用户名: 密码: 验证码:
亚治疗剂量四环素饲喂对牛源微生物耐药基因的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以低于治疗水平的氯四环素(CT),以及低于治疗水平的氯四环素和治疗水平的氧四环素组合(CT-OX)两种方式分别对肉牛进行抗生素处理,研究其对肠道大肠杆菌耐药基因型的影响。粪便样品采自商业肉牛饲养场,并有详实的抗生素使用历史记录,通过抗菌药物纸片法和稀释法敏感性试验测试分离出的大肠杆菌对四环素、氧四环素和氯四环素的敏感性。利用tet(A),tet(B)和tet(C)基因的引物进行多重PCR试验,检测对四环素耐药或中介的细菌样品(176个),结果发现全部样品均携带一种或者两种耐药基因,tet(A)在两组样品中的流行基本相同,但CT组中tet(B)的流行比例较CT-OX组小(P<0.05),而tet(C)的流行比例则较大(P<0.05)。同时,在对四环素表现为中介的样品(52个)检测结果中,发现其中92.3%呈现出携带tet(C)基因。另外,最小抑菌浓度值(MICs)结果表明,药物敏感性同时取决于四环素类别和耐药基因型两方面的因素。利用real-time PCR在转录水平上分析tet(C)基因,发现耐药型与中介型并非上游调控造成。但是,对tet(C)基因的测序分析发现耐药型的第1063处碱基由T突变为G。由上述数据可以看出,对肉牛的四环素饲喂种类可以影响到大肠杆菌的耐药基因流行。
     将肉牛分为亚治疗剂量氯四环素的饲喂组及其对照组,在对其处理60天后进行粪便与咽部分泌物样品的采集,且对另一部分肉牛进行饲喂前后同一动物的样品采集,提取其宏基因组DNA,研究其中四环素耐药基因、磺胺耐药基因和红霉素耐药基因的浓度变化。结果表明,亚治疗剂量四环素的饲喂对tet(B)基因浓度的影响是显著的,四环素的存在的确对该基因的存在产生了选择压力;粪便中携带tet(C)基因的大肠杆菌数目较少,因此tet(C)基因在粪便中的浓度相对较低;咽部分泌物中tet(H)基因浓度较高;四环素处理同样对tet(M)、tet(O)和tet(W)基因的选择压力也是明显的,而粪便样品中这4类基因的浓度较高。对于磺胺耐药基因来说,sul2基因在粪便样品中表现出了较高的浓度。在红霉素耐药基因中,亚治疗剂量四环素的饲喂对erm(A)和erm(X)基因的影响是较为显著的。
     通过对肉牛给予低于治疗水平的不同种类抗生素,研究其对废弃粪便微生物群落中四环素耐药基因数量与持久性的影响。试验肉牛被分成不同的抗生素处理组:氯四环素组,氯四环素和磺胺甲嘧啶组,以及对照组。将每个围栏中所有动物的新鲜粪便混匀为一份混合样品作为模式样品(每个处理组3份),分别在露天放置的第7、14、28、42、56、70、84、98、112、126和175天时采样并提取DNA,利用real-time PCR方法测定四环素耐药基因tet(B),tet(C),tet(L),tet(M),tet(W)以及16S-rRNA的浓度。结果显示,16S-rRNA的浓度在不同处理间相似,在56天内保持增加(P<0.05);总体上看,四环素组的耐药基因初始浓度较高(P<0.05);所有处理组的tet(B)和tet(C)浓度到56天时均增长了1~2个对数级,到175天时又降低到初始水平,而tet(M)与tet(W)的浓度与其他耐药基因相比较高。由此可见,四环素耐药基因可以在废弃粪便中持续存在超过175天,而某些基因的最初数量可能会导致错估其后的变化,其浓度的暂时改变并不能归因于微生物群落数量的变化。
The effect of administering feedlot cattle subtherapeutic levels of chlortetracycline (CT) or CT and therapeutic levels of oxytetracycline (CT-OX) on resistance genotype in Escherichia coli was investigated. Fecal samples were collected from cattle at commercial feedlots and had a documented history of antimicrobial use. Isolates were tested for susceptibility to tetracycline, oxytetracycline, and chlortetracycline using disk diffusion or broth microdilution. Detection of tet(A), tet(B), and tet(C) genes encoded by tetracycline-resistant isolates (N=176) was performed by multiplex PCR. All isolates encoded one or a combination of two resistance genes. Prevalence of tet(A) was similar between groups of E. coli, however prevalence of tet(B) was lower(P<0.5) and tet(C) was greater(P<0.5) in CT isolates. The nature of the tet determinants was further assessed in a group of intermediately tetracycline-resistant isolates (N=52). Minimum inhibitory concentrations showed that susceptibility was dependent on tetracycline analogue and the type of resistance determinant. The tet(C) gene was present in92%of these isolates. Copies of tet(C) transcripts, analyzed by real-time PCR, indicated that up-regulation did not occur in tetracycline-resistant isolates when compared to intermediately-resistant isolates. However, sequence analysis of the tet(C) gene revealed a T→G substitution at position1063in resistant isolates that may have affected phenotype. These data provide insight into the relationship between the type of tetracycline analogue administered to cattle and the prevalence of resistance genes in E. coli.
     The beef cattle were separated into subtherapeutic tetracycline treated group and non-treated group, and the fecal samples and pharyngeal secretion samples were collected at≥60DOF, and another animals were collected before and after tetracycline treat. The metagenomic DNA was extracted to quantify the tetracycline resistant gene, sulfanilamide resistant gene, and erythrocin resistant gene. The results showed that, the concerntration of tet(B) was affected by subtherapeutic tetracycline administering, and the administration put a selective pression on it. The concerntration of tet(C) gene is lower than others in fecal samples,because of the susceptibility in E.coli. The selective pression on tet(M), tet(O) and tet(W) is present, so that their concerntration in fecal samples showed a higher level. sul2gene show a higher concerntration in fecal samples. And for erythrocin resistant gene, the erm(A) an erm(X) gene were affected by the treat.
     This study investigated the effects of administering beef cattle antimicrobials at subtherapeutic concentrations on the abundance and persistence of tetracycline resistance genes within the whole microbial community of fecal waste. Cattle were administered chlortetracycline, chlortetracycline plus sulfamethazine and no antimicrobials. Model fecal deposits (N=3) were prepared by mixing fresh feces from pens into a single composite sample. Real-time PCR was used to measure concentrations of tetracycline resistance genes tet(B), tet(C), tet(L), tef(M), tet(W) and16S-rRNA in DNA extracted from composite feces after7,14,28,42,56,70,84,98,112,126, and175days in the field. The concentrations of16S-rRNA in feces were similar across treatments and increased by day56(P<0.05). Generally, initial concentrations of tetracycline resistance genes were greater (P<0.05) in fecal pats from animals fed chlortetracycline. For all fecal treatments, tet(B) and tet(C) increased1~2log units by day56, and then decreased to the initial day7levels by day175(P>0.05). The concentrations of tet(M) and tet(W) were greater than other tetracycline resistance determinants. Tetracycline resistance genes can persist in fecal waste from cattle beyond175days and the initial load of some genes may underestimate concentrations at later time points. Temporal changes in the concentrations of resistance genes were likely due to shifts in microbial populations.
引文
1 Institute of Medicine, Committee on Drug Use in Food Animals and National Research Council. The Use of Drugs in Food Animals:Benefits and Risks. Washington, DC: National Academy Press; 1999.
    2 US Department of Agriculture, Center for Veterinary Medicine.2003 Online Green Book. Rockville, MD:Center for Veterinary Medicine; 2003. Available at: www.fda.gov/cvm/greenbook/elecgbook.html. Accessed September 30,2003.
    3 Butaye P, Devriese LA. Antimicrobial growth promoters used in animal feed:effects of less well known antibiotics on gram-positive bacteria[J]. Clin Microbiol Rev, 2003,16(2):175-188.
    4 McEwen SA, Fedorka Cray PJ. Antimicrobial use and resistance in animals[J]. Clin Infect Dis,2002,34 Suppl 3:S93-S106.
    5 Wegener HC, Aarestrup FM. Transfer of antibiotic resistant bacteria from animals to man[J]. Acta Vet Scand Suppl,1999,92:51-57.
    6 Mathews KJ. Antimicrobial Drug Use and Veterinary Costs in U. S. Livestock Production. Washington, DC:Economic Research Service, US Department of Agriculture; 2001. USDA Agricultural Information Bulletin 766.
    7 Mellon M, Benbrook C. Hogging it! Estimates of Antimicrobial Abuse in Livestock. Washington, DC:Union of Concerned Scientists; 2001.
    8 Institute of Medicine, Committee on Human Health Risk Assessment of Using Subtherapeutic Antibiotics in Animal Feeds. Human Health Risks With the Subtherapeutic Use of Penicillin or Tetracyclines in Animal Feed. Washington, DC: National Academy Press; 1989.
    9 Shea KM. Nontherapeutic use of antimicrobial agents in animal agriculture: implications for pediatrics[J]. Pediatrics,2004,114 (3):862-868.
    10 Health C. Uses of antimicrobials in food animals in Canada:impact on resistance and human health[OL]. http://www.hc-sc.gc.ca/dhp-mps/vet/antimicrob/index-e.html, April 10th,2011.
    11 Levy SB, FitzGerald GB. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm[J]. N Engl J Med.1976, 295:583-588.
    12 Witte W. Medical consequences of antibiotic use in agriculture[J]. Science.1998, 279:996-997.
    13 Center for Science in the Public Interest, Environmental Defense Fund, Food Animal Concerns Trust, Public Citizens Health Research Group, Union of Concerned Scientists. Petition to rescind approvals for the subtherapeuticuses in livestock of antibiotics used in (or related to those used in) human medicine. Available at: www.cspinet.org/ar/petition-3-99.html.Accessed September 30,2003.
    14 Barkocy-Gallagher GA, Arthur TM. Genotypic analysis of Escherichia coli 0157:H7 and 0157 nonmotile isolates recovered from beef cattle and carcasses at processing plants in the Midwestern states of the United States [J]. Appl Environ Microbiol. 2001,67:3810-3818.
    15 Millemann Y, Gaubert S. Evaluation of IS 200-PCR and comparison with other molecular markers to trace Salmonella enterica subsp. enterica serotype Typhimurium bovine isolates from farm to meat[J]. J Clin Microbiol.2000,38:2204-2209.
    16 Tauxe RV, Holmberg SD. The epidemiology of gene transfer in the environment. In: Levy SB, Miller RV, eds. Gene Transfer in the Environment. New York, NY:McGraw-Hill Publishing Co,1989:377-403.
    17 Centers for Disease Control and Prevention. Outbreaks of Escherichia coli 0157:H7 infections among children associated with farm visits-Pennsylvania and Washington, 2000[J]. MMWR Morb Mortal Wkly Rep.2001,50:293-298.
    18 Meyer MT, Kolpin DW. Occurrence of antibiotics in surface and ground water near confined animal feeding operations and waste water treatment plants using radioimmunoassay and liquid chromatography electrospray mass spectrometry [abstract 34]. Presented at the 219th meeting of the American Chemical Society; March 26 30, 2000; San Francisco, CA.
    19 Halling-Sorensen B, Nors Nielsen S. Occurrence, fate and effects of pharmaceutical substances in the environment-a review[J]. Chemosphere.1998,36:357-393.
    20 Chee-Sanford JC, Aminov RI. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities [J]. Appl Environ Microbiol,2001,67:1494-1502.
    21 Mathew AG, Cissell R. Ant ibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production [J]. Foodborne Pathogens and Disease,2007,4:115-133.
    22 Price LB, Graham JP. Elevated risk of carrying gentamicin-resistant Escherichia col i among U. S. poultry workers[J]. Environmental Health Perspectives,2007,115:1738-1742.
    23 Silbergeld EK, Graham J. Industrial food animal production, antimicrobial resistance, and human health [J]. Annual Review of Publ ic Health,2008,29:151-169.
    24 Martin SW, Meek AH. Factors associated with morbidity and mortality in feedlot calves:the Bruce County beef project, year two [J]. Can J Comp Med,1981,45(2):103-112.
    25 Martin SW, Meek AH. Factors associated with mortality and treatment costs in feedlot calves:the Bruce County Beef Project, years 1978,1979,1980[J].Can J Comp Med, 1982,46(4):341-349.
    26 Shahriar FM, Clark EG. Coinfection with bovine viral diarrhea virus and Mycoplasma bovis in feedlot cattle with chronic pneumonia [J]. Can Vet J,2002,43(11):863-868.
    27 Harland RJ, Jim GK. Efficacy of parenteral antibiotics for disease prophylaxis in feedlot calves[J]. Can Vet J,1991,32 (3):163-168.
    28 Ribble CS, Meek AH. The pattern of fatal fibrinous pneumonia (shipping fever) affect ing calves in a large feedlot in Alberta(1985-1988) [J]. Can Vet J,1995,36(12):753-757.
    29 Schunicht OC, Booker CW. An evaluation of the relative efficacy of a new formulation of oxytetracycline for the treatment of undifferentiated fever in feedlot calves in western Canada[J]. Can Vet J,2003,43(12):940-945.
    30 Nagaraja TG, Sun Y. Effects of tylosin on concentrat ions of Fusobacterium necrophorum and fermentation products in the rumen of cattle fed a high-concentrate diet[J]. Am J Vet Res,1999b,60(9):1061-1065.
    31 Nagaraja TG, Chengappa MM. Liver abscesses in feedlot cattle:a review[J]. J Anim Sci, 1998,76(1):287-298.
    32 Checkley SL, Janzen ED.Efficacy of vaccination against Fusobacterium necrophorum infection for control of liver abscesses and footrot in feedlot cattle in western Canada[J]. Can Vet J,2005,46 (11):1002-1007.
    33 NAS. The Use of Drugs in Food Animals. Benefits and Risks. Committee on Drug Use in Food Animals. [M]. Washington DC:National Academy of Sciences,1999.
    34 Woodford N. Glycopeptide-resistant enterococci:a decade of experience[J]. J Med Microbiol 1998; 47:849.
    35 Cloete TE, Westaard D. Dynamic response of biofilm to pipe surface and fluid velocity[J].Water Sci Technol,2003,47 (5):57-59.
    36 Catry B, Laevens H. Antimicrobial resistance in livestock [J]. J Vet Pharmacol Ther, 2003,26 (2):81-93.
    37 Levy SB.Multidrug resistance--a sign of the times [J].N Engl J Med,1998, 338(19):1376-1378.
    38 Gootz TD, Martin BA. Characterization of high-level quinolone resistance in Campylobacter jejuni[J]. Antimicrob Agents Chemother,1991,35 (5):840-845.
    39 Courvalin P.Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria[J]. Antimicrob Agents Chemother,1994,38 (7):1447-1451.
    40 Davies J. Inactivation of antibiotics and the dissemination of resistance genes [J]. Science,1994,264 (5157):375-382.
    41 Tenover FC.Mechanisms of antimicrobial resistance in bacteria [J]. Am J Infect Control,2006,34(5 Suppl 1):S3-10; discussion S64-73.
    42 Walsh C.Molecular mechanisms that confer antibacterial drug resistance[J]. Nature, 2000,406(6797):775-781.
    43 NAS. The Use of Drugs in Food Animals. Benefits and Risks. Committee on Drug Use in Food Animals. [M]. Washington DC:National Academy of Sciences,1999.
    44 van den Bogaard A E, Stobberingh E E. Antibiotic usage in animals:impact on bacterial resistance and public health[J]. Drugs,1999,58 (4):589--607.
    45 Kumar A, Schweizer H P. Bacterial resistance to antibiotics:active efflux and reduced uptake [J].Adv Drug Deliv Rev,2005,57 (10):1486-1513.
    46 Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria [J].Clin Microbiol Rev,2006,19 (2):382-402.
    47 Smith D L, Harris AD. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria [J]. Proc Natl Acad Sci U S A,2002,99(9):6434-6439.
    48周黎明.大肠杆菌主动外排泵与抗生素多重耐药性研究进展[J].四川生理科学杂志2003,25(04):163-164.
    49 Randall LP, Woodward MJ. The multiple antibiotic resistance (mar)locus and its significance[J].Res Vet Sci,2002,72 (2):87-93.
    50 Witte W. Medical consequences of antibiotic use in agriculture[J]. Science,1998, 279 (5353):996-997.
    51 Higashi Y, Wakabayashi A. Role of inhibition of penicillin binding proteins and cell wall cross-linking by beta-lactam antibiotics in low-and high-level methicillin resistance of Staphylococcus aureus [J]. Chemotherapy,1999,45(1):37-47.
    52 Spratt BG. Resistance to antibiotics mediated by target alterations [J]. Science, 1994,264(5157):388-393.
    53 Walsh C, Wright G. Introduction:antibiotic res i stance [J]. Chem Rev,2005,105(2):391-394.
    54 Wright GD. Bacterial resistance to antibiotics:enzymatic degradation and modification[J]. Adv Drug Deliv Rev,2005,57 (10):1451-1470.
    55 Shaw KJ, Rather PN. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes[J]. Microbiol Rev,1993, 57(1):138-163.
    56 Kumar A, Schweizer HP. Bacterial resistance to antibiotics:active efflux and reduced uptake [J].Adv Drug Deliv Rev,2005,57 (10):1486-1513.
    57 Nikaido H, Rosenberg EY. Porin channels in Escherichia coli:studies with beta-lactams in intact cells[J].J Bacteriol,1983,153 (1):232-240.
    58 Nikaido H. Bacterial resistance to antibiotics as a function of outer membrane permeability[J].J Antimicrob Chemother,1988,22 Suppl A:17-22.
    59 Rajyaguru J M,'Muszynski M J. Association of resistance to trimethoprim sulphamethoxazole, chloramphenicol and quinolones with changes in major outer membrane proteins and lipopolysaccharide in Burkholderia cepacia [J]. J Antimicrob Chemother,1997,40 (6):803-809.
    60 Trias J, Nikaido H. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides [J]. J Biol Chem,1990, 265(26):15680-15684.
    61 NAS. The Use of Drugs in Food Animals. Benefits and Risks. Committee on Drug Use in Food Animals. [M]. Washington DC:National Academy of Sciences,1999.
    62 Ibrahim EH, Sherman G. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting[J]. Chest 2000, 118:146-155.
    63 Matsuoka M, Inoue M. New erm Gene in Staphylococcus aureus clinical isolates[J]. Antimicrob Agents Chemother,2002,46(1):211-215.
    64 Livermore DM, Woodford N. Carbapenemases:a problem in waiting Curr Opin Microbiol [J] 2000,3:489-95.
    65 Chopra I, Roberts MC. Tetracycline antibiotics:mode of action, applications, molecular biology and epidemiology of bacterial resistance[J]. Microbiol. Mol. Biol, 2001, Rev.65:232-260.
    66 Roberts MC. Tetracycline therapy:update. Clin. Infect. Dis,2003,36:462-467.
    67 Anderson AA, Dugan J. Stable chlamydial tetracycline resistance associated with a tet (C)resistance allele[J]. Antimicrob. Agents Chemother,2004,48:3989-3995.
    68 Agerso Y, Jensen LB. The identification of a tetracycline resistance gene tet (M), on aTn916-like transposon, in the Bacillus cereus group [J]. FEMSMicobiol. Lett,2002, 214:251-256.
    69 Billington SJ, Songer JG. Widespreaddistribution of a Tet W determinant among tetracycline-resistantisolates of the animal pathogen Arcanobacterium pyogenes[J]. Antimicrob. Agents Chemother,2002,46:1281-1287.
    70 Chung WO, Gabany J. Distribution of erm(F) and tet(Q) genes in four oralbacterial species and genotypic variation between resistant andsusceptible isolates [J]. J. Clin. Periodont,2002,29:152-158.
    71 Miranda CD, Kehrenberg C. Diversity of tetracycl ine resistance genes inbacteria from Chilean Salmon farms [J]. Antimicrob. Agents Chemother,2003,47:883-888.
    72 Stanton TB, Humphrey SB. Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaicgene combinations of tet (0) andtet(W) from swine[J]. Appl. Environ. Microbiol,2003,69:3874-3882.
    73 Ribera A, Ruiz J. Presence of the Tet Mdeterminant in a clinical isolate of Acinetobacter baumannii [J]. Antimicrob. Agents Chemother,2003,47:2310-2312.
    74 Kim S R, Nonaka L. Occurrence of tetracycline resistance genes tet (M) and tet(S) in bacteria frommarine acquaculture sites[J]. FEMS Microbiol. Lett,2004,237:147-156.
    75 L-Abee-Lund TM, Sorum H. A global non-conjugativeTet C plasmid, pRAS3, from Aeromonas salmonicida [J]. Plasmid,2002,47:172-181.
    76 Furushita M, Shiba T. Similarity of tetracycl ine resistance genes isolated from fish farmbacteria to those from clinical isolates [J]. Appl. Environ. Microbiol, 2003,69:5336-5342.
    77 Lancaster H, Roberts AP. Characterization of Tn916S, a Tn916-like elementcontaining the tetracycline resistance determinant tet(S) [J]. J.Bacteriol,2004,186:4395-4398.
    78 Del Grosso M, Abusco AC. Tn2009, a Tn916-like element containingmef (E) in Streptococcus pneumoniae. Antimicrob [J]. Agents Chemother,2004,48:2037-2042.
    79 Giovanetti E, Brenciani A. The presence of the tet(O) gene in erythromycinand tetracycline-resistant strains of Streptococcus pyogenes[J]. Antimicrob. Agents Chemother,2003,47:2844-2849.
    80 Brenciani A, Ojo KK. A new geneticelement, carrying tet(O) and mef (A) genes[J]. J. Antimicrob. Chemother,2004,54:991-998.
    81 Giovanetti E, Brenciani A. The presence of the tet (0) gene in erythromycinand tetracycline-resistant strains of Streptococcus pyogenes[J]. Antimicrob. Agents Chemother,2003,47:2844-2849.
    82 Brenciani A, Ojo KK. A new geneticelement, carrying tet(O) and mef(A) genes [J]. J. Antimicrob. Chemother,2004,54:991-998.
    83 Melville CM, Brunel R. The Butyrivibrio fibrisolvens tet(W) gene is carried on the novel conjugative transposon TnB1230, which contains duplicatednitroreductase coding sequences [J]. J. Bacteriol,2004,186:3656-3659.
    84 Available from:http://www.faculty.washington.edu/marilynr/(visited November 15, 2004).
    85 Connell SR, Tracz DM. Ribosomal protection proteins and their mechanism of tetracycline resistance [J]. Antimicrob. Agents Chemother,2003,47:3675-3681.
    86 Connell SR, Trieber CA. Mechanism of Tet (O), perturbs theconformation of the ribosomal decoding center [J]. Mol. Microbiol,2003,45:1463-1472.
    87 Saphn CM, Blaha G. Localization of the ribosomalprotection protein Tet(O) on the ribosome-and the mechanismof tetracycline resistance[J]. Mol. Cell,2001,7:1037-1045.
    88 Melville CM, Scott KP. Novel tetracycline resistance gene, tet (32), in the Clostridiumrelatedhuman colonic anaerobe K10 and its transmission in vitroto the rumen anaerobe Butyrivibrio fibrisolvens [J]. Antimicrob. Agents Chemother,2001,45: 3246-3249.
    89 Whittle G, Whitehead TR. Identification of a newribosomal protection type of tetracycline resistance gene, tet (36), from swine manure pits [J]. Appl. Environ. Microbiol,2003,69:4151-4158.
    90 Stanton TB, Humphrey SB. Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet (0) andtet (W) from swine [J]. Appl. Environ. Microbiol,2003,69:3874-3882.
    91 Stanton TB, McDowall JS. Diverse tetracycline-resistant genotypes of Megasphaera elsdeni i strains select ively cultured from swine feces [J]. Appl. Environ. Microbiol. 70,3754-3757.
    92 Diaz-Torres ML, McNab R. Characterization of anovel tetracycline resistance determinate from the oral metage-nome[J]. Antimicrob. Agents Chemother, 2003,47:1430-1432.
    93 Nonaka L, Suzuk S. New Mg2+-dependent oxytetracycline resistance determinant Tet34 in Vibrio isolates from marine intestinal contents.2002.
    94 Weaver KE, Rice LB. Plasmids and transposons In:The Enterococci:Pathogenesis, Molecular Biology and Antibiotic Resistance [J]. Gi lmore, M.S., Ed.,2002:219-263.
    95 Avrain L, Vernozy-Rozand C. Evidence for natural horizontal transfer of tetO gene between Campylobacter jejuni strains in chickens [J]. J. Appl. Microbiol,2004, 97:134-140.
    96 Luna VA, Roberts MC. The presence of the tetO gene in a variety of tetracycline resistant Streptococcus pneumoniae serotypes fromWashington State[J]. J. Antimicrob. Chemother,1998,42:613-619.
    97 Weigel LM, Musser K. Genetic Analysis of a Vancomycin-resistant Staphylococcus aureus (VRSA) Isolated from New York. In:Abstracts of the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy,2004,69:C1-941.
    98 Dugan J, Rockey DD. Tetracycline resistance in Chlamydia suis mediated by genomic isolated inserted into the chlamydial inv-like gene[J]. Antimicrob. Agents Chemother, 2004,48:3989-3995.
    99 Jones RB, Van der Pol B. Partial characterization of Chlamydia trachmatis isolates resistant to multiple antibiotics [J]. J. Infect. Dis.1990,162:1309-1315.
    100 Somani J, Bhullar VB. Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure[J]. J. Infect. Dis,2000,181:1421-1427.
    101 Lefevre FC, Lepargneur JP. Tetracycline-resistant Chlamydia trachomatis in Toulouse, France [J]. Path. Biol,1997,45:376-378.
    102 Moulder JM. Chlamydiaceae[J]. Bergys Manual of Systematic Bacteriology,1984, Vol. 1:729.
    103 Sengelov G, Halling S. Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals.
    104 Bryan A, Shapir N. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, nonclinical Escherichia coli strains isolated from diverse human and animal sources [J]. Appl. Environ. Microbiol,2004,70:2503-2507.
    105 Pasquali F, De Cesare A. Phage types, ribotypes and tetracycline resistance genes ofSalmonella enterica subsp. Enterica serovar Typhimurium strains isolated from different origins in Italy [J]. Vet. Microbiol,2004,103:71-76.
    106 Recchia GD, Hall RM. Gene cassettes:a new class of mobile element [J]. Microbiology,1995,141:3015-3027.
    107 Iannelli F, Santagati M. Type M Resistance to Macrol ides in Streptococci is Not Due to the mef (A) Gene But to mat (A) Encoding an ATP-dependent Efflux Pump. In:Abstracts of the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy,2004, 78:C1-1188.
    108 Schwa iger K, Hozel C. Resistance gene patterns of tetracycl ine res is tan t Escherichia coli of human and porcine origin[J]. Veterinary Microbiology,2010,142:329-387.
    109 Laura M, Richard EP. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli[J]. Proc Natl Acad Sci,1980,77:3974-3977.
    110 Gow SP, Waldner CL. Associations between antimicrobial resistance genes in fecal generic Escherichia coli isolates from cow calf herds in western Canada[J]. Appl Environ Microbiol,2008,74:3658-3666.
    111 Hyon Ji Koo, Gun Jo Woo. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products[J]. International Journal of Food Microbiology,2011,145:407-413.
    112 Wright SS, Finland M. Cross-resistance among 3 tetracyclines[J]. Proc Soc Exp Biol Med,1954,85:40-42.
    113 Gabhan C, Gosia KK. Low minimum inhibitory concentrations associated with the tetracycline-resistance gene tet (C) in Escherichia coli[J]. The Canadian Journal of Veterinary Research,2010,74:145-148.
    114 Klima CL, Alexander TW. Genetic characterization and antimicrobial susceptibility of Mannheimia haemolytica isolated from the nasopharynx of feedlot cattle [J]. Veterinary Microbiology,2011,149:390-398.
    115 Schuster CJ, Ellis AG. Infectious disease outbreaks related to drinking water in Canada,1974-2001 [J]. Can J Pub Health, Rev 2005,96:254-258.
    116 Wilson KH, Blitchington RB. Human colonic biota studied by ribosomal DNA sequence analysis[J]. Appl Environ Microbiol,1996,62:2273-2278.
    117 Suau A, Bonnet R. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut [J]. Appl Environ Microbiol, 1999,65:4799-4807.
    118 Chen J, Yu Z. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrocodes lincosamides streptogramin B in livestock manure and manure management systems[J]. Appl Environ Microbiol,2007, 73:4407-4416.
    119 Sinton LW, Braithwaite RR. Survival of indicator and pathogenic bacteria in bovine feces on pasture[J]. Appl Environ Microbiol,2007,73:7917-7925.
    120 Roberts MC. Update on acquired tetracycline resistance genes [J]. FEMS Microbiol Lett, 2005,245:195-203.
    121 Alexander TW, Reuter T. Longitudinal characterization of resistant Escherichia coli in fecal deposits from cattle fed subtherapeutic levels of antimicrobials [J]. Appl Environ Microbiol,2009,75:7125-7134.
    122 Roberts MC. Update on acquired tetracycline resistance genes [J]. FEMS Microbiol Lett, 2005,245:195-203.
    123 Lay C, Sutren M. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota[J]. Environ Microbiol, 2005,7:933-946.
    124 Patterson AJ, Colangeli R. Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection[J]. Environ Microbiol,2007,9:703-715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700