用户名: 密码: 验证码:
关于N80Q钢回火方程的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在N80Q钢的调质热处理方面开展了工作,旨在构建起关于N80Q钢的回火方程。
     本文实验采用了包钢生产的N80Q钢,主要成分含量分别为:0.32%C,0.36%Si,1.43%Mn。制定了对N80Q钢的调质热处理工艺,对处理后的样品进行了硬度与金相分析。利用获得的硬度数据通过回归分析得到数种回火方程:
     1.得到基于Arrhenius公式的P参数回火方程,定义了P’参数,完成了基于Arrhenius公式和Larson-Miller关系式的P’参数回火方程的推导;2.得到基于Arrhenius公式和回火激活能的λ参数回火方程,定义了λ'参数,完成了基于Arrhenius公式和Orr-Sherby-Dorn模型的λ'参数回火方程的推导;3.得到基于泰勒函数展开的回火方程。
     利用P参数和P’参数回火方程绘制了等温图和等硬度图,说明了如何将回火方程转化为二维数据图以方便查询,并指出了数据图在预测力学性能和确定回火工艺中的利弊。
     得到了各类回火方程的计算值与实测值之间的误差,主要为最大偏差量δmax、最小偏差量δmin以及均方根RMS,并进行了比较。讨论了各类回火方程的物理意义。结合精确度和物理意义对回火方程的实用价值作出了评价:高精度的P’参数和λ'参数回火方程适合于确定工艺参数组合,P参数和λ参数回火方程适合于预测力学性能,泰勒函数回火方程在不确定使用何种模型时能够从纯粹的数学角度构建起方程。
     通过只利用特定工艺参数(t=lh)下的力学性能数据构建起的回火方程在δmax项上比原始方程最多高1%,在RMS项上与原始方程基本持平,实验成本仅为原始方案的20%-30%。
Quenching and tempering heat treatment about N80Q steel was carried on in this article, the tempering equation of N80Q steel was established.
     In this article, the N80Q steel produced by Baotou steel group was used in the experiment, which mainly has 0.37%C,0.36%Si and 1.43%Mn. The heat treatment process on N80Q steel was developed. Hardness and microstructure of the sample heat-treated was measured and analyzed. Several tempering equations were established with the hardness data in the way of regression.
     1. P parameter tempering equation based on Arrhenius formula was established. P' parameter was defined based on Arrhenius formula and Larson-Miller relationship, then P' parameter tempering equation was established.2.λparameter tempering equation based on Arrhenius formula was established.λ'parameter was defined based on Arrhenius formula and Orr-Sherby-Dorn model, and thenλ'parameter tempering equation was established.3. Taylor function tempering equation was established.
     Isothermal map and hardness line chart was draw with P and P'parameter, the way transforming tempering equation to data chart was explained. Advantage and disadvantage about mechanical properties prediction and determining heat-treat process with data chart was pointed out.
     Error between data measured and calculated with different tempering equations was count,δmax,δmin and RMS were compared. Practicality of tempering equations was evaluated with accuracy and physical meaning:the process can be simply determined by high-precision P andλparameter equation, mechanical properties can be simply predicted by P'andλ' parameter equation, the equation can be established with Taylor function and mathematical meaning.
     δmax in the new equation, established with special process(t=lh), was 1% higher than the original one. RMS in the new one was almost equal with the original one. The experimental cost of the simple way was reduced to 20%-30%.
引文
[1]崔忠析.金属学与热处理[M].北京:机械工业出版社,1989
    [2]诺维柯夫.金属热处理理论[M].北京:机械工业出版社,1987
    [3]API Spect 5CT,套管和油管规范(第8版)[S].美国石油学会,2005
    [4]赵广林,郭兆成,李振国.34Mn6调质生产N80Q钢级套管工艺初探[J].包钢科技,2008,34(1):18-19
    [5]郭智韬,贺景春,赵桂英.30MnCr22调质N80Q石油套管工序能力分析[J].包钢科技,2008,34(2):45-46
    [6]刘照,刘雅政,张玉胜等.生产非调质N80级石油套管的新工艺可行性实验研究[J].热加工工艺,2006,35(10):43-46
    [7]汪洁云.国内外油管现状与加快我国油管发展速度的建议[J].钢管,2000,29(2):44-46
    [8]郭智韬,井溢农,贺景春.N80Q钢级石油套管研制[J].包钢科技,2006,32:48-51
    [9]俞蓉晖,刘雅政,沙慧英.包钢N80Q钢级石油套管的开发和生产[J].包钢科技,2007,33(1):14-16
    [10]钟士红.钢的回火工艺和回火方程[M].北京:机械工业出版社,1993
    [11]Hollomon J. H., Jaffe L. D., Time-Temperature Relations in Tempering Steel [J]. Trans. AIME,1945,162:223
    [12]Hertzberg, Richard W.. Deformation and fracture Mechanics and Engineering Materials [M]. Hoboken NJ:John Wiley& Sons Inc,1996
    [13]黄春峰.50种常用钢材的回火方程[J].金属热处理,1994,7:46-48
    [14]朱林茂.外推钢的持久寿命方法的讨论[J].冶金分析,2004,24:99-502
    [15]侯旭明.20Cr11MoVNbNB钢回火组织与硬度的关系[J].兵器材料科学与工程,1995,18(3)::69-72
    [16]张占平,齐育红,Delagnesd等.钢的回火时间-温度-硬度动力学关系[J].材料热处理学报,2004,25(1):41-45
    [17]迟长志,董允,林晓娉.钢的成分回火温度与硬度问多元回归模型[J].阜新矿业 学院学报,1997,16(4):461-465
    [18]邹庆华.钢的成分回火温度与硬度之间的关系[J].金属热处理,1994,3:41-43
    [19]任颂赞,张静江,陈质如等.钢铁金相图谱[M].上海:上海科学技术文献出版社,2003
    [20]姚可夫,钱滨,石伟等.马氏体回火过程中组织转变量的实验研究[J].金属学报,2003,39(8):892-896
    [21]王伟,王威,仁学平等.30Mn(N80Q)水淬钢热处理基本特性的研究[J].轧钢,2005,22(3):21-24
    [22]钱滨.45钢热处理过程组织转变量预测的试验研究[J].北京:清华大学,2006
    [23]钟士红.钢在回火过程中温度-时间当量的计算和应用[J].兵器材料科学与工程,1985,5:26-29
    [24]郭从盛,夏鹏举,张会等.CrWMn钢等硬度回火曲线的建立及应用[J].铸造技术,2009,30(9):1141-1143
    [25]郭从盛,朱杰武.42CrMo钢回火方程的建立[J].陕西工学院学报,1996,12(3):6-11
    [26]郭从盛.淬火钢回火过程的数学模型[J].金属学报,1999,35(8):865-868
    [27]王学前,陈治娟,35CrMo钢的回火方程[J].四川工业学院学报,1989,8(3):194-199
    [28]宛农,郑志强,陈克燕.35CrMo淬硬钢回火性能与快速回火特性的数值模拟[J].南昌大学学报,2004,26(3):31-33
    [29]宛农,熊惟皓, 肖建中等.淬硬碳钢回火通用方程的推导与解析[DB/OL].http://www.paper.edu.cn/paper.php?serial_number=200402-98,2004-02-17
    [30]宛农,熊惟皓, 肖建中等,淬火钢回火时间效应的数值模拟[DB/OL].http://www.paper.edu.cn/paper.php?serial_number=200402-96,2004-02-17
    [31]热处理手册编委会.热处理手册[M].北京:机械工业出版社,1982
    [32]康煜平.金属固态相变及应用[M].北京:化学工业出版社,2007
    [33]郑修麟.材料的力学性能[M].西安:西北工业大学出版社,1990
    [34]杨冬梅,颜彬.Mathematica软件在非线性回归方法中的应用[J].江汉大学学报, 2001,18(6):71-74
    [35]Stephen Wolfram. The Mathematica Book:4th Edition[M]. Cambridge, UK Cambridge University Press,1999
    [36]Larson F. R., Miller J.. A Time-Temperature Relationship for Rupture and Creep Stresses [J]. Trans. ASME,1952,74:765-775
    [37]Kaufman J. G, Long Z., Shridas N.. Application of Time-Temperature-Stress Parameters to High Temperature Performance of Aluminum Alloys [A]. TMS Annual Meeting Symposia on Aluminum Alloys for Transportation, Packagings, Aerospace and Other Applications [C]. Orlando, Florida, USA, TMS,2007
    [38]Orr R. L., Sherby O. D., Dorn J. E.. Correlations of Rrupture Data for Metals at Elevated Temperatures [J]. Trans. ASME.1954,46:113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700