用户名: 密码: 验证码:
超细颗粒物微观团聚机理数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤电厂现有除尘设备对超细颗粒物(PM2.5)的脱除效率较低,大量超细颗粒物排放到大气中造成环境严重污染。同时超细颗粒物富集多种重金属化合物,对人类的健康和生态环境产生的危害更大。由此所带来的严重环境污染问题已引起了国内外的广泛关注。采用化学团聚促使超细颗粒物团聚长大后加以除去的方法,开辟了一条超细颗粒物的排放控制新思路。本文对超细颗粒物化学团聚微观吸附机理进行了蒙特卡罗模拟,同时对团聚室内流场进行了fluent模拟以及气-固-液多相流蒙特卡罗模拟。
     首先分析蒙特卡罗算法求解团聚过程,可分为三个步骤:构造团聚虚拟颗粒和液滴过程、团聚颗粒或液滴的抽样过程、团聚颗粒粒径估计。分析团聚现象,可知团聚核函数包含吸附核、破碎核、蒸发核。此外,通过絮凝理论和团聚核函数分析,分别考虑分配和嵌入两种团聚机制,建立相应的团聚模型。
     然后选用水处理中最新的絮凝模型,采用蒙特卡罗算法,考虑两种团聚作用机制,分别讨论三个微米区颗粒的团聚絮凝过程,研究颗粒尺度分布、颗粒数目和平均粒径的变化,同时考虑破碎对团聚过程的影响。结果表明,对于0.1μm颗粒,团聚后期团聚几率较小;对于1μm颗粒,即使团聚液滴较少,团聚后期团聚几率也较大;对于2.5μm颗粒,团聚剂流量不能过大,否则将降低团聚效率;
     最后应用湍流流动模型,和气-液-固多相流模型分别对实验团聚室和电厂团聚室进行fluent模拟,研究团聚室内流场对团聚过程的影响。为了弥补fluent中无法加入团聚核函数,自行编辑了气-固-液多相流程序,研究了实际流动中的颗粒间团聚过程。结果表明,团聚室内喷头下方的回流区,可以使烟气和团聚液滴发生卷吸,增加颗粒和液滴的作用时间,增强团聚效果。
Existing equipments in coal-fired power plant have less efficient removal of sub-micron particle (PM2.5), and a large number of sub-micron particle emitted into the atmosphere causing environmental pollution. At the same time, sub-micron particle can enrich a variety of heavy metal compounds, which will do more harm to human health and ecological environment. This brought about serious environmental pollution problem, which has aroused wide attention both at home and abroad. Because of the usage of chemical agglomeration, sub-micron particles are agglomerated, when they grow up, they will be removed away. And this opened up a new ideas that sub-micron particle matter emission control. In this paper, the chemical agglomeration micro-adsorption mechanism of sub-micron particles is simulated by the Monte Carlo algorithm, at the same time the flow field of agglomeration room is simulated by fluent, as well as gas - solid - liquid multi-phase flow Monte Carlo program.
     First of all, the process of solving agglomeration in Monte Carlo algorithm is analysed, and It boils down to three main steps: structure of the virtual agglomeration particles and droplets, to achieve sampling from the virtual agglomeration particles and droplets, and the estimate of particle size. After agglomeration is analysed, agglomeration kernel function is kown to contain adsorption kernel, fragmentation kernel, evaporation kernel. Besides, by analysing flocculation theory and agglomeration kernel function, distribution and immersion agglomeration mechanism are considered simultaneously, then agglomeration model will be bulided up.
     And then, the latest flocculation model of water treatment is choosed, Monte Carlo algorithm is also selected, and synchronously the two agglomeration mechanisms are considered to discuss the agglomeration flocculation process of micron particles which are belong to the three micron-areas. The change of particle size distribution, number and average diameter are researched. At the same time, the fragmentation impact on agglomeration is considered. The results show that, the chance of agglomeration for 0.1μm particles in the late agglomeration is smaller; Even the number of droplets is smaller, the chance of agglomeration for 1μm particles in the late agglomeration is smaller; For 2.5μm particles, agglomeration agent can not be too much traffic, otherwise the efficiency of agglomeration will be reduced.
     Finally, the turbulent flow model and the gas-liquid-solid multiphase flow model are applied to simulate the experimental agglomeration room and the agglomeration room of the actual power plant by fluent software respectively, in order to study the flow impact on agglomeration. In addition, in order to make up the impossibility of the agglomeration nuclear function being not added to fluent, the gas-liquid-solid multiphase flow program is editted by myself, to which the agglomeration nuclear function is added to study the agglomeration process in the actual flow. The results show that, within the recirculation zone below the nozzle in the agglomeration room, flue gas and droplets entrainment occurs, increasing the action time among particles and droplets, and enhance the effect of agglomeration.
引文
[1]中国国家统计局.中国能源统计年鉴.北京:中国统计出版社,1991-2002
    [2] Neas M L. Fine particulate matter and cardiovascular disease. Fuel Processing Technology, 2000, 65–67
    [3]王玮.中国PM2.5污染状况和污染特征研究.环境科学研究,2000,13(1):1-5
    [4]郑楚光,徐明厚,张军营等.煤燃烧痕量元素排放与控制.湖北省科学技术出版社,2002
    [5]刘小伟,徐明厚,于敦喜等.燃煤过程中矿物质变化与颗粒物生成的研究.中国电机工程学报. 2005, 25(22): 104—108
    [6] Benson S A, Jones M L, Harb J N. Ash formation and Deposition, in Smoot, L. D. Eds, Fundamentals of Coal Combustion: for Clean and Efficient Use. New York: Elsevier, 1993:299~373
    [7]魏凤,张军营,郑楚光等.煤燃烧过程中细粒子形成机理的研究.环境污染治理技术与设备. 2004, 5(5): 5—10
    [8] Smith R D. The trace element chemistry of coal during combustion and emission from coal-fired plants. Prog. Energy Combust. Sci., 1980,6:53-119
    [9] Clarke L , Sloss L. Trace element-emission from coal combustion and gasification. IEA Coal Research, IEACR/011, London, July, 1992,111
    [10] Seames, Wayne S et al, Partitioning of arsenic, selenium, and cadmium during the combustion of Pittsburgh and Illinois #6 coals in a self-sustained combustor. Fuel Processing Technology , 2000,63(2):179-196
    [11] Seames, Wayne S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Processing Technology, 2003,81(2):109-125
    [12]原永涛,郭海燕,王天鹏.燃煤飞灰中微细颗粒控制技术介绍.粉煤灰学报, 2008, 5(6): 6~8
    [13]向晓东.现代除尘理论与技术.北京:冶金工业出版社, 2002
    [14] Friendlander S K著.常晓乐译.烟尘与治理[M].北京:科学出版社. 1983
    [15] M. Barale, G. Lefèvre, F. Carrette et al. Effect of the adsorption of lithium and borate species on the zeta potential of particles of cobalt ferrite, nickel ferrite, and magnetite. Journal of Colloid and Interface Science, 2008(328): 34–40
    [16] Takumi Saito, Luuk Koopal, Shinya Nagasaki et al. Electrostatic potentials of humic acid: Fluorescence quenching measurements and comparison with model calculations. Colloids and Surfaces A: Physicochem. Eng. 2008. in press
    [17] Weon GyuShina, ChaolongQia, JingWanga et al, DavidY.H.Puia. The effect of dielectric constant of materials on unipolar diffusion charging of nanoparticles. J Aerosol Sci, 2009, 40: 463-468
    [18] Ying Zhou, Graeme Jameson, George Franks. Influence of polymer charge on the compressive yield stress of silica aggregated with adsorbed cationic polymers. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008(331): 183–194
    [19] Wallis Harrison, Mark Berry. Development and Demonstration of ROPES: A New Pulse Energization Syestem for Electrostatic Precipitators. ICESPXI. 2003: 568-573
    [20] Tiwary R, Reethof G, Numerical Simulation of Acoustic Agglomeration and Experimental Verification. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1987(109):185-191
    [21] Groguss P. The Applications of Airborne and Liquid-borne Sounds to Industrial Technology Ultrasonic. Sciand Tech, 1964(12): 25-31
    [22] Hoffmann T L.Experimental and Numerical Analysis of Bimodal Acoustic Agglomeration.Transactions of the ASME.Journal of Vibration and Acoustics,1993(115):232-240
    [23] Rodriguez-maroto J J,Gomez-moreno F J,Martin-espigares M et al.Acoustic Agglomeration For Electrostatic Retention Of Fly-Ashes At Pilot Scale:Influence Of Intensity Of Sound Field At Different Conditions.J.Aerosol Sci,1996(127):621-622
    [24] Sanni Matero, Sami Poutiainen Jari Leskinen,. The feasibility of using acoustic emissions for monitoring of fluidized bed granulation. Chemometrics and Intelligent Laboratory Systems, 2009(97): 75–81
    [25] Lind T, Kauppinen E I S, Srinivasachar K et al. Submicron Agglomerate Particle Formation in Laboratory and Full-scale Pulverized Coal Combustion. J Aerosol Sci, 1996,127(Sup):361-362
    [26]许世森.细微尘粒的预团聚对旋风分离器高温除尘性能影响的实验研究.动力工程,1999,19(4):309-314
    [27] Feldman P and Balasic P. Devalopment of the fine particle agglomerator. EEC information, 1999
    [28] Mullendore M G. Demonstration of FPA technology at Drafelow unit 12 power plant, Orlando, Florida, 2000
    [29] Yongwang Li, Changsui Zhao, Xin Wu et al. Aggregation experiments on fine fly ash particles in uniform magnetic field. Powder Technology, 2007(174): 93–103
    [30] Preetanshu Pandey, Yongxin Song, Ferhan Kayihan et al. Simulation of particle movement in a pan coating device using discrete element modeling and its comparison with video-imaging experiments. Powder Technology,2006(161):79– 88
    [31]何叶青,周寿增,宋琪等.Nd-Fe-B粉末颗粒间的磁团聚现象及有限元模拟计算.功能材料,2002,33(2):154-157
    [32] Zhuang Y and Biswas P. Submicrometer Particle Formation and Control in a Bench-Scale Pulverized Coal Combustor. American Chemical Society,2001,3(27):510-516
    [33] Torben Sch?fer. Growth mechanisms in melt agglomeration in high shear mixers. Powder Technology, 2001(117): 68–82
    [34] M. D. Durham, Ph.D., C. Jean. Bustard et al. Success with Non-Traditional Flue Gas Conditioning for Hot- and Cold-Side ESPs. A&WMA Specialty Conference on ercury Emissions: Fate, Effects, and Control, 2001:1-9
    [35] M. D. Durham, R. D. Schlager, et al. Method for removing undesired particles from gas streams. United States Patent, 5833736, 1997:1-22
    [36] M. D. Durham, R. D. Schlager, T. G. Ebner et al. Liquid additives for particulate emissions control. United States Patent, 5855649, 1997:1-22
    [37] M. D. Durham, R. D. Schlager, T. G. Ebner et al. Method and apparatus for decreased undesired particle emissions in gas streams. United States Patent, 5855649, 1997:1-11
    [38] K. E. Baldrey, R. E.. Bisque, M. D. Durham et al. Composition apparatus and method for flue gas conditioning. United States Patent, 6267802, 1997:1-17
    [39]魏凤,张军营,郑楚光等. CFD在燃煤细粒子凝聚过程中的应用.工程热物理学报,2004,25(3):531-533
    [40]王春梅,张军营,周英彪等.煤燃烧飞灰微粒子形成和控制的实验研究.工程热物理学报,2004,25(6):1053-1056
    [41]赵海波,郑楚光,柳朝晖等.燃煤锅炉PM微尺度流体力学研究模型初探.华中科技大学学报,2003,31(11):72-75
    [42] R. Shcherbakov, D.L. Turcotte. Damage and self-similarity in fracture. Theoretical and Applied Fracture Mechanics. 2003(39–3): 245–258
    [43]徐晓军等,化学絮凝剂作用原理.北京:科学出版社, 2005, 104-108
    [44]卢寿慈,翁达.表面分选原理,北京:冶金工业出版社,1992
    [45] Thomas DN, Judd SJ, Fawcett N. Flocculation modelling: A review[J]. Wat Res, 1999, 33(7): 1579-1592.
    [46] Changdong S, Xianglin S. Modelling of acoustic agglomeration processes using the direct simulation Monte Carlo method. Aerosol Science,2006, 37: 16–36
    [47] Jinwook K, Timothy AK. Adjustable discretized population balance equations: Numerical simulationand parameter estimation for fractal aggregation and break-up. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 292: 173–188
    [48] Allen M D, Raabe,OG. Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Science and Technology, 1985, 4: 269–286.
    [49] Rogall R S,Moin P. Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 1984,16:99-137
    [50]张志伟,刘建军.各种湍流模型在fluent中的应用.河北水利学报,2008,10
    [51]《化学工程手册》编辑委员会,化学工程手册.北京:化学工业出版社, 1989, 166-170
    [52] Hetsroni, G.《,Handbook of Multiphase System》Hemisphere Publishing Corporation, 1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700