用户名: 密码: 验证码:
新型铋系层状氧化物的设计及其模拟太阳光光催化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化氧化技术是近几十年发展起来且有望成为21世纪环境污染控制与治理的理想技术。作为环境净化技术,光催化过程是通过化学氧化的方法,把有机污染物矿化分解为水、二氧化碳和无毒害的无机酸。光催化剂有可能直接利用太阳光作为激发光源来驱动氧化-还原反应,从能源利用角度来讲,这一特征使光催化技术更具有开发潜力。TiO2光催化剂由于受到自身电子结构的局限性,难以有效利用太阳光。因此,本论文致力于设计新型非TiO2基高效光催化剂,采用水热技术合成出一系列铋系层状氧化物,并对其进行表征;系统研究了不同合成条件对光催化材料晶型结构与表面形貌的影响,考察了该系列复合光催化剂在模拟太阳光辐射下的光催化性能及其对污染物的降解机理,具体研究内容如下:
     1、形貌控制合成BiVO4及其光催化性能研究
     采用水热方法,无需添加任何模板和表面活性剂,通过控制水热时间、反应体系的酸度和初始反应物物质的量的比等条件,可控合成了不同晶型(四方白钨矿、四方锆石矿和单斜白钨矿)和形貌(片状、树枝状和花状)的BiVO4。采用X–射线粉末衍射仪、扫描电子显微镜、透射电子显微镜、拉曼光谱仪、紫外–可见漫反射光谱仪和X–射线光电子能谱仪对BiVO4的晶相结构、形貌以及光吸收性质等进行了表征;通过对染料罗丹明B(RB)和亚甲基兰(MB)在紫外及可见光下的降解评价其光催化活性。研究结果表明,在所有被测的样品中,与具有四方白钨矿和四方锆石矿结构的BiVO4相比,几种不同形貌单斜白钨矿结构的BiVO4在降解RB和MB时,均表现出较高的紫外及可见光光催化活性,证明了晶相结构是影响BiVO4光催化活性的主要因素;此外,这几种不同形貌的BiVO4样品在紫外光(? > 254 nm)下的催化活性相差不大,但在可见光(? > 420 nm)照射下催化活性各不相同,其中,具有花状形貌的BiVO4催化活性最高,说明形貌也是影响光催化活性的重要因素。
     2、Bi5Nb3O15的制备及其光催化性能研究
     采用较为温和的水热方法,合成了以传统的高温固相法很难得到的亚稳相Bi5Nb3O15。通过X–射线衍射仪、透射电镜、扫描电子显微镜、紫外–可见漫反射光谱和X–射线光电子能谱对产物进行表征,系统研究了水热时间,反应体系的酸度和初始反应物物质的量的比等制备条件的变化对产物组成、晶相结构以及粒子尺寸和光吸收性质的影响。研究结果表明,在pH为9、nBi : nNb = 1 : 0.7和保持200 ?C水热反应24 h后,可以得到粒子尺寸在100 nm左右及晶型较为完美的Bi5Nb3O15。在模拟太阳光(? > 320 nm)照射下降解染料甲基橙,2 h后降解基本完全;为了进一步证明Bi5Nb3O15是自身具有优异的可见光催化活性,而非来自染料的光敏化作用,本文考察了Bi5Nb3O15对在可见区无吸收的除草剂2,4–D的降解行为,结果表明,光照30 min后降解率即可达到90%。
     3、Ag掺杂Bi5Nb3O15的制备及其光催化性能研究
     采用光沉积法成功制备了高分散的及不同Ag担载量(1~20%)的Ag/Bi5Nb3O15,研究了其对水溶液中溴代阻燃剂四溴双酚–A(TBBPA)的降解行为,考察了辐射光源的波长和反应体系的pH值对Ag/Bi5Nb3O15光催化降解TBBPA的影响,并与纯Bi5Nb3O15及商用TiO2(Degussa P25)作了比较。研究结果表明,反应体系为中性、Ag的担载量为10%时,催化剂在模拟太阳光(? > 320 nm)辐射下光催化活性较高,尤其在? > 420 nm时仍具有明显高于Bi5Nb3O15和Degussa P25在此波长下的活性。这种优异的光催化活性一方面归结为Bi5Nb3O15自身的层状结构,由于受到中间层[Bi2O2]2+正电荷的强烈吸引,使得钙钛矿结构中的NbO6八面体结构发生畸变,这种特殊的层状结构能够有效抑制电子与空穴的复合,从而提高光催化效率;另一方面,光沉积法可使Ag均匀沉积在Bi5Nb3O15的表面和层间,不易发生团聚;均匀沉积的Ag具有强捕获电子能力和表面等离子体共振(SPR)效应,可提高其光催化活性。此外,对Ag/Bi5Nb3O15的循环使用进行了研究,通过Ag的再次光沉积处理,使催化剂在四次循环使用后对TBBPA的降解率仍然可以达到80%以上。通过对TBBPA降解过程中检测到的中间产物进行分析,提出了其可能的降解机理,为TBBPA在环境中的转化和归趋研究提供了科学依据。
Photocatalytic oxidation technology developed in recent decades, and it is expected to become the ideal of environmental pollution control and treatment technology in the 21st century. As an environmental purification technology, photocatalytic process is the mineralization of organic pollutants by chemical oxidation techniques, which is decomposed into water, carbon dioxide and non-toxic inorganic acid. The sunlight can be used by photocatalyst to drive the oxidation-reduction reaction as the excitation source. The feature makes photocatalytic technology be more potential value to apply in energy. Due to the limitation of its electronic structure, TiO2 photocatalyst is difficult to use sunlight effectively. Therefore, we focus on design and development of new and efficient non-TiO2-based photocatalyst with visible-response by hydrothermal technique. A series of Bi-based oxides with layered structure are synthesized and characterized. We investigate the relationship between prepared conditions and the crystal phase and morphology of products, examine the photocatalytic activity under the visible light irradiation, and explain the degradation mechanism.
     1. Controllable fabrication of bismuth vanadates and their photocatalytic activity
     Bismuth vanadates (BiVO4) with various crystal structures (tetragonal scheelite, tetragonal zircon and monoclinic scheelite) and morphologies (sheet-like, dendritic-like and flower-like) were controllably fabricated by using a mild additive-free hydrothermal treatment process by controlling the hydrothermal time, pH value and molar ratio of Bi to V in the starting materials. The crystal structures, morphologies, and photophysical properties of the products were well-characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Raman scattering spectra (Raman), UV-Vis diffuse reflectance spectra (UV-Vis/DRS) and X-ray photoelectron spectroscopy (XPS). Subsequently, their UV- as well as visible-light photocatalytic performances was evaluated via dyes rhodamine B (RB) and methylene blue (MB) degradation. The results show that compared with tetragonal scheelite and tetragonal zircon BiVO4, monoclinic scheelite BiVO4 has the highest UV- as well as visible-light photocatalytic activity toward dyes RB and MB degradation among all tested BiVO4 powders, confirming that the crystal structure of the BiVO4 predominantly affects its photocatalytic activity. In addition, several monoclinic scheelite BiVO4 products with different morphologies exhibit similar photocatalytic activities under UV light irradiation (? > 254 nm). However, the photocatalytic activities of them under visible light irradiation (? > 420 nm) are different. Monoclinic scheelite BiVO4 with a flower-like morphology shows the highest UV- as well as visible-light photocatalytic activity toward dyes RB and MB degradation, comfirming the morphology also play an important role to its photocatalytic activity.
     2. Preparation of Bi5Nb3O15 and their photocatalytic activity
     We successfully synthesize orthorhombic Bi5Nb3O15 by the mild hydrothermal method at the first time, which is difficult to obtain by the traditional high temperature solid state reaction. The products were characterized by XRD, FESEM, TEM, UV-Vis/DRS and XPS. The crystal structure, particle size and optical absorption properties of Bi5Nb3O15 influenced by hydrothermal time, pH value, and molar ratio of initial materials were investigated. The results show that Bi5Nb3O15 with perfect crystal structure was obtained at pH = 9, nBi : nNb = 1 : 0.7 and hydrothermal treatment at 200 ?C for 24 h. High crystallinity and little particle size are favorable to improve photocatalytic activity. Dyes methyl orange (MO) are totally decomposed afte 2 h irradiation under simulated sunlight (? > 320 nm). To further prove Bi5Nb3O15 is excellent visible light photocatalytic activity, rather than from the photosensitive dye, the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), which has no absorption in visible range, is selected as model contaminant. The degradation rate can reach 90% afte 30 min irradiation.
     3. Preparation of Ag/Bi5Nb3O15 and their photocatalytic activity
     Ag/Bi5Nb3O15 with different loading (1~20%) was successfully prepared by photo-deposition method. The visible-light photocatalytic activity is examined by the degradation of tetrabromobisphenol-A (TBBPA) at different range of wavelengths and pH values, and the results were compared with Degussa P25. The appropriate reaction system is neutral. The best loading of Ag is 10%. Ag/Bi5Nb3O15 (10%) exhibits higher photocatalytic activity under simulated sunlight irradiation (? > 320 nm). Especially ? > 420 nm, the activity of Ag/Bi5Nb3O15 (10%) is significantly higher than Bi5Nb3O15 and Degussa P25. On the one hand, this enhanced photocatalytic activity can mainly attribute to the layered structure of Bi5Nb3O15. The [Bi2O2]2+ layer in middle has positive charge, which can strongly attracted NbO6 octahedron. The distortion of NbO6 octahedral structure in layered structure can effectively suppress the recombination of electronics and holes, and improve photocatalytic efficiency. On the other hand, compared with other methods of doping noble metal, the Ag atoms can be well-proportioned on the catalyst surface and layer, and avoid aggregate. It is favorable to enhance photocatalytic activity. The noble metal Ag has strong ability to capture electronic and surface plasmon resonance (SPR), which can improve the visible-light photocatalytic activity. In addition, the method of catalyst recycling is also studied. Based on the detection of intermediate products, we deduce the degradation mechanism of TBBPA. It is significant to study the transformation of TBBPA in the environment.
引文
[1]韩维屏,等.催化化学导论[M].北京:科学出版社, 2003, 559.
    [2]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(1): 37-38.
    [3]Rajeshwar K, Osugi M E, Chanmanee W, et al. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media[J] J Photochem Photobiol C: Photochem Rev, 2008, 9(4): 171-192.
    [4]Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment[J].Chem Rev, 1993, 93(2): 671-698.
    [5]Spadaro J T, Isabelle L, Renganathan V. Hydroxyl radical mediated degradation of azo dyes:evidence for benzene generation[J].Environ Sci Technol, 1994, 28(7): 1389-1393.
    [6]Luan J, Zhao W, Feng J, et al. Structural, photophysical and photocatalytic properties of novel Bi2AlVO7[J]. J Hazard Mater, 2009, 164(1): 781–789.
    [7]Zhang Y, Wan J, Ke Y. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange[J]. J Hazard Mater, 2010, 177(1-3): 750–754.
    [8]Wang W, Huang F, Liu C, et al. Preparation, electronic structure and photocatalytic activity of the In2TiO5 photocatalyst[J]. Mater Sci Eng: B, 2007, 139(1): 74–80.
    [9]矫彩山,王中伟,彭美媛.我国农药废水的处理现状及发展趋势[J].环境科学与管理, 2006, 31(7):111-114.
    [10]Pérez-Estranda L, Malato S, Gernjak W, et al. Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway[J]. Environ Sci Technol, 2005, 39(21): 8300-8306.
    [11]Sleiman M, Ferronato C, Chovelon J. Photocatalytic removal of pesticide dichlorvos from indoor Air: A study of reaction rarameters, intermediates and mineralization[J]. Environ Sci Technol 2008, 42(8): 3018-3024.
    [12]Kormali P, Troupis A, Triantis T, et al. Photocatalysis by polyoxometallates and TiO2: A comparative study[J]. Catal Today, 2007, 124(3-4): 149-155.
    [13]Li L, Wu Q, Guo Y, et al. Nanosize and bimodal porous polyoxotungstate-anatase TiO2 composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation[J]. Micropor Mesopor Mater, 2005, 87(1): 1-9.
    [14]Dai K, Peng T, Chen H. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension[J]. Environ Sci Technol, 2008, 42(5): 1505-1520.
    [15]Guo Y, Wang Y, Hu C, et al. Microporous polyoxometalates POMs/SiO2: synthesis and photocatalyticdegradation of aqueous organocholorine Pesticides[J]. Chem Mater, 2000, 12(11): 3501-3508.
    [16]Hidaka H, Yamada S, suenaga S,et al. Photodegradation of surfactants part VI: Complete photocatalytic degradation of anionic, cationic and nonionic surfactants59 in aquerous semiconductor dispersions[J]. J Mol Catal: Chem, 1990, 59(3): 279-290.
    [17]Zhang R, Gao L, Zhang Q. Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium[J]. Chemosphere, 2004, 54(3): 405-411.
    [18]Zhang T, Oyama T, Horikoshi S, et al. Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives[J]. Appl Catal B: Environ, 2003, 42(1): 13-24.
    [19]Hindaka H, Horikoshi S, Ajisaka K, et al. Fate of amino acids upon exposure to aqueous titania irradiated with UV-A and UV-B radiation photocatalyzed formation of NH3,NO3-, and CO2[J]. J Photochem Photobiol A: Chem, 1997, 108(2-3): 197-205.
    [20]Yang X, Xu L, Yu X, et al. Enhanced photocatalytic activity of Eu2O3/Ta2O5 mixed oxides on degradation of rhodamine B and 4-nitrophenol[J]. Colloids Surf A, 2008, 320(1-3): 61-67.
    [21]Yang X, Wang Y, Xu L, et al. Silver and indium oxide codoped TiO2 nanocomposites with enhanced photocatalytic activity[J]. J Phys Chem C, 2008, 112(30), 11481-11489.
    [22]Li J, Yang X, Yu X, et al. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide[J]. Appl Surf Sci, 2009, 255(6): 3731–3738.
    [23]Xu L, Yang X, Guo Y, et al. Simulated sunlight photodegradation of aqueous phthalate esters catalyzed by the polyoxotungstate/titania nanocomposite[J]. J Hazard Mate, 2010, 178(1-3): 1070-1077.
    [24]Mo J, Zhang Y, Xu Q, et al. Photocatalytic purification of volatile organic compounds in indoor air: a literature review[J]. Atmos Environ, 2009,43(14): 2229–2246.
    [25]Higashimoto S, Tanihata W, Nakagawa Y, et al. Effective photocatalytic decomposition of VOC under visible-light irradiation on N-doped TiO2 modified by vanadium species[J]. Appl Catal A: Gen, 2008, 340(1): 98–104.
    [26]Mohamad S, Conchon P, Ferronato C, et al. Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization[J]. Appl Catal B: Environ, 2009, 86(3-4): 159–165.
    [27]Kudo A, Kato H. Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 Chains[J]. Chem Lett, 1997, 26(9): 867-868.
    [28] Kato H, Kudo A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts[J]. Catal Lett, 1999, 58(2-3):153-155.
    [29]Kato H, Kudo A. Photocatalytic decomposition of pure water into H2 and O2 over SrTa2O6 prepared by a flux Method[J]. Chem Lett, 1999, 28(11):1207-1208.
    [30]Kudo A, Kato H, Nakagawa S. Water splitting into H2 and O2 on New Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity[J]. J Phys Chem B, 2000, 104(3): 571-575.
    [31]Kato H, Kudo A. Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K)[J]. J Phys Chem B, 2001, 105(19): 4285-4292.
    [32]Kato H, Kudo A. Energy structure and photocatalytic activity for water splitting of Sr2(Ta1?XNbX)2O7 solid solution[J]. J Photochem Photobiol A: Chem, 2001, 145(1-2): 129-133.
    [33]Kudo A, Okutomi H, Kato H. Photocatalytic water splitting into H2 and O2 over K2LnTa5O15 Powder[J]. Chem Lett, 2000, 29(10): 1212-1213.
    [34]Kudo A, Kato H. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting[J]. Chem Phys Lett, 2000, 331(5-6): 373-377.
    [35]Kato H, Asokura K, Kudo A. Highly Efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. J Am Chem Soc, 2003, 125(10): 3082-3089.
    [36]Kudo A, Tsuji I, Kato H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation[J]. Chem Commun, 2002, (17):1958-1959.
    [37]Konta R, Ishii T, Kato H, et al. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation[J]. J Phys Chem B, 2004, 108(26): 8992-8995.
    [38]Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. J Phys Chem B, 2002, 106(19): 5029-5034.
    [39]Bhakta D, Shukla S S, Chandrasdeharaiah M S. A novel photocatalytic method for detoxification of cyanide wastes[J]. Environ Sci Technol, 1992, 26(3): 625-626.
    [40]Linsebigler A L, Lu G, Yates Jr J T, et al. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem Rev, 1995, 95(3), 735-758.
    [41]Boer K W. Survery of semiconductor physics[M].New York:Van Nostrand Reinhold, 1990, 249-252.
    [42]Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide[J]. Appl Catal B, 1997, 14(1-2): 55-68.
    [43]Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes[J]. Appl Catal B, 1998, 16(1): 31-42.
    [44]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002, 42-45.
    [45]Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414(6864): 625-627.
    [46]Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(13): 269-271.
    [47]Liu S M, Gan L M, Liu L H, et al. Synthesis of single-crystalline TiO2 nanotubes[J]. Chem Mater, 2002,14(3): 1391-1397.
    [48]Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications[J]. Sol Energy Mater Sol Cells, 2006, 90(14): 2011-2075.
    [49]Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures[J]. Adv Funct Mater, 2009, 19(5): 805-811.
    [50]Wang X, Mitchell D R G, Prince K, et al. Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications[J]. Chem Mater, 2008, 20(12): 3917-3926.
    [51]Tada H, Mitsui T, Kiyonaga T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nat Mater, 2006, 5(10): 782-786.
    [52]Deshpande A S, Shchukin D G, Ustinovich E, et al. Titania and mixed titania/aluminum, gallium, or indium oxide spheres: Sol-gel/template synthesis and photocatalytic properties[J]. Adv Funct Mater, 2005, 15(2), 239-245.
    [53]Abe R, Sayama K, Domen K, et al. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator[J]. Chem Phys Lett, 2001, 344(3-4): 339-344.
    [54]Abe R, Takami H, Murakami N, et al. Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide[J]. J Am Chem Soc, 2008, 130(25): 7780-7781.
    [55]Justicia I, Ordejon P, Canto G, et al. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis [J]. Adv Mater, 2002, 14(19): 1399-1402.
    [56]Liu G, Wang L, Yang H, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring[J]. J Mater Chem, 2010, 20(5): 831-843.
    [57]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社, 2006, 59-60.
    [58]Yang X, Ma F, Li K, et al. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: New efficient photocatalyst for dye degradation[J]. J Hazard Mater, 2010, 175(1-3): 429-438.
    [59]Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem Rev 1995, 95(3): 735-758.
    [60]Zhang L, Wang W, Zhou L, et al. Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities[J]. Small, 2007, 3(9): 1618-1625.
    [61]Cho I S, Kim D W, Lee S, et al. Synthesis of Cu2PO4OH hierarchical superstructures with photocatalytic activity in visible light[J]. Adv Funct Mater, 2008, 18(15): 2154–2162.
    [62]Yu J, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermallysynthesized BiVO4[J]. Adv Funct Mater, 2006, 16(16): 2163-2169.
    [63]Zhang X, Wang Y. Process on microwave-assisted potocatalysis[J]. Prog Chem, 2005, 17(1): 91–95.
    [64]李旦振,郑宜,付贤智.微波-光催化耦合效应及其机理研究[J].物理化学学报, 2002, 18(4): 332–335.
    [65]郑宜,李旦振,付贤智. C2H4的微波场助气相光催化氧化[J].高等学校化学学报, 2001, 22(3): 443–445.
    [66]李旦振,郑宜,付贤智.微波场助气相光催化氧化及其应用[J].高等学校化学学报, 2002, 23(12): 2351–2356.
    [67]Zheng Y, Li D Z, Fu X Z. Microwave-assisted heterogeneous photocatalytic oxidation of ethylene[J]. Chem J Chin Univ, 2001, 22(3): 443-445.
    [68]Selli E, Bianchi C L, Pirola C, et al. Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis[J]. Ultrason Sonochem, 2005, 12(5): 395-400.
    [69]Peller J, Wiest O, Kamat P V. Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds[J]. Environ Sci Technol, 2003, 37(9): 1926-1932.
    [70]Entezari M H, Heshmati A, Sarafraz-Yazdi A, et al. A combination of ultrasound and inorganic catalyst: removal of 2-chlorophenol from aqueous solution[J]. Ultrason Sonochem, 2005, 12(1-2): 137-141.
    [71]Ragaini V, Selli E, Bianchi C L, et al. Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison with other techniques[J]. Ultrason Sonochem, 2001, 8(3): 251-258.
    [72]Nakajima A, Tanaka M, Kameshima Y, et al. Sonophotocatalytic destruction of 1,4-dioxane in aqueous systems by HF-treated TiO2 powder[J]. J photochem Photobiol A: Chem, 2004, 167(2-3): 75-79.
    [73]顾浩飞,安太成,文晟,等.超声光催化降解苯胺及其衍生物研究[J].环境科学学报, 2003, 23(5): 593-597.
    [74]Mrowetz M, Pirola C, Selli E. Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2[J]. Ultrason Sonochem, 2003, 10(4-5): 247-254.
    [75]赫晓刚,李一兵,樊彩梅,等. TiO2光电催化水处理技术研究进展[J].化学通报, 2003, (5): 306-311.
    [76]Jiang Z P, Wang HY, Huang H, et al. Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B[J]. Chemosphere, 2004, 56(5): 503-508.
    [77]Tunesi S, Anderson M A. Photocatalysis of 3,4-DCB in TiO2 aqueous suspensions; effects of temperature and light intensity; CIR-FTIR interfacial analysis[J]. Chemosphere, 1987, 16(7): 1447-1456.
    [78]Evgenidou E, Fytianos K, Poulios I. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts[J]. Appl Catal B: Environ, 2005, 59(1-2): 81-89.
    [79]Muradov N Z, T-Raissi a, Muzzey D, et al. Selective photocatalytic destruction of airborne VOCs[J]. Solar Energy, 1996, 56 (5): 445-453.
    [80]Fu X., Clark L A, Zeltner W A, et al. Effects of reaction temperature and water vapor content on theheterogeneous photocatalytic oxidation of ethylene[J]. J Photochem Photobiol A: Chem, 1996, 97 (3): 181.-186.
    [81]Nakashima T, Ohko Y, Kubota Y, et al. Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets[J]. J Photochem Photobiol A: Chem, 2003, 160 (1-2): 115-120.
    [82]Machado A E H, Miranda J A, Freitas R F, et al. Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis[J]. J Photochem.Photobiol A: Chem, 2003, 155 (1-3): 231-241.
    [83]Wang R, Ren D, Xia S, et al. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR)[J]. J Hazard Mater, 2009, 169(1-3): 926-932.
    [84]Lindner M. Photocatalytic degradation of organic compounds: acceleration the proceses efficiency[J]. Water Sci Technol, 1997, 35(5): 8-10.
    [85]Krysa J, Keppert M, Jirkovsky J, et al. The effect of thermal treatment on the properties of TiO2 photocatalyst[J]. Mater Chem Phys, 2004, 86 (2-3): 333-339.
    [86]Saquib M, Muneer M. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions, Dyes Pigm, 2003, 56(1): 37-49.
    [87]Chun H, W. Yizhong, T. Hongxiao. Destruction of phenol aqueous solution by photocatalysis or direct photolysis[J]. Chemosphere, 2000, 41(8): 1205-1209.
    [88]Martin C A, Camera-Roda G, Santarelli F. Effective design of photocatalytic reactors: influence of radiative transfer on their performance[J]. Catal Today, 1999, 48(1-4): 307-313.
    [89]Haque M M, Muneer M. Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide[J]. J Hazard Mater, 2007, 145(1-2): 51-57.
    [90]Yu J G, Su Y R, Cheng B, et al. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method[J]. J Mol Catal A: Chem 2006, 258(1-2), 104-112.
    [91]Fernández J, Kiwi J, Baeza J, et al. Orange II photocatalysis on immobilised TiO2: Effect of the pH and H2O2[J]. Appl Cata B: Environ, 2004, 48(3), 205-211.
    [92]Kormann C, Bahnemann D W, Hoffmann M R. Photolysis of chloro-form and other organic molecules in aqueous TiO2 suspensions[J]. Environ Sci Technol, 1991, 25(3): 494-500.
    [93]徐长城,高原. TiO2光催化降解焦化废水的研究[J].云南化工, 2003, 30(4): 1-13.
    [94]Huang M, Xu C, Wu Z, et al. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite[J]. Dyes Pigm, 2008, 77(2): 327-334.
    [95]Chakrabarti S, Dutta B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst[J]. J Hazard Mate B , 2004, 112(3): 269-278.
    [96]Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations-A review[J]. Appl Catal B: Environ, 2004, 49(1): 1-14.
    [97]Augugliaro V, Baiocchi C, Bianco-Prevot A, et al. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation[J]. Chemosphere, 2002, 49(10): 1223–1230.
    [98]Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium oxide[J]. Solid State Chem, 2004, 32 (1-2): 33–177.
    [99]Li Y X, Lu G X, Li S B. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2[J]. Appl Catal A: Gen, 2001, 214(2): 179-185.
    [100]Ranjit K T, Cohen H, Willner I, et al. Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants[J]. J Mater Sci, 1999, 34(21): 5273-5280.
    [101]Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J Catal, 2003, 216(1-2): 505-516.
    [102]Litter M I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems[J]. Appl Catal B: Environ, 1999, 23(1-2): 89-114.
    [103]洪孝挺,王正鹏,陆峰,等.可见光响应型非金属掺杂TiO2的研究进展[J].化工进展, 2004, 23(10) :1077-1080.
    [104]籍宏伟,马万红,黄应平等.可见光诱导TiO2光催化的研究进展[J].科学通报, 2003, 48(21): 2199-2204.
    [105]Wu L, Yu J C, Fu Xi. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation[J]. J Mol Catal A: Chem, 2006, 244(1-2): 25-32.
    [106]Ho W, Yu J C, Lin J, Jet al. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2[J]. Langmuir, 2004, 20(14): 5865-5869.
    [107]Yu J C, Wu L, Lin J, et al. Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst[J]. Chem Commun, 2003, (13): 1552-1553.
    [108]Yin H B, Wada Y, Kitamura T, et al. Enhanced photocatalytic dechlorination of 1,2,3,4-tetrachlorobenzene using nanosized CdS/TiO2 hybrid photocatalyst under visible light irradiation [J]. Chem Lett, 2001, 30(4): 334-335.
    [109]Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS–TiO2 coupled semiconductors-photocatalytic oxidation of indole[J]. J Mol Catal A: Chem, 2001, 165(1-2): 265-273.
    [110]Peter L M, Riley D J, Tull E J, et al. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots[J]. Chem Commun, 2002, (10): 1030-1031.
    [111]Kisch H, Zang L, Lange C, et al. Modified, amorphous titania- a hybrid semiconductor for detoxification and current generation by visible light[J]. Angew Chem Int. Ed, 1998, 37(21): 3034-3036.
    [112]Zang L, Lange C, Abraham I, et al. Amorphous microporous titania modified with platinum(IV) chloride- a new type of hybrid photocatalyst for visible light detoxification[J]. J Phys Chem B, 1998,102(52): 10765-10771.
    [113]Zang L, Macyk W, Lange C, et al. Visible-Light detoxification and charge generation by transition metal chloride modified titania[J]. Chem Eur J, 2000, 6(2): 379-384.
    [114]Cho Y M, Choi W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2[J]. Environ Sci Technol, 2001, 35(5): 966-970.
    [115]Tang J, Zou Z, Ye J. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angew Chem Int Ed, 2004, 43(34): 4463-4466.
    [116]Oshikiri M, Boero M, Ye JH, et al. Electronic structures of promising photocatalysts InMO4(M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region [J]. J Chem Phys, 2002, 117(15): 7313-7318.
    [117]Kudo A, Ueda K, Kato H, et al. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution [J]. Catal Lett, 1998, 53(3-4): 229-230.
    [118]Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chem Mater, 2001, 13(12): 4624-4628.
    [119]Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. J Am Chem Soc, 1999, 121(49): 11459-11467.
    [120]Zou Z, Ye J, Arakawa H. Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst[J]. Inter J Hydro Eng, 2003, 28(6): 663 -669.
    [121]Ye J, Zou Z, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation[J]. Chem Phys Lett, 2002, 356(3-4): 221-226.
    [122]Zou Z G, Ye J H, Arakawa H. Photocatalytic behavior of a new series of In0.8M0.2TaO4 (M = Ni, Cu, Fe) photocatalysts in aqueous solutions[J]. Catal Lett, 2001, 75(3-4): 209-213.
    [123]Kohtani S, Koshiko M, Kudo A, et al. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator[J]. Appl Catal B: Environ, 2003, 46(3): 573-586.
    [124]Yin J, Zou Z G, Ye J H. Photophysical and photocatalytic properties of MIn0.5Nb0.5O3 (M = Ca, Sr, and Ba)[J]. J Phys Chem B, 2003, 107(1): 61-65.
    [125]Ishii T, Kato H, Kudo A. H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation[J]. J Photochem Photobio A: Chem, 2004, 163(1-2): 181-186.
    [126]Wang,J, Yin S, Komatsu Mu, et al. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst[J]. J Photochem Photobio A: Chem, 2004, 165(1-3): 149-156.
    [127]桑丽霞,钟顺和,傅希贤. LaBO3:(B = Fe,Co)中氧的迁移与光催化反应活性[J].高等学校化学学报, 2003, 24(2): 320-323.
    [128]Bhuvanesh N S P, Crosnier-LoPez M P, Duroy H, et al. Synthesis and structure of novel layeredperovskite oxides: Li2La1.78Nb0.66Ti2.34O10, and a new family, Li2[A0.5nBnO3n+1] [J]. J Mater Chem, 1999, 9(12): 3093-3100.
    [129]Kodenkandath T A, Wiley J B. Synthesis and structure of a double-layered perovskite and its hydrate, K2SrTa2O7·mH2O (m = 0, 2)[J]. Mater Res Bull, 2000, 35(10): 1737-1742.
    [130]Crosnier-Lopez M P, Le B F, Fourquet J L. The layered perovskite K2SrTa2O7: hydration and K+/H+ ion exchange[J]. J Mater Chem, 2001, 11(4): 1146-1151.
    [131]李新勇,李树本,吕功煊.纳米尺寸铁酸锌半导体光催化的表征及催化性能研究[J].分子催化, 1996, 10(3): 187-193.
    [132]Wang D F, Zou Z G, Ye J H. A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation[J]. Chem Phys Lett, 2003, 373(1-2): 191-196.
    [133]Harvey E J, Whittle K R, Lumpkin G R, et al. Solid solubilities of (La Nd)2(Zr, Ti)2O7 phases deduced by neutron diffraction[J]. J Solid State Chem, 2005, 178(3): 800-810.
    [134]Luan J F, Zou Z, Lu M, et al. Growth, structural and photophysical properties of Bi2GaTaO7[J]. J Cryst Growth, 2004, 273(1-2): 241-247.
    [135]Yao W F, Wang H, Xu X H, et al. Photocatalytic property of bismuth titanate Bi2Ti2O7[J]. Appl Catal A: Gen, 2004, 259(1): 29-33.
    [136]Uno M, Kosuga A, Okui M, et al. Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln = La, Ce, Nd and Sm)[J]. J Alloys Compds, 2006, 420(1-2): 291-297.
    [137]Linsebigler A L, Lu G, Yates Jr J T, et al. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results[J]. Chem Rev, 1995, 95(3): 735-758.
    [138]Serpone N, Texier I, Emeline A V, et al. Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers[J]. J Photochem Photobiol A: Chem, 2000, 136(3): 145-152.
    [139]Ge L. Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange[J]. J Mol Catal A: Chem, 2008, 282(1-2): 62–66.
    [140]Ge L. Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation[J]. Mater Chem Phys, 2008, 107(2-3): 465–470.
    [141]Wang Y X, Lin J H, Du Y, et al. A hexagonal perosvskite-inter growth compound La2Ca2MnO7[J]. Angew Chem, 2000, 112(15): 2842-2844.
    [142]Royer S, BérubéF, Kaliaguine S. Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1- xFexO3[J]. Appl Catal A: Gen, 2005, 282(1-2): 273-284.
    [143]Nakayama S, Okazaki M, Aung Y L, et al. Preparations of perovskite-type oxides LaCoO3 from three different methods and their evalution by homogeneity, sinterability and conductivity[J]. Solid State Ionics, 2003, 158(1-2): 133-139.
    [144]Sreedhar K, Pavaskar N R. Synthesis of MgTiO3 and Mg4Nb2O9 using stoichio metrically excessMgO[J]. Mater Lett, 2002, 53(6): 452-455.
    [145]Wang D, Tang K, Liang Z, et al. Synthesis, crystal structure, and photocatalytic activity of the new three-layer aurivillius phases, Bi2ASrTi2TaO12 (A=Bi, La)[J]. J Solid State Chem, 2010, 183(2): 361-366.
    [146]Lin X, Shan Z, Li K, et al. Photocatalytic activity of a novel Bi-based oxychloride catalyst Na0.5Bi1.5O2Cl[J]. Solid State Sci, 2007, 9(10): 944-949.
    [147]Royer S, Alamdari H, Duprez D, et al. Oxygen storage capacity of La1- xA′xBO3 Perovskites (with A′= Sr, Ce; B = Co, Mn)-relation with catalytic activity in the CH4 oxidation reaction[J]. Appl Catal B: Environ, 2005, 58(3-4): 273-288.
    [148]Zhou D, Wang H, Yao X, et al. Nanopowder preparation and dielectric properties od a Bi2O3-Nb2O5 binary system prepared by the high-energy ball-milling method[J]. J Am Ceram Soc, 2008, 91(1): 139-143.
    [149]Kaliaguine S, Van N A , Szabo V, et al. Perovskite-type oxides synthesized by reactive grinding: Part I. preparation and characterization[J]. Appl Catal A: Gen, 2001, 209(1-2): 345-358.
    [150]Luo J H, Maggard P A. Hydrothermal synthsis and photocatalytic activities of SrTiO3 coated Fe2O3 and BiFeO3[J]. Adv Mater, 2006,18(4): 514-517.
    [151]Choi J Y, Kim C H, Kim D K. Hydrothermal synthsis of spherical perovskite oxide powders using spherical gel powders[J]. J Am Ceram Soc, 1998 , 81(5): 1353-1356.
    [152]Zhu D, Zhu H, Zhang Y H, et al. Hydrothermal synthsis of single-cyrstal La0.5Sr0.5MnO3 nanowire under the mild condition[J]. J Phys: Condens Matter, 2002, 14(27): L519-L524.
    [153]Garza-Tovar L, Torres-Martínez L, Rodríguez D, et al. Photocatalytic degradation of methylene blue on Bi2MNbO7 (M = Al, Fe, In, Sm) sol–gel catalysts[J]. J Mol Catal A: Chem, 2006, 247(1-2): 283-290.
    [154]Ismail A, Ibrahim I, Mohamed R. Sol–gel synthesis of vanadia–silica for photocatalytic degradation of cyanide[J]. Appl Catal B: Environ, 2003, 45(2): 161-166.
    [155]Taguchi H, Yamada S, Nagao M, et al. Surface characterization of LaCoO3 synthesized using citric acid[J]. Mater Res Bull, 2002,37(1): 69-76.
    [156]Wang X, Zhang Z, Zhou S. Preparation of nanocrystalline SrTiO3 powder in sol-gel process[J]. Mater Sci Eng: B, 2001, 86(1): 29-33.
    [157]Fu X, Yang Q, Wang J, et al. Photocatalytic degradation of water-soluble dyes by LaCoO3[J]. J Rare Earths, 2003 ,21(4): 424-426.
    [158]孙尚梅.钙钛矿型复合氧化物纳米晶的合成、表征及其催化性质研究[D].吉林大学, 2007, 11.
    [159]Wang H J , Awano M. Preparation of LaCoO3 catalytic thin film by the sol-gel process and its NO decomposition characteristics[J] . J Eur Ceram Soc, 2001, 21(10-11) :2103-2107.
    [160]Yang Z, Huang Y, Dong B , et al. Controlled synthesis of highly ordered LaFeO3 nanowires using a citrate-based sol-gel route[J]. Mater Res Bull, 2006, 41(2):274-281.
    [161]Wang S, Yang Z, Lu M, et al. Coprecipitation synthesis of hollow Zn2SnO4 spheres[J]. Mater Lett, 2007, 61(14-15): 3005-3008.
    [162]Quan X, Zhao Q, Tan H, et al. Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol–gel process[J]. Mater Chem Phys, 2009, 114(1): 90-98.
    [163]Zhang H, LüM, Liu S, et a1. Preparation and photocatalytic property of perovskite Bi4Ti3O12 films [J]. Mater Chem Phys, 2009, 114(2-3): 716-721.
    [164]Zou Z, Arakawa H. Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts[J]. J Photochem Photobiol A: Chem, 2003, 158(2-3): 145-162.
    [165]Zou Z, Ye J, Arakawa H. Photocatalytic decomposition of water with Bi2InNbO7[J]. Catal Lett, 2000, 68(3-4): 235-239.
    [166]Zou Z, Ye J, Arakawa H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M = Al3+, Ga3+ and In3+)[J]. Chem Phys Lett, 2001, 333(1-2): 57-62.
    [167]Kim H G, Hwang D W, Lee J S. An undoped, single-phase oxide photocatalyst working under visible light[J]. J Am Chem Soc, 2004, 126(29): 8912-8913.
    [168]Wu L, Bi J, Li Z H, et a1. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis[J]. Catal Today, 2008, 131(1-4): 15-20.
    [169]Tang J, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catal Lett, 2004, 92(1-2): 53-56.
    [170]Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions[J]. Chem Lett, 1999, 28(10): 1103-1104.
    [171]Kato H, Kobayashi H, Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure[J]. J Phys Chem B, 2002, 106(48): 12441-12447.
    [172]Hosogi Y, Tanabe K, Kato H, et al. Energy structure and photocatalytic activity of niobates and tantalates containing Sn (II) with a 5s2 electron configuration[J]. Chem Lett, 2004, 33(1): 28-29.
    [173]Kudo A, Kato H, Tsuji I. Strategies for the development of visible-light-driven photocatalysts for water splitting[J]. Chem Lett, 2004, 33(12): 1534-1539.
    [174]唐安平.钒酸铋颜料的开发进展[J].有色金属, 2005, 57(4): 43-46
    [175]Yeom T H, Choh S H, Du M L, et al. EPR study of Fe3+ impurities in crystalline BiVO4[J]. Phys Rev B: Condens Matter, 1996, 53(6): 3415-3421.
    [176]Kudo A., Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its Photocatalytic and photophysical properties[J]. J Am Chem Soc, 1999,121(49): 11459-11467.
    [177]Zhang X, Ai Z, Jia F, et al. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases [J]. Mater Chem Phys, 2007, 103(1): 162-167.
    [178]Zhang L, Chen D, Jiao X. Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties[J]. J Phys Chem B, 2006,110(6):2668-2673.
    [179]Zhou L, Wang W, Zhang L, et al. Single-crystalline BiVO4 microtubes with square cross-sections: microstructure, growth mechanism, and photocatalytic property[J]. J Phys Chem C, 2007, 111(37): 13659-13664.
    [180]Goti? M, Musi? S, Ivanda M, et al. Synthesis and characterisation of bismuth(III) vanadate[J]. J Mol Struct, 2005, 744-747: 535-540.
    [181]Lim A, Choh S, Jang M. Prominent ferroelastic domain walls in BiVO4 crystal[J]. J Phys: condens Matter, 1995, 7(37): 7309-7323.
    [182]Yu J, Kudo A. Hydrothermal synthesis of nanofibrous bismuth vanadate[J]. Chem Lett, 2005, 34(6): 850-851.
    [183]Neves M, Trindade T. Preparation of hollow shells of zinc oxide/bismuth(III) vanadate[J]. Mater Res Bull, 2003, 38(6): 1013-1020.
    [184]Jiang H, Endo H, Natori H, et al. Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method[J]. J Eur Ceram Soc, 2008, 28(15): 2955-2962.
    [185]Liu J, Wang H, Wang S, et al. Hydrothermal preparation of BiVO4 powders[J]. Mater Sci Eng: B, 2003, 104(1-2): 36-39.
    [186]Galembeck A, Alves O. BiVO4 thin film preparation by metalorganic decomposition[J]. Thin Solid Films, 2000, 365(1): 90-93.
    [187]Zhang L, Chen D, Jiao X. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. J Phys Chem B, 2006, 110(6): 2668-2673.
    [188]Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chem Mater, 2001,13(12): 4624-4628.
    [189]Yu J Q, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4[J]. Adv Funct Mater, 2006,16(16): 2163-2169.
    [190]Ge L; Xu M; Fang H. Preparation and characterization of silver and indium vanadate co-doped TiO2 thin films as visible-light-activated photocatalyst [J]. J Sol-Gel Sci Technol, 2006, 40(1): 65-73.
    [191]Xin B, Jing L, Ren Z, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2[J]. J Phys Chem B, 2005, 109(7): 2805-2809.
    [192]Waterhouse G, Bowmaker G, Metson J. Oxidation of a polycrystalline silver foil by reaction with ozone[J]. Appl Surf Sci, 2001,183(3-4): 191-204.
    [193]Ge L. Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation[J]. Mater Chem Phys, 2008, 107(2-3): 465-470.
    [194]Aurivillius B. . Mixed bismuth oxides with layer lattices: I. structure type of CaBi2B2O9[J]. Arkiv Kemi, 1949, l(54), 463-480.
    [195]Aurivillius B. Mixed bismuth oxides with layer lattices: II. structure of Bi4Ti3O12[J]. Arkiv Kemi, 1949, l(58): 499-512.
    [196]Aurivillius B, Kemi Ark. Mixed bismuth oxides with layer lattices: III. structure type of BaBi4Ti4O15[J]. Arkiv Kemi, 1950, 2(37): 512-527.
    [197]Kudo M, Tsuzuki S, Katsumata K, e tal. Effects of selective leaching of bismuth oxide sheets in triple-layered Aurivillius phases on their photocatalytic activities[J]. Chem Phy Lett, 2004, 393(1-3), 12-16.
    [198]Kim H., Becker O, Jang J, et al. A generic method of visible light sensitization for perovskite-related layered oxides: Substitution effect of lead[J]. J Solid state Chem, 2006, 179(4), 1214-1216.
    [199]Jung J, Lee H, Kim H, et al. A synergistic effect ofα-Bi2Mo3O12 andγ-Bi2MoO6 catalysts in the oxidative dehydrogenation of C4 raffinate-3 to 1,3-butadiene[J]. J Mol Catal A: Chem, 2007, 271(1-2), 261-265.
    [200]Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. J Phys Chem B, 2006, 110(36), 17790-17797.
    [201]Cruz A M, Alfaro S O, Cuéllar E L, et al. Photocatalytic properties of Bi2MoO6 nanoparticles prepared by an amorphous complex precursor[J]. Catal Today, 2007, 129(1-2), 194-199.
    [202]Zhang L, Wang W, Chen Z, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts[J]. J Mater. Chem, 2007, 17(24), 2526-2532.
    [203]Fu H B, Zhang L W, Yan W Q, et al. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process[J]. Appl Catal B: Environ, 2006, 66(1-2), 100-110.
    [204]Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity[J]. J Phys Chem C, 2007, 111(34), 12866-12871.
    [205] Mohammadi M R, Fray D J, Mohammad A. Sol–gel nanostructured titanium dioxide: Controlling the crystal structure, crystallite size, phase transformation, packing and ordering[J]. Micropor Mesopor Mater, 2008, 112(1-3): 392-402.
    [206]Taharaa S, Shimadaa A, Kumadab N, et al. Characterization of Bi5Nb3O15 by refinement of neutron diffraction pattern, acid treatment and reaction of the acid-treated product with n-alkylamines[J]. J Solid State Chem, 2007, 180(9): 2517–2524.
    [207]Zhang G, Yang J, Zhang S, et al. Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property[J]. J Hazard Mater, 2009, 172(2-3): 986–992.
    [208]Gulino A, Delfa S, Fragala I, et al. Low-temperature stabilization of tetragonal zirconia by bismuth[J]. Chem Mater, 1996, 8(6): 1287–1291.
    [209]Tabata K, Choso T, Nagasawa Y. The topmost structure of annealed single crystal of LiNbO3[J]. Surface Science, 1998, 408(1-3): 137–145.
    [210]Buenrostro-Zagal F, Ram?′rez-Oliva A, Schettino-Bermu′dez B, et al. Treatment of a 2,4-dichlorophenoxyacetic acid (2,4-D) contaminated wastewater in a membrane bioreactor[J]. Water SciTechnol, 2000, 42(56): 185-92.
    [211]Kim H, Park Y, Dong M. Effects of 2,4-D and DCP on the DHTInduced androgenic action in human prostate cancer cells[J]. Toxicol Sci, 2005, 88(1): 52-59.
    [212]Kwangjick L, Johnson V, Barry R, et al. The effect of exposure to a commercial 2,4-D formulation during gestation on the immune response in CD-1 mice[J]. Toxicol, 2001, 165(1): 39-49.
    [213]Charles J, Hanley T, Wilson R, et al. Development toxicity studies in rats an rabbits on 2,4-dichlorophenoxyacetic acid an its forms[J]. Toxicol Sci, 2001, 60(1):121-131.
    [214]Charles J, Leeming N. Chronic dietary toxicity study on 2,4-dichlorophenoxybutyric acid in the dog[J]. Toxicol Sci, 1998, 46(1): 134-142.
    [215]Lu C, Fenske R, Simcox N, et al. Pesticide exposure of children in an agricultural community: evidence of household proximity to farmland and take home exposure pathways[J]. Environ Res, 2000, 84(3): 290-302.
    [216]Oliveira G, Palermo-Neto J. Toxicology of 2,4-dichlorophenoxyacetic acid (2,4-D) and its determination in serum and brain tissue using gas chromatography-electron-capture detection[J]. J Anal Toxicol, 1995,19(4): 251-255.
    [217]陈颖.四溴双酚A(TBBPA)对翡翠贻贝(Perna viridis)的亚慢性毒性效应[D].厦门大学, 2007, 6.
    [218]彭浩.环境及生物样品中溴代阻燃剂四溴双酚-A(TBBP-A)水平的研究[D].中央民族大学, 2007, 2.
    [219]Thomsen C, Lundanes E, Becher G. Brominated flame retardants in archived serum samples from Norway:a study on temporal trends and the role of age[J]. Environ Sci Technol, 2002, 36(7): 1414-1418.
    [220]Morris S, Allchin C, Zegers B, et al. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs[J]. Environ Sci Technol, 2004, 38(21): 5497-5504.
    [221]Wit d, Cynthia A. An overview of brominated flame retardants in the environment[J]. Chemosphere, 2002, 46(5): 568-624.
    [222]Birnbaum L S, Staskal D F. .Brominated flame retardants: cause for concern?[J]. Environ Health Perspect, 2004, 112(1): 9-17.
    [223]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
    [224]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.
    [225]Roucoux A, Schlz J, Patin H. Reduced transition metal colloids: A novel family of reusable catalysts[J]. Chem Rev, 2002, 102(10): 3757-3778.
    [226]Ghosh S K, Kundu S, Mandal M, et al. Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in a micellar medium[J]. Langmuir, 2002, 18(23): 8756-8760.
    [227]Gang L, Anderson B G, Grondelle J, et al. Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts[J]. Appl Catal B: Environ, 2002, 40(2): 101-110.
    [228]Zheng J, Dickson R M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence[J]. J Am Chem Soc, 2002, 124(47): 13982-13983.
    [229]Kamat P V, Prashant V K. Photophysical, photochemical and photocatalytic aspects of metal[J]. J Phys Chem B, 2002, 106(32): 7729-7744.
    [230]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601): 2176-2179.
    [231]Jin R, Cao Y C, Hao E, et al. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature, 2003, 425(6957): 487-490.
    [232]Ge L, Xu M, Fang H. Photo-catalytic degradation of methyl orange and formaldehyde by Ag/InVO4-TiO2 thin films under visible-light irradiation[J]. J Mol Catal A: Chem, 2006, 258(1-2): 68-76.
    [233]Anandan S, Kumar S P, Pugazhenthiran N, et al. Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of acid red 88[J]. Sol Energy Mater Sol Cells, 2008, 92(8): 929-937.
    [234]S?kmen M, ?zkan A. Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis[J]. J Photochem Photobiol A: Chem, 2002, 147(1): 77-81
    [235]Liu S X, Qu Z P, Hanb X W, et al. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide[J]. Catal Today, 2004, 93-95(5): 877-884.
    [236]Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy, 2nd ed; Perkin-Elmer Corp: USA, 1992.
    [237]Hirakawa T, Kamat P. Charge separation and catalytic activity of Ag@TiO2 core?shell composite clusters under UV?irradiation[J]. J Am Chem Soc, 2005, 127(11): 3928-3934.
    [238]Ren J, Wang W, Sun S, et al. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation[J]. Appl Catal B: Environ, 2009, 92(1-2): 50-55.
    [239]Yang X, Wang Y, Xu L, et al. Silver and indium oxide codoped TiO2 nanocomposites with enhanced photocatalytic activity[J]. J Phys Chem C, 2008, 112(30): 11481-11489.
    [240]Jain R, Shrivastava M. Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide[J]. J Hazard Mater, 2008, 152(1): 216–220.
    [241]Zhang L, Yu J C. A simple approach to reactivate silver-coated titanium dioxide photocatalyst[J]. Catal Commun, 2005, 6(10): 684–687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700