用户名: 密码: 验证码:
声波团聚及联合其他方法脱除燃煤飞灰细颗粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,悬浮细颗粒物特别是PM2.5已经成为我国各大城市主要的大气污染物,严重危害人体健康和大气环境,国际和国内越来越重视颗粒物控制问题,对PM2.5的排放浓度标准也越来越严格。传统的除尘技术虽然具有较高的总除尘效率,但是对细颗粒的除尘效率较低。利用团聚技术将细颗粒团聚粒径较大的颗粒,然后通过传统除尘设备就可以降低细颗粒的排放浓度,是一种有效的预处理方法。
     声波团聚利用高能量密度的声场,促进颗粒在短时间内相互碰撞团聚,显著降低颗粒数目浓度降低,被认为是最具发展前景的团聚预处理方法之一,但该技术尚未完全发展成熟。研究开发基本处于实验室阶段,对各操作参数的影响情况缺乏全面的了解,而且团聚效率不高,一般低于50%。在理论研究方面尚未完全建立完整的团聚体系,计算模型过于简化。鉴于此,本文展开了相关实验和理论的研究。
     在实验研究方面,设计和搭建了具有良好拓展性能的声波团聚实验台,燃煤飞灰和空气混合模拟燃煤电厂排放的含尘气溶胶,研究了以声波团聚为基础,同时联合其他方法的团聚效果。
     首先对比研究了高低频声源对燃煤飞灰细颗粒的团聚效果。实验结果表明,20kHz的高频声源团聚效率不高,约为10%,而且能团聚粒径小于0.25μm的颗粒,且团聚后的颗粒仍处于PM2.5的范围。低频声源的团聚效果明显优于高频声源,团聚效率可达70%。利用正交试验研究了多因素、多水平的声波团聚过程,根据极差分析结果表明,频率是影响团聚效率最重要的参数,停留时间的影响较小。根据研究结果获得最佳操作参数为频率1400Hz,声压级150dB,停留时间4s。
     其次研究了声波联合石灰种子颗粒的团聚过程。实验结果表明,添加种子颗粒能使团聚效率最大增幅达20%。分别采用单一因素分析和正交试验设计研究声波联合种子颗粒团聚过程中各因素对团聚效率的影响,研究结果表明,最佳操作参数为频率1400Hz,声压级150dB,停留时间4s,种子颗粒添加质量百分比30%,且粒径不宜过大。引入种子颗粒可拓宽声波团聚的“频率窗口”,在较低的声压级下发挥较好的团聚效果,降低了声波团聚的能耗。
     然后研究了声波联合喷雾的团聚过程。实验结果表明,喷雾使声波团聚效率最高增幅达70%。喷雾同样可以拓展声波团聚的“频率窗口”,降低声波团聚能耗。同时在雾化溶液中加入SDS和Triton X-100两类表面活性剂,改善了燃煤飞灰细颗粒的润湿性,使团聚效率进一步提高,最大提高可达20%。其中SDS对环境无毒害而且更经济,因此工业应用中选择SDS作为润湿剂更合适。
     在数值模拟方面,同时考虑了同向团聚、流体力学作用、声波尾流效应和布朗团聚四个机理,分别建立了相应的团聚模型。计算了各机理的声波团聚核函数,研究了包括频率、声压级、颗粒粒径、颗粒间距、温度等因素对团聚核函数和团聚过程的影响。对于低频声源团聚燃煤飞灰细颗粒,当其他条件均一致时,同向团聚核函数的值要远大于其他几种机理的团聚核函数值,即同向团聚是燃煤飞灰细颗粒声波团聚最主要的机理。
     模拟结果表明低频声波团聚中存在最佳频率约为1500Hz,与实验结果非常接近。声压级越高,气溶胶初始浓度越高,颗粒的几何平均偏差越大,停留时间越长,团聚效率越高。温度升高,声波团聚效率略有上升,说明高温环境中声波可有效地团聚细颗粒。
The suspended fine particulate matter, especially PM2.5has become a major kind of air pollution in most cities of China, which has aroused ex-tensive concern because of its seriously injury to human health and atmospheric environment. The emission concentration standard of particulate matter has become stricter and stricter. The traditional particle filtering devices have high collect efficiency of total particulate matter, but the collect efficiency of fine particulate matter is much low. The agglomeration is an effective pretreatment technology, which agglomerates the fine particles to larger ones. Then through the traditional particle filtering devices the particulate emission will be reduced.
     Acoustic agglomeration utilizes the high-intensity sound field to make the fine particles collide with each other and agglomerate to larger ones within a very short time, and the concentration of fine particles decreased significantly. It is considered as a promising pretreatment technology for fine particle agglomeration. However, the investigation on acoustic agglomeration is uncompleted. The experimental study is still in laboratory, the agglomeration efficiency is lower than50%, and the impacts of various operating parameters are deficient of comprehensive understanding and the acoustic agglomeration is inefficient. The theoretical research of acoustic agglomeration mechanism has not been completely established yet and the theoretical calculations were oversimplified. In view of these, an experimental and theoretical study is carried out in this paper.
     In the experimental study, the acoustic agglomeration experimental facility with good expanded performance is designed and built. Coal-fired fly ash is mixed with clean air to simulated dust emission of coal-fired power plant. The combined acoustic agglomerations with other means are investigated to improve the agglomeration efficiency.
     Comparative studies between high-frequency and low-frequency sound sources are carried out. The results show that the agglomeration efficiency of20kHz high-frequency sound source is just about10%. Only the particles within the size smaller than0.25μm adhere together to agglomerate and the agglomerated particles are smaller than2.5μm. The application of low-frequency sound source is proved as an advised pretreatment with much better agglomeration efficiency of70%. Orthogonal design is introduced to determine the optimum acoustic agglomeration condition. The results reveal that frequency is the dominant factor and the impact of residence time is much lower. The optimum parameters are with frequency1400Hz, SPL150dB, residence time4s.
     The combined acoustic agglomeration with the addition of the lime seed particles is studied to remove of the coal-fired fly ash particles as the first mode. The bimodal acoustic agglomeration can improve agglomeration efficiency significantly and the increase of agglomeration efficiency is up to20%. The difference and variance analyses of orthogonal design reveal that frequency is the dominant factor and the optimum conditions are with frequency1400Hz, SPL140dB, residence time4s, mass percentage of lime seed particle30%. The combination of seed particles can enlarge the frequency window and reduce the energy consumption of acoustic agglomeration.
     The combined acoustic agglomeration with spray is studied and the increase of agglomeration efficiency is up to70%. Two kinds of surfactant solution, SDS and Triton X-100are investigated to improve the wettability of coal-fired fly ash and the acoustic efficiency increases further20%. As SDS is non-toxicity in the environment, more economical and better wettability, it is more appropriate as a wetting solvent.
     The numerical simulation is investigated based on orthokinetic agglomeration, hydrodynamic interaction, acoustic wake effect and Brown agglomeration. The effect of parameters for kernel functions is investigated. For low.frequency acoustic agglomerate the coal-fired fly ash, the contrast of kernel functions reveals that orthokinetic agglomeration is the main mechanism of acoustic agglomeration of coal-fired fly ash.
     The simulation results show that the optimum frequency is about1500Hz. Larger SPL, higher concentration of initial aerosol and longer residence time are more favorable to the agglomeration efficiency. Higher temperature increases acoustic agglomeration efficiency slightly, which means acoustic agglomeration still work in high temperature environment to agglomerate the fine particulate matter.
引文
[1]陈赞,关于近20年中国能源消耗情况的研究[J],中国发展,2011,15-21.
    [2]任泽平,安风楼,中国能源消耗的国际比较与节能潜力分析[J],发展研究,2011,18-24.
    [3]于珍,李保明,施祖麟,中国工业能源消耗结构演变实证研究[J],中国人口·资源与环境,2010,7-11.
    [4]Xiaohui Bi, Yinchang Feng, Jianhui Wu, Yuqiu Wang, Tan Zhu, Source apportionment of PM10 in six cities of northern China[J], Atmospheric Environment,2007,41:903-912.
    [5]Xiaolin Li, Yuanxun Zhang, Mingguang Tan, Jiangfeng Liu, Liangman Bao, Guilin Zhang, Yan Li, Atsuo Iida, Atmospheric lead pollution in fine particulate matter in Shanghai, China[J], Journal of Environmental Sciences,2009,21:1118-1124.
    [6]Renjie Chen, Yi Li, Yanjun Ma, Guowei Pan, Guang Zeng, Xiaohui Xu, Bingneng Chen, Haidong Kan, Coarse particles and mortality in three Chinese cities:The China Air Pollution and Health Effects Study (CAPES) [J]. Science of The Total Environment, 2011,409:4934-4938.
    [7]Yanjun Ma, Renjie Chen, Guowei Pan, Xiaohui Xu, Weimin Song, Bingheng Chen, Haidong Kan. Fine particulate air pollution and daily mortality in Shenyang, China[J], Science of The Total Environment,2011,409:2473-2477.
    [8]吴兑,近十年中国灰霾天气研究综述[J],环境科学学报,2012,257-269.
    [9]Jong-Tae Lee, Ji-Young Son, Yong-Sung Cho, The adverse effects of fine particle air pollution on respiratory function in the elderly[J]. Science of The Total Environment. 2007,385:28-36.
    [10]Andreas D. Kappos, Peter Bruckmann, Thomas Eikmann, Norbert Englert, Uwe Heinrich, Peter Hoppe, Eckehard Koch, Georg H. M. Krause, Wolfgang G. Kreyling, Knut Rauchfuss, Peter Rombout, Verena Schulz-Klemp, Wolf R. Thiel, H. Erich Wichmann, Health effects of particles in ambient air[J], International Journal of Hygiene and Environmental Health,2004,207:399-407.
    [11]赵金镯,大气细颗粒物心血管毒性的机制研究[D],复旦大学,2008.
    [12]邵龙义,杨书申,时宗波,吕森林,城市大气可吸入颗粒物物理化学特性及生物活性研究[M].北京:气象出版社,2006.
    [13]Boris Z. Simkhovich, Michael T. Kleinman, Robert A. Kloner, Air Pollution and Cardiovascular Injury:Epidemiology, Toxicology, and Mechanisms[J], Journal of the American College of Cardiology,2008,52:719-726.
    [14]郝吉明,马广大,王书肖,大气污染控制工程[M].北京:高等教育出版社,2009.
    [15]Imed Harrabi, Virginie Rondeau, Jean-Francois Dartigues, Jean-Francois Tessier, Laurent Filleul, Effects of particulate air pollution on systolic blood pressure:A population-based approach[J], Environmental Research,2006,101:89-93.
    [16]Lewtas Joellen, Air pollution combustion emissions:Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects[J], Mutation Research/Reviews in Mutation Research,2007,636:95-133.
    [17]Lotte Risom, Peter M(?)ller, Steffen Loft, Oxidative stress-induced DNA damage by particulate air pollution[J], Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2005.592:119-137.
    [18]宋宇,唐孝炎.方晨.张远航.胡敏.曾立民,李成才,毛节泰,MICHAEL BERGIN,北京市能见度下降与颗粒物污染的关系[J],环境科学学报,2003,23(4):468-471.
    [19]陈仁杰,陈秉衡,阚海东,我国113个城市大气颗粒物污染的健康经济学评价[J],中国环境科学,2010,410-415.
    [20]白志鹏,董海燕,蔡斌彬,朱坦,姚学祥,灰霾与能见度研究进展[J],过程工程学报,2006,36-41.
    [21]W. G. Tucker, An overview of PM2.5 sources and control strategies[J], Fuel Processing Technology,2000,65:379-392.
    [22]National Ambient Air Quality Standards (NAAQS). Available: http://www.epa.gov/air/criteria.html.
    [23]Air Quality Standards. Available:http://ec.europa.eu/environment/air/quality/standards.htm
    [24]Environmental Quality Standards in Japan-Air Quality. Available: http://www.env.go.jp/en/air/aq/aq.html.
    [25]Moolgavkar Suresh H, A review and critique of the EPA's rationale for a fine particle standard[J], Regulatory Toxicology and Pharmacology,2005,42:123-144.
    [26]2012年京津冀、长三角等重点区域将开展PM2.5监测Available: http://news.china.com.cn/rollnews/2011-12/22/content_11878565.htm.
    [27]环境空气质量标准(GB3095-2012)[S],2012.
    [28]火电厂大气污染物排放标准(GB 13223-2011)[S],2011.
    [29]桑绮,乐园园,徐晗,火电厂大气污染物排放标准、现状及减排技术[J],浙江电力,2011,42-46.
    [30]杨建祥,新环保标准的实施对新建火电厂工程设计影响分析[J],电力勘测设计,2011.48-50.
    [31]郑进朗,燃煤电厂的可吸入颗粒物排放[J],电力环境保护,2009,25:53-55.
    [32]Q. Yao, S. Q. Li, H. W. Xu, J. K. Zhuo, Q. Song, Studies on formation and control of combustion particulate matter in China:A review[J], Energy,2009,34:1296-1309.
    [33]郑楚光,燃烧过程中有害物质的富集与超细颗粒物的形成[J],东莞理工学院学报,2006,13:20-24.
    [34]王玮,潘志,刘红杰,叶慧海,岳欣,王英,刘萍,交通来源颗粒物粒径谱分布及其与能见度关系[J],环境科学研究,2001,14(6):17-22.
    [35]曾凡刚,王玮,梁宝生,潘志,刘红杰,岳欣,机动车排放颗粒物中多环芳烃化合物的研究[J],环境科学研究,2001,14:32-35.
    [36]Michele Giugliano, Giovanni Lonati, Paola Butelli, Laura Romele, Ruggero Tardivo, Mario Grosso, Fine particulate (PM2.5-PM1) at urban sites with different traffic exposure[J], Atmospheric Environment,2005,39:2421-2431.
    [37]黄伟,骆仲泱,徐鸿,王涛,王鹏,方梦祥,高翔,岑可法,电厂排放烟气中的小颗粒分布及多环芳烃研究[J],能源工程,2003,2:29-32.
    [38]刘建忠,煤粉炉PM10/PM2.5排放规律的试验研究[J],中国电机工程学报,2003,23:145-149.
    [39]魏凤,张军营、王春梅,郑楚光,煤燃烧超细颗粒物团聚促进技术的研究进展[J],煤炭转化,2003,26:27-31.
    [40]徐杰英,刘晶,郑楚光,燃烧源超细颗粒物的研究进展[J],煤炭转化,2003,26:16-20.
    [41]刘建忠,张光学,周俊虎,范海燕,岑可法,燃煤细灰的形成及微观形态特征[J],化工学报,2006,57:2976-2980.
    [42]吕建燚,李定凯,吕子安,燃烧过程颗粒物的形成及我国燃烧源分析[J],环境污染治 理技术与设备,2006,7(5):43-47.
    [43]隋建才,燃煤过程中亚微米颗粒形成与排放的研究[D],华中科技大学,2006.
    [44]隋建才,徐明厚,丘纪华,燃煤过程中可吸入颗粒物污染与我国能源发展[J],科技导报,2004:42-44.
    [45]石晓亮,火电厂烟气排放对广州大气环境的影响[J],工业安全与环保,2007,33(2):33-34.
    [46]陈建华,王玮,刘红杰,岳欣,李红,汤大钢,北京市交通路口大气颗粒物污染特征研究(Ⅰ)——大气颗粒物污染特征及其影响因素[J],环境科学研究,2005,18(5):34-38.
    [47]阳红,孙德仕,西安市环境颗粒物污染与道路交通颗粒物排放机理[J],长安大学学报(自然科学版),2002,22(4):79-82.
    [48]王英,北京地区机动车排放颗粒物的污染特征研究[D],吉林大学,2002.
    [49]吴烨,城市交通环境颗粒物污染特征研究[D],清华大学.2002.
    [50]杨晓虹,天津市机动车尾气颗粒物污染特征研究[D],南开大学,2006.
    [51]魏凤,燃煤亚微米颗粒的形成和团聚机制的研究[D],华中科技大学, 2005.
    [52]蒋仲安,除尘器除尘效率与分级效率的探讨[J],煤矿安全,1993,38-40.
    [53]陈桂文,肖登明,电除尘器除尘效率影响因素及应对措施[J],电力环境保护,2007,7-9.
    [54]刘后金,各种除尘装置除尘效率及压力损失[J],铁道劳动卫生通讯,1984,34.
    [55]杨林军,燃烧源细颗粒物污染控制技术[M],化学工业出版社,2011.
    [56]赵爽,电凝并脱除可吸入颗粒物的实验研究[D],浙江大学,2006.
    [57]陈旺生,董伟,郭俊一,向晓东,微细颗粒物电凝并技术研究的新进展[J],工业安全与环保,2008,34(3):1-3.
    [58]李永旺,燃煤可吸入颗粒物在磁场中聚并脱除机理[J],化工学报,2007,58:987-993.
    [59]Changsui Zhao, Yongwang Li, Xin Wu, Duanfeng Lu, Song Han, Experimental investigation on aggregation of coal-fired PM10 by magnetic seeding[J], Chemical Engineering Journal,2007,133:301-309.
    [60]刘加勋,燃煤飞灰化学团聚实验研究及机理分析[D],哈尔滨工业大学,2008.
    [61]黄虹宾,田志鸿,时铭显,声波团聚微粒技术的进展与分析[J],石油大学学报(自然科学版),1995,126-131.
    [62]J. A. Gallego-Juarez, E. R. F. De Sarabia, G. Rodriguez-Corral, T. L. Hoffmann, J. C. Galvez-Moraleda, J. J. Rodriguez-Maroto, F. J. Gomez-Moreno, A. Bahillo-Ruiz, M. Martin-Espigares, M. Acha, Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants[J], Environmental Science & Technology,1999,33:3843-3849.
    [63]T. L. Hoffmann, Environmental implications of acoustic aerosol agglomeration[J], Ultrasonics,2000,38:353-357.
    [64]R. W. Wood, L. Loomis, The physical and biological effects of high-frequency sound waves of great intensity [J], Phil. Mag.,1927.4:417-436.
    [65]H. S. Patterson, W. Cawood, Phenomena in a sounding tube[J], Nature,1931,127: 667-667.
    [66]E. N. d C. Andrade, On the groupings and general behavior of solid particles under the influence of air vibrations in tubes[J], Phil. Trans. Roy. Soc. London.1932:414-445.
    [67]Hillary W. St Clair, Agglomeration of Smoke. Fog, or Dust Particles by Sonic Waves[J]. Industrial & Engineering Chemistry,1949,41:2434-2438.
    [68]M. Volk. W. J. Moroz. Sonic Agglomeration of Aerosol-particles[J], Water Air and Soil Pollution,1976,5:319-334.
    [69]D. T. Shaw, K. W. Tu, Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols[J], Journal of Aerosol Science,1979,10:317-328.
    [70]K. H. Chou. P. S. Lee, D. T. Shaw, Acoustically induced turbulence and shock waves under a traveling-wave conditiona[J], The Journal of the Acoustical Society of America,1980, 68:1780-1789.
    [71]M. T. Cheng, P. S. Lee, A. Berner, D. T. Shaw, Orthokinetic agglomeration in an intense acoustic field[J], Journal of Colloid and Interface Science.1983,91:176-187.
    [72]R. Tiwary, Acoustic agglomeration of micron and submicron fly-ash aerosols[D], Doctor D, The Pennsylvania State University,1985.
    [73]T. L. Hoffmann, W. Chen, G. H. Koopmann, A. W. Scaroni, L. Song, Experimental and Numerical-analysis of Bimodal Acoustic Agglomeration[J], Journal of Vibration and Acoustics-Transactions of the Asme,1993,115:232-240.
    [74]T. L. Hoffmann, G. H. Koopmann, Visualization of acoustic particle interaction and agglomeration:Theory and experiments [J], Journal of the Acoustical Society of America, 1996,99:2130-2141.
    [75]T. L. Hoffmann, An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect[J], Journal of Aerosol Science,1997,28:919-936.
    [76]E. Riera-Franco de Sarabia, J. A. Gal lego-Juarez, V. M. Acosta-Aparicio, J. J. Rodriguez-Maroto, J. L. Dorronsoro, D. Sanz-Rivera, F. J. Gomez-Moreno, M. Martin-Espigares, Acoustic agglomeration of submicron particles in diesel exhausts: First results of the influence of humidity at two acoustic frequencies[J], Journal of Aerosol Science,2000,31:827-828.
    [77]I. Gonzalez, T. L. Hoffmann, J. A. Gallego, Precise measurements of particle entrainment in a standing-wave acoustic field between 20 and 3500 Hz[J], Journal of Aerosol Science,2000,31:1461-1468.
    [78]徐鸿,骆件泱,王鹏,徐飞,岑可法,声波团聚对燃煤电厂可吸入颗粒物的排放控制[J],浙江大学学报(工学版),2007,1168-1171.
    [79]Liu Jianzhong, Zhang Guangxue. Zhou Junhu, Wang Jie, Zhao Weidong, Cen Ke-fa, Experimental study of acoustic agglomeration of coal-fired fly ash particles at low frequencies[J], Powder Technology,2009,20-25.
    [80]张光学,刘建忠,周俊虎,岑可法,燃煤飞灰低频下声波团聚的实验研究[J],化工学报,2009,1001-1006.
    [81]张光学,刘建忠,周俊虎,岑可法,小颗粒声波团聚中碰撞效率的计算及影响分析[J],化工学报,2009,42-47.
    [82]Jianzhong Liu, Jie Wang, Guangxue Zhang, Junhu Zhou, Kefa Cen, Frequency comparative study of coal-fired fly ash acoustic agglomeration[J], Journal of Environmental Sciences.2011,23:1845-1851.
    [83]Jie Wang, Jianzhong Liu, Guangxue Zhang, Junhu Zhou, Kefa Cen, Orthogonal design process optimization and single factor analysis for bimodal acoustic agglomeration[J], Powder Technology,2011,210:315-322.
    [84]王洁,张光学,刘建忠,周俊虎,岑可法,种子颗粒对声波团聚效率的影响[J],化工学报,2011,62:355-361.
    [85]姚刚,沈湘林,基于分形的超细颗粒声波团聚数值模拟[J],东南大学学报(自然科学 版),2005(1),273-227.
    [86]姚刚,盛昌栋,杨林军,沈湘林,燃烧超细颗粒声波团聚的谱分布数值模拟[J],燃烧科学与技术,2005(1),273-227.
    [87]袁竹林,声波对悬浮PM2.5作用的数值研究[J],中国电机工程学报.2005,25:121-125.
    [88]姚刚,燃煤可吸入颗粒物声波团聚——微观动力学特性可视化和宏观效果实验研究及模拟[D],2006.
    [89]赵兵,燃煤可吸入颗粒物在驻波声场中动力学特性的研究[J],中国电机工程学报,2007.27:13-17.
    [90]赵兵,利用声波团聚增强燃烧源可吸入颗粒物脱除的研究[D],东南大学,2008.
    [91]陈俊,燃煤超细颗粒物喷雾团聚的模型[J],煤炭学报,2005,30:623-636.
    [92]魏凤,燃煤超细颗粒团聚模拟研究[J],工程热物理学报,2005,26:515-518.
    [93]R. Tiwary, G. Reethof. NUMERICAL-SIMULATION OF ACOUSTIC AGGLOMERATION AND EXPERIMENTAL-VERIFICATION[J], Journal of Vibration Acoustics Stress and Reliability in Design-Transactions of the Asme,1987, 109:185-191.
    [94]L. Song, G. H. Koopmann, T. L. Hoffmann, An improved theoretical model of acoustic agglomeration[J], Journal of Vibration and Acoustics-Transactions of the Asme,1994, 116:208-214.
    [95]I. Gonzalez, J. A. Gallego-Juarez, E. Riera, The influence of entrainment on acoustically induced interactions between aerosol particles-an experimental study [J], Journal of Aerosol Science.2003.34:1611-1631.
    [96]R. J. Townsend, M. Hill, N. R. Harris, N. M. White. Modelling of particle paths passing through an ultrasonic standing wave[J], Ultrasonics,2004,42:319-324.
    [97]L. Hoffmann Thomas, H. Koopmann Gary, Visualization of acoustic particle interaction and agglomeration:Theory evaluation[J], The Journal of the Acoustical Society of America,1997,101:3421-3429.
    [98]Gerhard Reethof, Acoustic Agglomeration of Power Plant Fly Ash for Environmental and Hot Gas Cleanup, in Fossil Fuels Utilization, ed Washington, DC:American Chemical Society,1986:234-252.
    [99]LIU Shuyan, HUANG Hongbin, YAN Weige, Experimental research on enhanced cyclone separation of acoustic agglomerated particles[J], Journal of Beijing Institute of Technology,2000,9:61-65.
    [100]E. Riera-Franco de Sarabia, L. Elvira-Segura, I. Gonzalez-Gomeza, J. J. Rodriguez-Marotob, R. Munoz-Bueno, J. L. Dorronsoro-Areal, Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts[J], Ultrasonics,2003,41:277-281.
    [101]Evgenii Pavlovich. Mednikov, Acoustic coagulation and precipitation of aerosols[M]. New York:Concultants Bureau,1965.
    [102]张光学,燃煤飞灰气溶胶声波团聚的理论和实验研究[D],浙江大学,2010.
    [103]R. Tiwary, G. Reethof, Hydrodynamic interaction of spherical aerosol particles in a high intensity acoustic field[J], Journal of Sound and Vibration,1986,108:33-49.
    [104]R. Tiwary, G. Reethof, O. H. McDaniel, Acoustically Generated Turbulence and Its Effect on Acoustic Agglomeration[J], Journal of the Acoustical Society of America,1984,76: 841-849.
    [105]Claire Malherbe, Denis Bouiaud, Alain Boutier, Jean Lefevre, Turbulence Induced by an Acoustic Field Application to Acoustic Agglomeration[J]. Aerosol Science and Technology,1988,9:93-103.
    [106]Shaozeng Dong, Bart Lipkens, T. M. Cameron, The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols[J], Journal of Aerosol Science,2006,37:540-553.
    [107]Hoffmann Thomas L, An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect[J], Journal of Aerosol Science,1997,28:919-936.
    [108]S. D. Danilov, M. A. Mironov, Radiation pressure force acting on a small particle in a sound field[J], Soviet physics. Acoustics,1984,30:280-283.
    [109]K. H. Chou, P. S. Lee, J. Wegrzyn, D. T. Shaw, Aerosol deposition in acoustically induced turbulent flow[J], Atmospheric Environment (1967),1982,16:1513-1522.
    [110]Frederick Fahnoe, Arthur E. Lindroos, Robert J. Abelson, Aerosol Build-up Techniques [J], Industrial & Engineering Chemistry,1951,43:1336-1346.
    [111]Narayanan Rajendran, Acoustic agglomeration of aerosols[D], Ph.D, University Microfilms International,1977.
    [112]Ph Caperan, J. Somers, K. Richter, S. Fourcaudot, Acoustic agglomeration of a glycol fog aerosol:Influence of particle concentration and intensity of the sound field at two frequencies[J], Journal of Aerosol Science,1995,26:595-612.
    [113]KOMAROV Sergey V, YAMAMOTO Takashi, UDA Tetsuya, HIRASAWA Masahiro, Acoustically controlled behavior of dust particles in high temperature gas atmosphere[M], vol.44. Tokyo, JAPON:Iron and Steel Institute of Japan,2004.
    [114]姚刚,赵兵,沈湘林,燃煤可吸入颗粒物声波团聚效果的实验研究和数值分析[J],热能动力工程,2006(2),175-178.
    [115]G. Funcke, A. Frohn, Investigation of the influence of different parameters on the acoustic agglomeration process using a numerical simulation[J], Journal of Aerosol Science, 1995,26, Supplement 1:S147-S148.
    [116]J. Magill, Ph Caperan, J. Somers. K. Richter. G. Rodriguez-Corral. E. Riera-Franco de Sarabia, J. A. Gallego-Juarez, Frequency dependence of the acoustic agglomeration rate of a glycolfog[J], Journal of Aerosol Science,1991,22, Supplement 1:S27-S30.
    [117]N. Rajendran. J. Wegrzyn, M. T. Cheng, D. T. Shaw. Acoustic precipitation of aerosol under standing-wave condition[J]. Journal of Aerosol Science,1979,10:329-338.
    [118]K. Shuster, M. Fichman, A. Goldshtein, C. Gutfinger, Agglomeration of submicrometer particles in weak periodic shock waves[J], Physics of Fluids,2002,14:1802-1805.
    [119]V. Komarov Sergey, Acoustically Controlled Behavior of Dust Particles in High Temperature Gas Atmosphere[J],ISIJ International,2004(44):275-284.
    [120]梁庚煌,运输机械手册[M]:化学工业出版社,1983.
    [121]李晓明,刘建忠,张光学,周俊虎,岑可法,声波团聚细粉试验中螺旋微量给料机的设计研究[J],热力发电,2008,85-88.
    [122]张绍栋,声级计的原理和应用[M].北京:计量出版社,1986.
    [123]曾庆川,刘小兵,紊流中颗粒沉降速度的测量方法[J],四川工业学院学报,2000,1-4.
    [124]J. Pagels. A. Gudmundsson, E. Gustavsson, L. Asking, M. Bohgard, Evaluation of Aerodynamic Particle Sizer and Electrical Low-Pressure Impactor for Unimodal and Bimodal Mass-Weighted Size Distributions[J], Aerosol Science and Technology,2005, 39:871-887.
    [125]龙正伟,姚强,黄斌,宋蔷,用ELPI测量颗粒物的分级荷电量[J],工程热物理学报,2006,354-356.
    [126]沈德和,李云璧,正.交试验设计及其应用第一讲:正交试验的基本概念[J],机械制造,1984,44-46.
    [127]盛永莉,正交试验设计及其应用[J],济南大学学报(综合版),1997,69-73.
    [128]沈德和,李云壁.正交试验设计及其应用第二讲:正交表的使用[J],机械制造,1984,43-46.
    [129]沈德和,李云壁,正交试验设计及其应用第三讲正交试验结果的分析[J],机械制造,1984,43-46.
    [130]赵兵,陈厚涛,徐进,沈湘林,声波与种子颗粒联合作用下细颗粒脱除的实验研究[J],动力工程,2007,27:785-788.
    [131]J. Magili, S. Pickering, S. Fourcaudot,J. A. Gallego-Juarez, E. Riera-Franco De Sarabia, G. Rodriguez-Corral, Ultrasonic aerosol agglomeration at low mass loadings[J], Journal of Aerosol Science,1988,19:1377-1380.
    [132]Harold W. Denser, Ernest Neumann, Industrial Sonic Agglomeration and Collection Systems[J], Industrial & Engineering Chemistry,1949,41:2439-2442.
    [133]李德文,利用声凝聚机理提高喷雾除尘效果的研究[J],中国安全科学学报,1993,3:32-37.
    [134]Alexandre Goldszal, Jacques Bousquet, Wet agglomeration of powders:from physics toward process optimization[J], Powder Technology,2001,117:221-231.
    [135]陈厚涛,赵兵,章汝心,曹金祥,沈湘林,声波与雾化水滴联合作用增强燃煤PM2.5脱除的实验研究[J],中国电机工程学报,2009,35-40.
    [136]张小艳,郭强,李全,微细水雾除尘技术的实验研究[J],环境污染与防治,2003,234-236.
    [137]时鹏辉,李多松,杨玲霞,荷电水雾除尘器的机理研究[J],中国环保产业,2006,17-19.
    [138]S. Malamataris, S. Kiortsis, Wettability parameters and deformational behaviour of powder—liquid mixes in the funicular agglomeration phase[J], International Journal of Pharmaceutics,1997,154:9-17.
    [139]D. Rossetti, S. J. R. Simons, Amicroscale investigation of liquid bridges in the spherical agglomeration process[J], Powder Technology,2003,130:49-55.
    [140]Johnson Alan E, Analysis of the Young equation and use of the Kelvin equation in calculating the Gibbs excess[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,202:33-39.
    [141]李海龙,张军营.赵永椿,丁峰,郑楚光,火力发电厂燃煤飞灰润湿性能[J],化工学报,2009,744-749.
    [142]胡福增,材料表面与界面[M]:华东理工大学出版社,2008.
    [143]张铸勇,表面活性剂的界面及胶体性质[J].精细石油化工,1990.3-11.
    [144]Tuba Firincioglu, Martin J. Blunt, Dengen Zhou, Three-phase flow and wetability effects in triangular capillaries[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects.1999,155:259-276.
    [145]朱如曾,宏观接触角与亚宏观接触角——兼评一种接触角的分子理论rJ],大学物理,1995.1-4.
    [146]Stephen B. Johnson, Calum J. Drummond, Peter J. Scales, Satoshi Nishimura, Electrical double layer properties of hexadecyltrimethylammoniurn chloride surfaces in aqueous solution[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995. 103:195-206.
    [147]Okubo Tsuneo, Importance of electrical double layers in structural and diffusional properties of deionized colloidal suspensions[J], Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,109:77-88.
    []48]郑琰晶,陈琳,陈燕平,黄韧,十二烷基硫酸钠对水生生物的急性毒性影响[J],农业环境科学学报,2006,496-498.
    [149]S. Temkin, GASDYNAMIC AGGLOMERATION OF AEROSOLS.1. ACOUSTIC-WAVES[J], Physics of Fluids,1994,6:2294-2303.
    [150]DB Dianov, AA Podolskii, Calculation of the hydrodynamic interaction of aerosol particles in a sound field under Oseen flow conditions[J], Soviet physics-Acoustics, 1968,13:314-319.
    [151]顾震潮,气溶胶动力学[M].北京:科学出版社,1960.
    [152]卢正永,气溶胶科学引论[M].北京:原子能出版社,2000.
    [153]S. K. Friedlander, Reviewer William H. Marlow, Smoke, Dust and Haze:Fundamentals of Aerosol Behavior[M]:American Institute of Physics,1977.
    [154]张光学,刘建忠,王洁,周俊虎,岑可法,基于改进区域算法的声波团聚数值模拟[J],燃烧科学与技术,2012,18:44-49.
    [155]马大猷,声学手册[M].北京:科学出版社,1983.
    [156]D. B. Clark, J. M. Morriss, Fluid mechanics/James A. Liggett[M]. New York: McGRAW-HILL International Editions,1994.
    [157]Eckhard Otto, Heinz Fissan, Brownian coagulation of submicron particles[J], Advanced Powder Technology,1999,10:1-20.
    [158]S. H. Park, K. W. Lee, E. Otto, H. Fissan, The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range:Part Ⅰ—nalytical solution using the harmonic mean coagulation kernel[J], Journal of Aerosol Science, 1999.30:3-16.
    [159]P.. Gonzalez-Tello, F. Camacho, J. M. Vicaria. P. A. Gonzalez, A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis[J], Powder Technology,2008,186:278-281.
    [160]Lee K.W, Change of particle size distribution during Brownian coagulation[J], Journal of Colloid and Interface Science,1983,92:315-325.
    [161]王鹏,骆仲泱,徐飞,侯全辉,高翔,岑可法,复合式静电除尘器脱除电厂排放pm2.5研究[J],环境科学学报,2007,27:1789-1792.
    [162]姚群,陈隆枢,陈志炜,韦鸣瑞,李华,燃煤电厂锅炉烟气pm10排放控制技术与应用[J],电力环境保护,2007,23:52-54.
    [163]David Katoshevski, Michal Ruzal, Tal Shakked, Eran Sher, Particle grouping, a new method for reducing emission of submicron particles from diesel engines[J], Fuel,2010, 89:2411-2416.
    [164]D. S. Kim, S. B. Hong, Y. J. Kim, K. W. Lee, Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence[J], Journal of Aerosol Science,2006, 37:1781-1787.
    [165]A. Yu Snegirev, G. M. Makhviladze, J. P. Roberts, The effect of particle coagulation and fractal structure on the optical properties and detection of smoke[J], Fire Safety Journal, 2001,36:73-95.
    [166]David P. Brown, Esko I. Kauppinen, Jorma K. Jokiniemi, Stanley G. Rubin, Pratim Biswas, A method of moments based CFD model for polydisperse aerosol flows with strong interphase mass and heat transfer[J], Computers & amp; Fluids,2006,35: 762-780.
    [167]马双忱,王梦璇,蔡晓彤,费祥,王婷芳,FLUENT在燃煤电厂大气污染控制领域的应用研究进展[J],电力科技与环保.2011,1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700