用户名: 密码: 验证码:
城市河道底泥营养盐释放及化学修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市河道污染是目前全球范围内普遍存在的突出环境问题之一,而底泥污染正是河道污染的一个重要后果,底泥污染与整治成为城市河道污染控制的难点之一,底泥中累积的大量有毒有害污染物通过一定的交换作用重新释放,是影响和制约上覆水质的主要二次污染源。因而如何选择行之有效的底泥修复技术作为城区河道治理的关键性问题,已成为建设城市生态系统、提高城市环境质量的重点和难点。
     分别在夏、冬两季对天津市周边河道采集的水样、底泥分析检测,结果表明,天津市一、二级河道,均受到了较严重的污染,特别是底泥,二级河道底泥比一级河道受到更重的污染;针对天津市河道底泥的污染情况,在自制模拟河道上铺设采集的实际河道底泥,进行了底泥污染物释放试验,结果表明河道上覆水在较短的停留时间内(5天),水质维持较好;溶解氧水平对底泥磷的释放影响较大,低溶解氧水平(0.8mg/L)是高溶解氧水平(7.2mg/L)释放量的3.7倍;扰动(风浪)显著影响底泥磷的释放。
     在调研和底泥污染物释放试验的基础上开展了修复试验,采用水封原理在自制反应器上进行了底泥修复试验,考察了Ca(NO3)2、CaO2、聚铝等不同投加方式、不同加药量修复底泥的试验;聚铝在短期内抑制磷的释放效果比较明显,17周后抑制能力逐步恶化;CaO2的缓慢释氧特性,也能较长时期抑制磷的释放,但是会引起水体pH值的上升,pH值达9~9.5;Ca(NO3)2能长期抑制磷的释放,在长达30周的试验周期内,上覆水TP含量均控制在0.03mg/L以下,经过20周后,Ca(NO3)2-N加药量为70g/m2的反应器内TN已降至5~6mg/L水平,同时底泥表层、底部TOC也得到7~8%的去除率,因此Ca(NO3)2-N加药量为70g/m2、注射深度为10cm的加药方案最佳。
     首次采用ORP、底泥TOC、磷形态分布、重金属形态分布、底泥有机物种类变化等多指标来探讨不同药剂、投加方式、加药量等修复方式的优劣,Ca(NO3)2由于NO3-良好的迁移扩散能力,使底泥内部氧化环境得到均匀改善,因此表层、底部底泥TOC均得到相同的去除率,特别是30周后底泥重金属形态分布与修复前封存底泥比较发现,各形态含量基本保持不变,也就是说重金属离子在修复前后迁移扩散潜能没有发生大的改变,这使原位的化学修复技术成为可能。
     采用回归方法建立了Ca(NO3)2修复模型,该模型可为实际河道底泥的修复提供参考。
The contaminated municipal river sediment is one of the extrusive environment problem engulfing the global. The contaminated sediment just resulted from polluted river. It is the one of difficult to deal with sediment for municipal river pollution. The great deal of deleterious contamination which accumulates in sediment may be discharged via some exchange. It may become the second contaminative source to affect and restrict water quality. It has become a key question and to select effective remediation sediment technology for building municipal ecosystem and improving environmental quality.
     The sample of water and sediment collected from surrounding Tianjin region was analyzed in summer ant winter respectively. It reveals that the primary and secondary rivers of Tianjin have been seriously polluted. The secondary river sediment was much more polluted than primary river sediment. On the basis of polluted degree of municipal river sediment, the experiment of pollution releasing was carried out by means of collecting actual riverway sediment which was shelved in the experimental apparatus simulating riverway. It reveals that the water quality will keep well when the hydraulic retention time of riverway is 5 days. It is found that dissolved oxygen and disturbance(wave) are more prominent factors affecting phosphorus release. The phosphorus release amount is 3.7 time When the dissolved oxygen is 0.8mg/L vs 7.2mg/L.
     The remediation experiment was carried out on the basis of investigation and pollution release experiment. The experimental apparatus were prepared according to water seal principle. The remediation sediment experiment of different adding means and amount about calcium nitrate、calcium peroxide、PAC(Polyaluminium Chloride) was studied. It is evidence to inhibit phosphorus release in short term utilizing PAC, but it will be gradual wane after 17 weeks. Calcium peroxide also can inhibit phosphorus release during long time due to its slow oxygen release characteristic, but the water pH will be at 9~9.5. Calcium nitrate can inhibit phosphorus release during long time. The total phosphorus concentration was below 0.03mg/L during 20 weeks. The total nitrogen has been 5~6mg/L in the apparatus which was added 70g/m2 of calcium nitrate—N after 30weeks. The removal efficiency of sediment TOC was 7~8%. So the programme of adding calcium nitrate 70g/m2 and injecting to 10cm depth is best.
     The merit and demerit of different chemical medicine、adding means and adding amount was investigated involving ORP、sediment TOC、phosphorus fractions、heavy metal fractions and organic fractions at the first. The oxygenating environment of internal sediment was well-proportioned improved due to the favourable diffusibility of nitrate redical, so the removal efficiency of the surface and bottom sediment was unanimous. The heavy metal fractions of sediment hold the line after 30 weeks. It makes in-situ chemical remediation technology become possibly.
     The water quality model of calcium nitrate remediation was established employing multivariate regression. It may provide reference for actual riverway sediment remediation.
引文
[1]唐迎洲,阮晓红.城区河道底泥修复技术探讨[J].北方环境, 2003, 28(2):39-41.
    [2]金相灿.沉积物污染化学[M].北京:中国环境科学出版社, 1992.
    [3] Nixdorf B, Deneke R. Why very shallow lakes are more successful opposing reduced nutrient loads[J]. Hydrobiologia, 1997, 56(5):269-284.
    [4]尹大强,谭秋荣.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学, 1994, 6(3):240-245.
    [5]曹志洪,李庆逵.黄土性土壤对磷的吸附与解吸[J].土壤学报, 1998, 25(3):218-226.
    [6]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社, 2003.
    [7]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护, 2002, 21(2):179-182.
    [8]周启星.污染土地就地修复技术研究进展及展望[J].污染防治技术, 1998, 11(4):207-211.
    [9]朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展, 1999, 7(2):65-71.
    [10] Rocters P B. Large scale treatment of contaminated sediment in the Netherlands, the feasibility study[J]. Water Science and Technology, 1998, 37(6/7): 291-298.
    [11] Stuben D. Application of lake marl at Lake Arendsee, NE Germany: first results of a geochemical monitoring during the resroration experiment[J]. Science Total Environment, 1998, 218(1):33-44.
    [12] Varjo E. A new gypsum-based technique to reduce methane and phophorus release from sediments of eutrophied lakes (Gypsum treatment to reduce internal loading)[J]. Water Research, 2003, 37(1):1-10.
    [13] Fioole A, Houwing E J. Heijdt Surfis: a tool for designing and optimizing dredging schemes[J]. Water Science and Technology, 1998, 37(6):103-107.
    [14] Sandy P, Gunnar D. European lakes as palaeohydrological and palaeoclimatic indicators[J]. Quaternary Science Reviews, 1993,12(4):233-248.
    [15] Jmaes S L, Warren S B, Carol E P, et al. Environmental stress and recovery: the geochemical record of human disturbance in New Bedford Harbor and Apponagansett Bay, Massachusetts (USA)[J]. Science Total Environment, 2003, 313(1/3):153-176.
    [16]柳惠青.湖泊污染内源治理中的环保疏浚[J].水运工程, 2000, 11:21-27.
    [17]濮培民,王国祥,胡春花,等.底泥疏浚能控制湖泊富营养化吗[J].湖泊科学, 2000, 12(3):269-279.
    [18] Murphy T P, Lawson A, Kumagai M, et a1. Review of emerging issues on sediment treatment[J]. Aquatic Ecosystem Health and Management, 1999, 2(4): 419-434.
    [19]孙傅,曾思育,陈吉宁.富营养化湖泊底泥污染控制技术评估[J].环境污染治理技术与设备, 2003, 14(8):61-64.
    [20]何文学,李茶青.底泥疏浚与水环境修复[J].中国环境管理干部学院学报, 2006, 16(1):70-73.
    [21] Murphy T P, Lawson A, Kmnagai M, et al. Review of emerging issues in sediment treatment[J]. Aquatic Ecosystem Health and Management, 1999, 2(4): 419-434.
    [22]敖静.污染底泥释放控制技术的研究进展[J].环境保护科学, 2004, 30(126):29-35.
    [23]邢奕.滇池福保湾污染底泥原位固化治理技术的研究与应用[D].北京:北京科技大学土木学院, 2008.
    [24] Sundby B, Gobeil C, Silverberg N. The phosphorus cycle in coastal marine sediments[J]. Limnol Oceanogr, 1992, 37(6):1129-1145.
    [25] Detenkeck N E, Brezonik P L. Phosphorus sorption by sediments from a soft-water seepage lakes Effect of pH and sediment composition[J]. Environmental Science and Technology, 1991, 25(3):403- 409
    [26] Palermo M R. Design considerations for in-situ capping of contaminated sediments[J]. Water Science and Technology, 1998, 37(6/7): 315-321.
    [27] Azcue J M, Zeman A J, Mudroch A. Assessment of sedimentand porewater after one year of subaqueous capping of contaminated sediments in Hamihon Harbour Canada[J]. Water Science and Technology, 1998, 37(6/7): 323-329.
    [28] Bona F, Cecconi G, Maffiotti A. An integrated approachto assess the benthic quality after sediment capping in Venice lagoon[J]. Aquatic Ecosystem Health and Management, 2000, 3:379-386.
    [29]薛传东,杨浩,刘星.天然矿物材料修复富营养化水体的实验研究[J].岩石矿物学杂志, 2003, 22(4):385-381.
    [30]唐艳,胡小贞,卢少勇.污染底泥原位覆盖技术综述[J].生态学杂志, 2007, 26(7):1125-1128.
    [31] Ingall E, Jahnke R. Evidence for enhanced phosphorus regeneration form marine sediments overlain by oxygen-depleted waters[J]. Geochimica et Cosmochimica Acta, 1994, 58(11):2571-2575.
    [32] Natarajan M. Dechlorination of heavy metals in lake sediment by anaerobic microbial granules[J]. Water Research, 1998, 32(10): 3013-3020.
    [33] Robin G. Low aqueous solubility electron donors for the reduction of nitroaromatics in anaerobic sediments[J]. Journal of Contaminated Hydrology, 1999, 36: 91-104.
    [34]宗栋良,张光明.硝酸钙在底泥修复中的作用机理及应用现状[J].中国农村水利水电, 2006, 4:52~54.
    [35] Ingall E, Jahnke R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen-depleted waters[J]. Geochimica et Cosmochimica Acta, 1994, 58(11):2571-2575.
    [36] Havlin J L. Technical basis for quantifying phosphorus transport to surface and groundwaters[J]. Journal of Animal Sceince, 2004, 82: 277-291.
    [37]梁丽丽.原位钝化技术处理滇池重污染底泥的药剂优选研究[D].北京:北京科技大学土木学院, 2007.
    [38]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社, 2002.
    [39] Smeltzer E. A successful alum/aluminate treatment of lake Morey Vmmont[J]. Lake and Reservoir Management, 1990, 6:9-19.
    [40] Cook G. D, Welch E B, Martin A B. Efectiveness of A1,Ca and Fe salts for control of internal loading in shallow and deep lakes[J]. Hydrobiologia, 1993, 253:323-333.
    [41] WeIch E B, Schrive G D. Alum effectiveness and longevity in shallow lakes[J]. Hydrobiologia, 1994, 275:423-443.
    [42] Murphy T P, Hall K G, Northcote T O. Lime treatment of a hard water lake to reduce eutrophication[J]. Lake and Reservoir Management, 1998, 4(2): 51-62.
    [43]顾宗濂.中国富营养化湖泊的生物修复[J].农村生态环境, 2002, 18(1):42-45.
    [44]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护, 2002, 21(2):179-182.
    [45]孙傅,增思育,陈吉宁.富营养化湖泊底泥污染控制技术评估[J].环境污染治理技术与设备, 2003, 4(8):61-64.
    [46]宁寻安,陈文松,李萍,等.污染底泥修复治理技术研究进展[J].环境科学与技术, 2006, 29(9):100-102.
    [47] Anderson J M. Influence of pH on release of phosphorus from lake sediment[J]. Arch Hydrobio, 1975, 76:411-419.
    [48] Carlton R G., Wetzel R G. Phosphorus flux from lake sediments:effect of epipelic algal oxygen production Limnol[J]. Limnol Oceangr, 1988, 33:562-570.
    [49] Koschel R, Bemmdorf J, Recknagel F. Calcite precipitation as natural control mechanism of eutrophication[J]. Arch Hydrobio, 1983, 98:380-408.
    [50] Wauer G., Gonsiorczyk T, Casper P. P-immobilisation and phosphatase activities in lake sediment following treatment with nitrate and iron[J]. Limnologica, 2005, 35:102-108.
    [51]林力,杨惠芳.生物整治技术进展[J].环境科学, 1997, 18(3):67-71.
    [52]陈坚.环境生物技术[M].北京:中国轻工业出版社, 1999.
    [53]孙铁珩.污染生态学[M].北京:科学出版社, 2001.
    [54]张从.污染土壤生物修复技术[M].北京:中国环境科学出版社, 2000.
    [55] Harrow M, Wickham H. The water quality of the River Kennet:initial observations on a lowland chalk stream impacted by sewage inputs and phosphorus remediation[J]. Science Total Environment, 2000, 5(251/252): 477-495.
    [56] Whiteley A S, Bailey M J. Bacterial community structure and physiological state within an industrial phenol bioremediation system[J]. Apply Environment Microbiology, 2000, 66(6):2400-2407.
    [57]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社, 2003.
    [58]李红霞,马伟芳,赵新华.植物修复受污染土壤中重金属的研究[J].安徽农业科学, 2005, 33(4):699-702.
    [59] Barcelona M J, White D C, Macnaughton S J. Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/ polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach[J]. Environment Microbiology, 1999, 1(3): 231-241
    [60] Mohn W W, Radziminski C Z, Fortin M C. On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles[J]. Apply Microbiological Biotechnology, 2001, 57(1/2):242-247.
    [61] Whiteley A S, Wiles S, Lilley A K. Ecological and physilogical analyses of Pseudomonad species with in a phenol remediation system[J]. Journal of Microbiology Methods, 2001, 44(1):79-88.
    [62]陈勇,郑向群,张从.降解菌对堆肥中多环芳烃降解作用的初步研究[J].农业环境保护, 2000, 19(1):53-55.
    [63]徐向阳,俞秀娥,郑平.受酚污染地表水生物修复技术的基础研究[J].浙江大学学报:农业与生命科学版, 1999, 25(4):409-413.
    [64]张旭.石油烃污染土层生物修复模拟实验研究[J].清华大学学报:自然科学版, 2000, 11(40):106-108.
    [65]郭楚玲.海洋微生物对多环芳烃的降解[J].台湾海峡, 2001, 1(20): 43-47.
    [66]宋玉芳,许华夏.两种植物条件下土壤中矿物油和多环芳烃(PAHs)的生物修复研究[J].应用生态学报, 2001, 12(1):108-113.
    [67]李丽.石油烃类化合物降解菌的研究概况[J].微生物学通报, 2001, 28(5):89-92.
    [68]丁克强,骆永明.生物修复石油污染土壤[J].土壤, 2001, 4:179-196.
    [69]杨国栋.污染土壤生物修复技术主要研究内容和方法[J].农业环境保护, 2001, 20(4):286-288.
    [70]张海荣.四种石油污染土壤生物修复技术研究[J].农业环境保护, 2001, 20(2):78-80.
    [71]孙铁珩.土壤污染形成机理与修复技术[M].北京:科学技术出版社, 2005.
    [72] Holdren C W, Jones J. Managing Lakes and Reservoirs [M]. New York: Acdemic Pr, 2001.
    [73]解清杰,马涛,王琳玲,等.六氯苯污染底泥的电修复的可行性分析[J].环境科学与技术, 2005, 28(5):40-41.
    [74]郑新,陈华林.底泥中多环芳烃的处理技术进展[J].环境污染与防治, 2002, 24(6):350-352.
    [75] Kraig J, Sambhunath G. Feasibility of anaerobic biodegrad egradation of PAHs in dredged river sediments[J]. Water Science and Techonology, 1998, 38(7): 41-48.
    [76] Aronstein B N. Effect of a non- ionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil[J]. Apply Microbiological Biotechnology, 1993, 39(3):386-390.
    [77]马伟芳,赵新华,王洪云.排污河道疏浚底泥园林利用的初步研究[J].中国给水排水, 2006, 22(23):74-77.
    [78] Karl J, Stuart E. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture[J]. Water Research, 2001, 35(1):291-199.
    [79] Anon. The state of the art of aquatic and semi-aquatic ecological restoration projects in the Netherlands[J]. Hydrobiologia, 2002, 478(15):219-233.
    [80] Anon. Restoration of aquatic macrophyte vegetation in acidified and eutrophicated shallow soft water wetlands in the Netherlands[J]. Hydrobiologia, 2002, 478(15):171-180.
    [81] Mclure P D, Sleep B E. Simulation of Bioventing for Soil and Groundwater Remediation[J]. Journal of Environment Engneering, 1996, 122(11): 1003-1012.
    [82]国家环境保护总局《水和废水监测分析方法编委会》.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [83] Ruban V, Brigault S, Demare D, et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservior,France[J]. Journal of Environmental Monitoring, 1999, 1(4): 403-407.
    [84] Ruban V, López-Sánchez, Pardo P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments:A synthesis of recent works, Fresenius[J]. Journal Analysis Chemistry, 2001, 370:224-228.
    [85]中国环境检测总站.土壤元素的近代分析方法[M].北京:中国环境科学出版社, 1992.
    [86]中华人民共和国国家质量监督检疫总局. GB/T13909-92海洋调查规范-海洋地质地球物理调查[S].北京:中国标准出版社, 2007.
    [87]韩东刚.改善天津二级河道水质研究[D].天津:天津大学环境科学与工程学院, 2006.
    [88]孙学明,文威,孙淑娟,等.天津海河氮磷营养盐和COD等污染现状研究[J].现在农业科技, 2008, (11):362-366.
    [89]丁辉,李鑫钢,孙贻超,等.海河干流有机污染问题浅议[J].海河水利, 2005, 2:18-20.
    [90]张枝焕,陶澍,沈伟然,等.天津地区主要河流表层沉积物中饱和烃的组成与分布特征[J].地球化学, 2003, 33(3):291-300.
    [91] Jiang B, Zheng H L, Huang G Q. Characterization and distribution of polycyclic aromatic hydrocarbon in sediments of Haihe River, Tianjin,China[J]. Journal of Environmental Sciences, 2006, 19(3): 306-311.
    [92]刘军,干爱华,丁辉,等.海河干流、大沽排污河沉积物中有机氯农药的残留状况[J].环境污染与防治, 2006, 28(3):169-173.
    [93]张淑娜,刘伟,王德龙.海河干流(市区段)表层沉积物重金属污染及变化趋势分析[J].干旱环境监测, 2008, 22(3):129-132.
    [94]干爱华,于斌,刘军,等.海河干流、大沽排污河沉积物中重金属污染及潜在生态风险评价[J].安全与环境学报, 2006, 6(5):39-41.
    [95]李一平,丁玲,王超,等.水动力条件下底泥中氮磷释放通量[J].湖泊科学, 2004, 16(4):318-324.
    [96]黄清辉.浅水湖泊内源磷释放及其生物有效性-以太湖、巢湖和龙感湖为例[D].北京:中国科学院研究生院, 2005.
    [97] Amirbahman A, Pearce A, Bouchard R, et al. Relationship between hypolimnetic phosphorus and iron release from eleven lakes in Maine USA[J]. Biogeochem, 2003, 65:369-386.
    [98] Bostr?m B, Anderson M, Fleischer S, et al. Exchange of phosphorus across the sediment–water interface[J]. Hydrobiologia, 1988, 170:229-244.
    [99] Nürnberg G. Prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments[J]. Journal of Fish Aquatic Science, 1988, 45:453-462.
    [100] Portielje R, Lijklema L. Estimation of sediment-water exchange of solutes in Lake Veluwe, the Netherlands[J]. Water Research, 1999, 33(1):279-285.
    [101]童昌华.水体富营养化发生原因分析及植物修复机理的研究[D].浙江:浙江大学环境与资源学院, 2004.
    [102] Qin B Q, Hu W P, Gao G, et al. The dynamics of resuspension and conceptual mode of nutrient releases from sediments in large shallow Lake Taihu, China[J]. Chinese Sciences Bulletin, 2004, 49:54-64.
    [103] Andersen J M. Effect of nitrate concentration in lake water on phosphate release from the sediment[J]. Water Research, 1982, 16:1119-1126.
    [104] Caraco N F, Cole J J, Likens G E. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems[J]. Nature, 1989, 341:316-318.
    [105] Jeppesen E, Jensen J P. Hypolimneticnitrate treatment to reduce internal phosphorus loading in a stratified lake[J]. Lake Reservoir Manage, 2000, 16(3):195-204.
    [106] Ripl W. Biochemical oxidation of polluted lake sediment with nitrate-a new restoration method[J]. Ambio, 1976, 5:132-135.
    [107] Ripl W, Feibicke M. Nitrogen metabolism in ecosystems[J]. Hydrobiologia, 1992, 77:5-27.
    [108] Feibicke M. Impact of Nitrate Addition on Phosphorus Availability in Sediment and Water column and on Plankton Biomass experimental fiels study in the shallow brackish scheleifjord[J]. Water,Air and Soil Pollution, 1997, 99:445-456.
    [109] Baldwin D. The phosphorus composition of a diverse series of Australian sediments[J]. Hydrobiologia, 1996, 335:1-11.
    [110] Bostr?m B, Pettersson K. Different patterns of phosphorus release from lake sediments in laboratory experiments[J]. Hydrobiologia, 1982, 92:415-29.
    [111] G?chter R, Meyer J. The role of microorganisms in mobilization and fixation of phosphorus in sediments[J]. Hydrobiologia, 1993, 253:103-121.
    [112] Psenner R, Pucsko R. Phosphorus fractionation:advantages and limits of the method for the study of sediment P origins and interactions[J]. Arch Hydrobiol Beih, 1988, 30:43-59.
    [113] While D M, Irvine R L, Woolard C R. The use of solid peroxides to stimulate growth of aerobic microbes in a saturated soil[J]. Journal of Hazardous Materials, 1998, 57:71-78.
    [114] Arienzo M. Degradation of 2,4,6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound[J]. Chemosphere, 2000, 40: 331-337.
    [115] Schmidtke T, White D, Woolard C. Oxygen release kinetics from solid phase oxygen in Arctic Alaska[J]. Journal of Hazardous Materials, 1999, 64:157–165.
    [116] Cassidy D P, Irvine R L. Use of calcium peroxide to provide O2 for contaminant biodegradation in a saturated soil[J]. Journal of Hazardous Materials, 1999, 69:25-39.
    [117] Lewandowski J, Schauser I, Hupfer M. Long term effects of phosphorus precipitations with alum in hypereutrophic Lake Susser See (Germany)[J]. Water Research, 2003, 37:3194-3204.
    [118] Kasper R, Jonas H, Henning S. Testing aluminum addition as a tool for lake restoration in shallow,eutrophic Lake S?nderby, Denmark[J]. Hydrobiologia, 2003, 506:781-787.
    [119] Cooke G D, Welch E B, Martin A B. Effectiveness of Al, Ca and Fe salts forcontrol of internal loading in shallow and deep lakes[J]. Hydrobiologia, 1993, 253:323-335.
    [120] McLaughlin J R, Ryden J C, Syers J K. Sorption of inorganic phosphate by iron and aluminum components[J]. Soil Science, 1981, 32:365-77.
    [121] Rydin E, Welch E B. Aluminum dose required to inactivate phosphate in lake sediments[J]. Water Research, 1998, 32:2969-7296.
    [122] Ulrich K U, Pothig R. Precipitation of aluminum and phosphate affected by acidification[J]. Acta Hydrochim Hydrobiol, 2000, 28:313-322.
    [123] Rydin E, Welch E B. Dosing alum to Wisconsin Lake sediments based on in vitro formation of aluminum bound phosphate[J]. Lake Reservoir Manage, 1999, 15:324-331.
    [124] Welch E B, Cooke G D. Effectiveness and longevity of phosphorus inactivation with alum[J]. Lake Reservoir Manage, 1999, 15:5-27.
    [125]周启星.污染土壤修复原理与方法[M].北京:科学出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700