另一个优点是可以自动满足无限远的边界条件。比例边界有限元法是一种只在计算区域的边界上离散单元的有限元法,在数值模拟领域有着广泛的应用空间。
     本文应用比例边界有限元法对势流理论的问题进行了数值模拟,包括有限域和无限域的势流运动问题、二维和三维的波浪与结构物作用问题、二维和三维容器内液体晃荡问题,均获得了比较好的数值模拟结果。
     本文首先以二维势流问题为例,以Laplace方程为基本控制方程,分别叙述了有限域情况和无限域情况下比例边界有限元方程的建立和求解过程,并讨论了在计算时比例中心位置选取的问题。对于波浪与二维结构物的相互作用问题,以波浪与水面单个固定方箱相互作用为例,在采用比例边界有限元法模拟的时候,划分了两个有限子域和两个无限子域,详细推导了两种不同类型子域中比例边界有限元方程的建立和求解过程,并将数值模拟结果与解析解和边界元法数值模拟结果进行了对比,证明了本文采用的比例边界有限元法的精确性和高效性。随后讨论了计算网格的选取和计算区域选取对计算精度的影响。通过改变有限域中比例中心的位置,比例边界有限元法可以用于模拟多种形式的结构物,如潜堤、薄板防波堤等。对不同尺寸的结构物进行了模拟,并将模拟结构进行对比,给出了其一般的变化规律。通过与解析解和其他数值方法模拟结果以及试验结果的对比,证明了本文方法的精确性和高效性。
     随后通过改变比例中心位置,改进了应用比例边界有限元在模拟二维容器内液体晃荡问题的算法。通常的做法是将比例中心设置在自由水面上,这样导致了求解过程变得很繁琐,将比例中心设置在容器底部或者计算域内时,求解过程大大简化,同时也提高了模拟的精度。对矩形容器内的液体晃荡问题,还计算出了其内部的速度势分布和速度分布,与解析解都十分吻合。而后推导了三维容器内液体晃荡问题的比例边界有限元方程及其求解过程,分别用线性单元和高阶单元进行数值模拟,通过与解析解的对比证明了高阶单元模拟的精度要更高。又对于圆柱形容器内的液体晃荡问题进行模拟,数值模拟结果与解析解吻合也较好。
     最后将比例边界有限元法与特征函数展开法耦合来模拟波浪与结构物的作用。对于二维问题,在有限子域中采用比例边界有限元法,在无限子域中采用特征函数展开的方法,并在其交界上匹配来求解,通过对比证明采用这样的方法可以提高计算的效率和精度。对于波浪与三维结构物的作用问题,本文以波浪与垂直圆柱相互作用为例进行模拟,并与解析解进行了对比,证明了将比例边界有限元法与特征函数展开法联合求解的可行性与精确性。
In the field of computational fluid dynamics,there are many numerical simulation methods,such as the finite difference method,the finite element method,the boundary element method,the finite volume method,etc.Recently,some new methods have been used in this field,such as particle method.The scaled boundary element finite element method is a novel method,which combines the advantages of the finite element and the boundary element methods,and this method was used in the structural mechanics firstly.A new coordinate system including the circumferential local co-ordinate and the radial co-ordinate has been established in the scaled boundary element finite element method.Only the boundary of the computational domain needs to be discretized in the circumferential direction as the same as the boundary element method.The solution in the radial direction is analytical,so the simulation precision of this method is high.This method can meet the infinity of the boundary condition automatically.The scaled boundary element finite element method is the finite element method which is discredited on the boundary of the computational domain,and it has a wide range of applications in the field of numerical simulation.
     In this paper the potential flow problems have been simulated using the scaled boundary element finite element method,including the potential flow in bounded domain and unbounded domain,the 2D or 3D wave action on structures and the water sloshing in 2D or 3D containers.
     Firstly the Laplace equation has been solved with the scaled boundary element finite element method for the potential flow problems.The derivative and solution process have been given for both the bounded domain and the unbounded domain problems,and the location of the scaled center has been discussed.For the problem wave action on 2D structures,the wave action on a fixed box on the free surface has been simulated using this method.The derivative and solution process have been given for both bound domain problems and unbound domain problems,and the simulation results have been compared with the analytic solution and the results from a boundary element method.The accuracy and the efficiency have been confirmed.Then the effect of the selection of grid and the distance of the computational domain has been discussed.This method can be used in solving the wave interaction with various forms of structure,such as submerged breakwaters,barrier breakwaters and so on,by changing the position of scaled center in bound domain.The wave action with structures for different sizes has been simulated,and the changing characters of the simulation results have been given.Through comparing with the analytic solution,the results from other numerical methods and experimental results,the accuracy and efficiency of this method have been testified.
     The water sloshing in 2D containers is studied by the scaled boundary finite element method.The usual method is to set the scaled center on the water surface for this problem, which results the calculation complicately.By changing the proportion of the scaled center, the solution process has been simplified,and the accuracy of simulation has been improved. Then the water sloshing in 2D Semi-circular and rectangular containers is studied,and the distribution of velocity potential and velocity has been given,which agree well with the analytical solutions.At last the 3D water sloshing problem is studied.The derivative and solution process of the scaled boundary finite element method have been derived in detail. The liner element and the high order element have been used in the simulation.Through comparison with the 2D analytical solution,it is found that the simulation with the high order element has a higher precision.The cylindrical container has also been computed,and the simulation results are agree with the analytical solution well.
     Finally,the scaled boundary finite element method has been coupled with the eigenfunction expansion method to simulate the wave reaction with structure problem.For the 2D problem,the scaled boundary finite element method is used in the bounded domain and the eigenfunction expansion method is used in the unbounded domain,and coupling on the junction.This method has higher precision and efficiency.For the 3D problem,the wave reaction with cylinder has been simulated,and the accuracy and efficiency of this method have been testified through the comparison with the analytic solutions.
引文
[1]李玉成,滕斌.波浪对海上建筑物的作用.北京:海洋出版社,2002.
    [2]张延芳.计算流体力学.大连:大连理工大学出版社,2007.
    [3]Wolf J P,Song Ch.Dynamic-stiffness matrix of unbounded soil by finite-element multi-cell cloning.Earthquake Engineering and Structural Dynamices,1994,23:233-250.
    [4]Wolf J P,Song Ch.Finite-element modeling of unbounded Media,John Wiley and Sons,Chichester,1996.
    [5]Song Ch,Wolf J P.The scaled boundary finite element method-alias consistent infinitesimal finite element cell method-for elastodynamics.Computer Methods in Applied Mechanics and Engineering,1997,147:329-355.
    [6]Song Ch,Wolf J P.The scaled boundary finite-element method:analytical solution in frequency domain.Computer Methods in Applied Mechanics and Engineering,1998,164:249-264.
    [7]Song Ch,Wolf J P.Body loads in scaled boundary finite-element method,Computer Methods in Applied Mechanics and Engineering,1999,180:117-135.
    [8]Wolf J P,Song Ch.The scaled boundary finite-element method-a primer:derivations,Computers and Structures,2000,78(1-3):191-210.
    [9]Wolf J P,Song Ch.The scaled boundary finite-element method-a primer:solution procedures,Computers and Structures,2000,78(1-3):211-225.
    [10]Wolf J P,Song Ch.The scaled boundary finite-element method-a fundamental solution-less boundary-element method,Computer Methods in Applied Mechanics and Engineering,2001,190(42):5551-5568.
    [11]Deeks A J.Prescribed side-face displacements in the scaled boundary finite-element method,Computers and Structures,2004,82(15-16):1153-1165.
    [12]Song Ch.A matrix function solution for the scaled boundary finite-element equation in statics,2004,193(23-26):2325-2356.
    [13]Song Ch,Wolf J P.The scaled boundary finite-element method-Alias consistent infinitesimal finite-element cell method-For unbounded media,Developments in Geotechnical Engineering,1998,83:71-94.
    [14]Wolf J P,Song Ch.Unit-impulse response of unbounded medium by scaled boundary finite-element method,1998,159(3-4):355-367.
    [15]Torbj(o|¨)rn Ekevid,Nils-Erik Wiberg.Wave propagation related to high-speed train:A scaled boundary FE-approach for unbounded domains,Computer Methods in Applied Mechanics and Engineering,2002,191(36):3947-3964.
    [16]Deeks A J,Wolf J P.Semi-analytical solution of Laplace equation in non equilibrating unbounded problems,Computers and Structures,2003,81(15):1525-1537.
    [17]Mahmoud Hassanen,Ashraf El-Hamalawi.Two-dimensional development of the dynamic coupled consolidation scaled boundary finite-element method for fully saturated soils,Soil Dynamics and Earthquake Engineering,2007,27(2):153-165.
    [18]Song Ch,Wolf J P.Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method,Computers and Structures,2002,80(2):183-197.
    [19]Chidgzey S R,Deeks A J.Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method,Engineering Fracture Mechanics,2005,72(13):2019-2036.
    [20]Yang Z J.Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method,Engineering Fracture Mechanics,2006,73(12):1711-1731.
    [21]Yang Z J,Deeks A J,Hao H.Transient dynamic fracture analysis using scaled boundary finite element method:a frequency-domain approach,Engineering Fracture Mechanics,2007,74(5):669-687.
    [22]Yang Z J,Deeks A J.Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method,Engineering Fracture Mechanics,2007,74(16):2547-2573.
    [23]Song Ch,Vrcelj Z.Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method,Engineering Fracture Mechanics,2008,75(8):1960-1980.
    [24]Wolf J P.The scaled boundary finite element method,John Wiley and Sons,Chichester,2003.
    [25]Doherty J P,Deeks A J.Adaptive coupling of the finite-element and scaled boundary finite-element methods for non-linear analysis of unbounded media,Computers and Geotechnics,2005,32(6):436-444.
    [26]Chidgzey S R,Trevelyan J,Deeks A J.Coupling of the boundary element method and the scaled boundary finite element method for computations in fracture mechanics,Computers and Structures,2008,86(11-12):1198-1203.
    [27]Deeks A J,Cheng L.Potential flow around obstacles using the scaled boundary finite-element method,International Journal for Numerical Methods in Fluids,2003,41(7):721-741.
    [28]Li B N,Cheng L,Deeks A J.Wave diffraction by vertical cylinder using the scaled boundary finite-element.Proceeding CDR0M of the sixth world congress on computational mechanics in conjunction with the second Asian-Pacific congress on computational mechanics,Beijing,China,2004.
    [29]Li B N,Cheng L,Becks A J et al.Substructuring in the scaled boundary finite-element analysis of wave diffraction.Research report no.C:1858,Schoo;of Civil and Research Engineering,The University of Western Australia,2004.
    [30]Li B N,Cheng L,Decks A J et al.A modified scaled boundary finite-element method for problems with parallel side-faces.Part Ⅰ.Theoretical developments,Applied Ocean Research,2005,27(4-5):216-223.
    [31]Li B N,Cheng L,Decks A J et al.A modified scaled boundary finite-element method for problems with parallel side-faces.Part Ⅱ.Application and evaluation,Applied Ocean Research,2005,27(4-5):224-234.
    [32]Li B N,Cheng L,Decks A Jet al.A semi-analytical solution method for two-dimensional Helmholtz equation,Applied Ocean Research,2006,28(3):193-207.
    [33]阎俊义,金峰,张楚汉.基于线性系统理论的FE-SBFE时域耦合方法,清华大学学报(自然科学版),2003。43(11):1554-1566.
    [34]阎俊义,金峰,张楚汉.FE-SBFE时域耦合波输入模型,燕山大学学报,2004,28(2):107-110.
    [35]任红梅,林皋.基于SBFEM的地下结构抗震分析,安徽建筑工业学院学报(自然科学版),2005,13(3):28-31.
    [36]杜建国,林皋.地基刚度和不均匀性对混凝土大坝地震响应的影响,岩土工程学报,2005,27(7):819-823.
    [37]杜建国,林皋,钟红.基于锥体理论的三维拱坝无限地基SBFEM模型,水电能源科学,2006,24(1):25-30.
    [38]杜建国,林皋,胡志强.非均质无限地基上高拱坝的动力响应分析,岩石力学与工程学报,2006,25(2):4104-4111.
    [39]杜建国,林皋.基于比例边界有限元法的结构-地基动力相互作用时域算法的改进,水利学报,2007,38(1):8-14.
    [40]杜建国,林皋.比例边界有限元子结构法研究,世界地震工程,2007,23(1)67-72.
    [41]林皋,任红梅.复杂不均匀地层中地下结构波动响应频域分析,大连理工大学学报,2008,48(1):105-111.
    [42]林皋,杜建国.基于SBFEM的坝-库水相互作用分析,大连理工大学学报,2005,45(5):723-729.
    [43]滕斌,何广华,李博宁等.应用比例边界有限元法求解狭缝对双箱水动力的影响,海洋工程,2006,24(2):29-37.
    [44]何广华,滕斌,李博宁等.应用比例边界有限元法研究波浪与带狭缝三箱作用的共振现象,水动力学研究与进展(A辑),2006,21(3):418-424..
    [45]滕斌,赵明,何广华.三维势流场的比例边界有限元求解方法,计算力学学报,2006,23(3):301-306.
    [46]Teng B,Zhao M,He G H.Scaled boundary finite element analysis of the water sloshing in 2D containers,International Journal for Numerical Methods in Fluids,2006,52(6):659-678.
    [47]杨贞军,Deeks A J.基于频域比例边界有限元法的双材料界面裂缝瞬态动应力强度因子的计算.中国科学(G辑:物理学力学天文学),2008,38(1):77-88.
    [48]刘钧玉,林皋,杜建国.基于SBFEM的多裂纹问题断裂分析,大连理工大学学报,2008,48(3):392-397.
    [49]魏翠玲,徐海宾,韩晓斌等.沥青路面模量反演方法研究,河北工程大学学报(自然科学版),2007,24(1):1-3.
    [50]袁军,孙海艳,杨明金等.SBFEM法在农业设施装备零部件设计分析中的应甩,农机化研究,2008,2:26-29.
    [51]孙亮,滕斌,张晓兔等.消除“不规则频率”的非连续高阶元方法,海洋工程,2004,22(4):51-59.
    [52]刘应中,缪国平.海洋工程水动力学基础.北京:海洋出版社,1991.
    [53]梅强中.水波动力学.北京:科学出版社,1984.
    [54]邱大洪.波浪理论及其工程应用.北京:高等教育出版社,1984.
    [55]邹志利.水波理论及其应用.北京:科学出版社,2005.
    [56]吴望一.流体力学.北京:北京大学出版社,2000.
    [57]刘顺隆,政群.计算流体力学.哈尔滨:哈尔滨工程大学出版社,2000.
    [58]陶建华.水波的数值模拟.天津:天津大学出版社,2005.
    [59]何广华.应用比例边界有限元法求解波浪对物体的绕射.(硕士学位论文).大连:大连理工大学,2006
    [60]Mei C C,Black J L.Scattering of surface waves by retangular obstacles in waters of finite depth,Journal of Fluid Mechanic,1969,38(3):499-511.
    [61]Jolas P.Passage de la houle sur un seuil,La Houille Blanche,1960,15:148-161.
    [62]Chen K H,Chen J T Chou C R et al.Dual boundary element analysis of oblique incident wave passing a thin submerged breakwater.Engineering Analysis with Boundary Element,2002,26(10):917-928.
    [63]Naftzger R A,Chakrabarti S K.Scattering of waves by two-dimensional circular obstacles in finite water depths.Journal of Ship Research,1979,23(1):32-42.
    [64]Ursell F.The effect of a fixed vertical barrier on surface waves in deep water.Proceedings of the cambridae Philosophical Society,1947,43(3):374-382.
    [65]Eaven D V,Morris C N.Complementary approximations to the solution of a problem in water waves.Journal of Institute Mathematics and its Applications,1972,10(7):1-9.
    [66]Liu P L F,Abbaspour M.Wave scattering by a rigid thin barrier.Journal of Waterway,Port,Coastal and Ocean Engineering,1982,108(2):479-491.
    [67]Losada I J,Losada M A,Roldan A J.Propagation of oblique incident waves past rigid vertical thin barriers.Applied Ocean Research,1992,14:191-199.
    [68]Kriebel D L,Bollmann C A.Wave transmission past vertical wave barriers.Proceedings of 25~(th) International Conference of Coastal Engineering,1996 2:2470-2483.
    [69]Ogilvie T F.Propagation of wave over an obstacle in water of finite depth.Berkley,CA:University of California/Institute of Engineering Research,1960.
    [70]Lee M M,Chwang A T.Scattering and radiation of water waves by permeable barriers.Physics of Fluids,2000,12(1):54-65.
    [71]Liu P L F,Wu Jiankang.Transmission of oblique waves through submerged apertures.Applied Ocean Research,1986,18(3):144-150.
    [72]Reddy M S,Neelamani S.Wave transmission and reflection characteristics of a partially immersed rigid vertical barrier.Ocean Engineering,1992,19(3):313-325.
    [73]Das P,Dolai D P,Mandal B N.Oblique wave diffraction by parallel thin vertical barriers with gaps.Journal of Waterway,Port,Coastal,and Ocean Engineering,1997,123(4):163-171.
    [74]Kanoria M.Water wave scattering by a submerged thick wall with a gap.Applied Ocean Research,1999,21(2):69-80.
    [75]Newman J N.Interaction of water waves with two closely spaced vertical obstacles.Journal of Fluid Mechnic,1974,66(1):97-106
    [76]Mandal B N,Gayen R.Water wave scattering by bottom undulations in the presence of a thin partially immersed barrier.Applied Ocean Research,2006(2),28:113-119.
    [77]Isaacson M,Baldwin J,Premasiri S et al.Wave interactions with double slotted barriers.Applied Ocean Research,1999,21(2):81-91.
    [78]康海贵,王科.潜型水平板水动力特性的数值研究.海洋通报,2002,21(1):1-8.
    [79]Mandal B N,Dolai D P.Oblique water wave diffraction by thin vertical barriers in water of uniform finite depth.Applied Ocean Research,1994,16(4):195-203.
    [80]Neelamani S,Rajendran R.Wave interaction with T-type breakwaters.Ocean Engineering,2002,29(2):151-175.
    [81]朱仁庆,吴有生,彭兴宁等.船舶液体晃荡动力学的研究方法及进展.华东船舶工业学院学报,1999,13(1):45-50.
    [82]Ibrahim R A.Liquid sloshing Dynamics theory and applications.New York,Cambridge University Press,2005.
    [83]Nakyama T,Washizu K.Nonlinear analysis of sloshing of liquid motion in a container subjected to forced pitching oscillation.International Jounral of Numerical Methods in Engineering,1980,15(8):1207-1220.
    [84]Faltinsen O M.A numerical nonlinear method of sloshing in tank with two dimensional flow.Jounral of Ship Research,1978,22(5):193-202.
    [85]朱仁庆,王志东,杨松林.完全非线性波的数值模拟,船舶力学,2002,6(5):14-18.
    [86]方智勇,朱仁庆,杨松林.基于Level-set法和通度概念液体晃荡特性研究,海洋工程,2007,25(2):91-97.
    [87]陈正云,朱仁庆,祁江涛.基于SPH法的二维液体大幅晃荡数值模拟,船海工程,2008,37(2):44-47.
    [88]Teng B,Gou Y,Ning D Z.A Higher Order BEMfor Wave to Current Action on Structures —Direct Computation of Free2Term Coefficient and CPV Integrals.China Ocean Engineering,2006,20(3):395-410.
    [89]宁德志,滕斌,勾莹.快速多极子展开技术在高阶边界元方法中的实现,计算力学学报,2005,22(6):700-704.
    [90]Black J L,Mei C C,Bray M C G.Radiation and scattering of water waves by rigid bodies.Journal of Fluid Mechanic,1971,46(1):151-164.
    [91]Miles J W.Surface-wave scattering matrix for a shelf.Journal of Fluid Mechanic,1967,28(1):755-767.
    [92]Teng B,Cheng L,Liu S X et al.Modified eigenfunction expansion methods for interaction of water waves with a semi-infinite elastic plate.Applied Ocean Research,2001,23(6):357-368.
    [93]袁生杰.波浪与结构物相互作用的解析解研究。(硕士学位论文).天津:天津大学,2003.
    [94]Zheng Y H,Liu P F,Shen Y M et al.On the radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas.Ocean Engineering,2007,34(3-4):436-450.
    [95]Zheng Y H,Shen Y M,Tang J.Radiation and diffraction of linear water waves by an infinitely long submerged rectangular structure parallel to a vertical wall.Ocean Engineering,2007,34(1):69-82.
    [96]Havelock J L.The pressure of water waves upon a fixed obstale.Proceedings of the Poyal Society of London,1940,Series A,No.963,175:409-421.
    [97]Garret C J R.Wave force on a circular dock.Journal of Fluid Mechanic,1971,46(1):129-139.
    [98]Kagemoto H,Yue D K P.Interaction among multiple three-dimensional bodies in water waves:an exact algebraic method.Journal of Fluid Mechanics,1986,166(2):189-209.
    [99]Linton C M,Kim C H,Lu X S.The interaction of waves with arrays of vertical circular cylinders.Journal of Fluid Mechanics,1990,215(5):549-569.
    [100]Malenica S,Molin B.Third-harmonic wave diffraction by a vertical cylinders.Journal of Fluid Mechanics,1997,302(2):203-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700