用户名: 密码: 验证码:
基于结构参数的柴油机进气道优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机具有热效率高、功率大、寿命长等优点,应用己越来越广。对柴油机而言,其缸内良好的空气运动将促进燃烧过程中空气与未燃燃料的混合,提高燃烧速率,增强发动机的动力性、经济性,降低燃烧噪声和有害气体的排放。
     以某型直喷式柴油机为研究对象,针对其进气道流量系数偏低而涡流比偏高的问题,对进气道进行了优化设计。一方面提高进气道的流量系数,保证柴油机的动力性能;另一方面降低进气道的涡流比,保证多孔喷油器的油束在燃烧室内空间分布更加合理。
     运用AVL稳流试验台和数值模拟方法,对某型柴油机进气道进行稳流试验和稳态流动模拟分析。根据气道不同位置压力参数变化和流量系数及涡流比的计算公式,提出流体速度的Z向分量(Vz)、垂直于Z轴的截面积和速度的有效转化量这些结构参数是影响流量系数和涡流比的主要因素。根据结构参数变化规律,对进气道进行改型设计,同等条件下进行数值模拟,与原方案对比分析,确定了新的设计方案。
     为进一步评判新方案设计的合理性,对改型前后方案分别进行了进气压缩和喷雾燃烧三维瞬态流动模拟分析。构建和提取了湍流强度中心夹角结构参数的变化规律,以截面代空间分析了浓混合气受涡流比的影响,并对比了其它与燃烧有关的参数变化情况,从而验证了新方案设计的可行性。通过新方案样机与原机的试验结果对比,证明改型后该机燃油消耗率和N0x排放均有一定程度的降低。
     最后,对全文内容进行了总结和展望。
With the advantages of high heat efficiency, large power and long life, the diesel engines are used more and more wide. Good air motion in diesel engines could promote the mixing of unburned fuel and air, improve combustion rate, enhance engines'dynamic and economic resistance, and decrease combustion noise and harmful gas emission.
     As study object, the intake port of certain direct injection diesel engine is optimized, according to the low flow coefficient and high swirl ratio. Thus, on one hand, dynamic performance of engine is ensured by improving flow coefficient; on the other hand, distribution of fuel spray is more reasonable by reducing swirl ration of intake port
     The comparative analysis of steady flow simulation and AVL steady flow test rig are carried out According to the pressure parameter variation of different cross sections and calculation formula of flow coefficient and swirl ratio, structure parameters of Vz component of fluid velocity, sectional area of vertical Z axis, effective inversion quantity of velocity is proposed as main influencing factors. According to the change law of structure parameters, the intake port is modified. By numerical simulation in the same condition, and comparison with original scheme, a new design is confirmed.
     For further evaluation of the new design,3d transient flow analysis is carried out for spray combustion and intake compression of the modification pre and post. The new designed plan is reasonable by verifying the variation of angle for turbulence strength center that is constructed and extracted, the influence of rich mixture with swirl ratio by using cross sections instead of space, and comparative analysis of other parameters related with combustion. The tests indicate that specific fuel consumption and NOx emission decrease for a certain content.
     Finally, this paper summarizes the content and makes some analysis and prospect.
引文
[1]周龙保.内燃机学[M].机械工业出版社.北京:机械工业出版社,1999.
    [2]Ahmadi-Befrui B, Gosman A D, Wathims A P. Prediction of InCy-linder Flow and Turbulence with Three Version of k-ε Turbulence Model and Comparisons with Data. Flows in Internal Combustion En-gine-Ⅱ, edited by U zkan T eom an,1984
    [3]Kuo T W, Duggal V K. Modeling of In-Cylinder Flow Characteristics Effect of Engine Design Parameters. Flow in Internal Combustion Engine-Ⅱ,edited by Uzkan Teoman, 1984
    [4]Romas J I, Humphrey J A C, Sirignamo W A. Numerical Prediction of Ax symmetric Laminar and Turbulent Flows in Motored Reciprocating Internal Combustion Engines. SAE790356,1979
    [5]Gosman A D, Ahmed A M Y. Measurement and Multidimensional Calculation of Flow in an Ax symmetric port-valve Assembly. SAE870592,1987
    [6]Amsden A A, Bulter T D, O'Rourke D J, Ramshaw J D. KIVA-A Comprehensive Model for 2-D and 3-D Engine Simulations. SAE 850554,1985
    [7]Sugiure Shigeki, et al. Numerical Analysis of Flow in the Induction System of an Internal Combustion Engine-Multidimensional Calculation Using a New Method of lines. SAE900255,1990
    [8]Ahmadi-Befrui B, Gosman A D, Lockwood F C, et al. Multidimensional Calculation of Combustion in an Idealized Homogenous Charge Engine:a Progress Report. SAE810151,1981
    [9]Aita S, Tabbal A, Munck G, et al. Numerical Simulation of Port-valve-Cylinder Flow in Reciprocating Engines. SAE900820,1990
    [10]P.K.Senecal.Multi-mode genetic algorithm optimization of combustion chamber geometry for low emissions[A]. in:SAE paper[C].2002.2002-01-0958
    [11]Kidoguchi, M.Sanda, K.Miwa. Experimental and Theoretical Optimization of Combustion Chamber and Fuel Distribution for the Low Emission Direct-Injection Diesel Engine. ASME.2003. VO1.125/357
    [12]J N Kim, H Y Kim, S S Yoon, et al. Effect of Intake Valve Swirl on Fuel-gas Mixing and Subsequent Combustion in a Cai Engine. International Journal of Automotive Technology, VoL 9, No.6,2008:649-657
    [13]T.Lee and R.D.Reitz. Response Surface Method Optimization of a High-Speed Direct-Injection Diesel Engine Equipped With a Common Rail Injection System. ASME.2003. V01.125/541
    [14]Daniel C Haworth, Sherif H E I Tahry, Mark S Huebler, et al. Multidimensional Port-and-Cylinder Flow Calculation for two-and Four-valve-Per-cylinder Engines: Influence of Intake Configuration on Flow Structure. SAE900257,1990
    [15]Pierre Godrie, Mark Zellat. Simulation of Flow Field Generated by IntakePort-valve-Cylinder Configurations-Comparison with Measurement and Applications. SAE940521,1994
    [16]Bahram Khalighi, Daniel C Haworth, Mark S Huebler. Multidimensional Port-and-In-Cylinder Flow Calculations and Flow Visualization Study in an Internal Combustion Engine with Different Intake Configuration. SAE94187,1994
    [17]Jon Harlan Van Gerpen. THE EFFECTS OF AIR SWIRL AND FUEL INJECTION SYSTEM PARAMETERS ON DIESEL COMBUSTION. [Dissertation]. Wisconsin. The University of Wisconsin-Madison.1984
    [18]Franz X. Tanner*, Guang-Sheng Zhu and Rolf D.Reitz. A turbulence Dissipation Correction to the k-epsilon Model and Its Effect on Turbulence Length Scalesr in Engine Flows.SAE Congress,2001
    [19]Payri F, Desantes JM, Pastor JV.LDV measurements of the flow inside the combustion chamber of a 4-valve D.I. Diesel engine with axisymmetric piston bowls. Exp Fluids,1996(22).
    [20]Risi A Donateo T Laforgia D直喷式柴油机燃烧室的优化.国外内燃机.2005.(4).37-42
    [21]Celik I, Yavuz I, et al. Large eddy simulations of in-cylinder turbulence for internal combustion engines:areview. Int J Engine Res 2001;2(2):119-48
    [22]Jun-ichi Kawashima. Research on a Variable Swirl Intake Port for High-Speed 4-valve DI Diesel Engine. JSAE Review,1999, (20):421-438
    [23]王天友等.直喷式柴油机进气道变压差稳流试验方法的研究[J].内燃机学报.2005(2):131-136.
    [24]王忠等.柴油机二、四气门进气道流动特性评价指标与对比分析[J].小型内燃 机与摩托车.2001(30):8-12.
    [25]赵长禄等.通过进气道优化改进柴油机的性能[J].内燃机学报.2003(30):244-248.
    [26]密晓.四气门柴油机进气道RE/CFD/CAM开发流程研究[D].[硕士论文].广西:广西大学,2007.
    [27]韩同群,吴胜军,李伟.四气门车用柴油机进气道设计及试验评价[J].内燃机工程.2007(2):39-42.
    [28]胡玉平,孙平,白书战,李国祥.气门开启过程对压缩终了缸内涡流运动的影响[J].车用发动机.2010(5):35-39.
    [29]任立红,舒歌群,张宝欢,宋如钢.可变进气道发动机性能试验及分析研究[J].内燃机工程.2010(1):7-12.
    [30]孙平,陆文霞,缪岳川,徐毅.进气道螺旋段结构参数对流动特性影响的研究[J].内燃机工程.2011(1):70-74.
    [31]吴浩.柴油机螺旋进气道结构参数对气道性能的影响及其优化设计[D].[硕士论文].湖北:华中科技大学,2006.
    [32]金成吉.G5800柴油机进气道位置偏差分析及改进[D].[硕士论文].广西:上海交通大学,2009.
    [33]牛有城.大功率柴油机燃烧过程参数化分析及系统参数优化匹配研究[D].[硕士论文].北京:北京交通大学,2009.
    [34]冯文奇,冷先银等.BH175F1涡流室式柴油机工作过程的数值模拟[J].小型内燃机与摩托车.2011(5):18-22.
    [35]张梦云.DLH1105柴油机工作过程数值模拟与燃烧室改进研究[D].[硕士论文].江苏:江苏大学,2010.
    [36]施爱平,叶丽华,燕明德,丁仲毅.柴油机缸内工作过程的数值模拟[J].农业机械学报.2009(3):40-45.
    [37]周磊,贾明,李云广,韩君,徐春龙.柴油机高压及微孔径下燃油雾化特性的数值研究(II)—湍流模型对燃烧的影响[J].车用发动机.2012(3):26-31.
    [38]李蓝媚,李人宪.柴油机喷油过程参数获取的数值方法研究[J].车用发动机.2009(2):6-10.
    [39]赵鹏,李国岫,虞育松.大功率柴油机进气涡流与燃烧室优化匹配的多维仿真研究[J].兵工学报.2010(6):657-662.
    [40]刘红彬,骆清国,张杰.大功率柴油机喷油提前角对缸内燃烧过程的影响[J].装甲兵工程学院学报.2012(1):31-34.
    [41]文醉.非道路用柴油机缸内气体流动与喷雾三维数值模拟[D].[硕士论文].湖北:武汉理工大学,2010.
    [42]文醉,罗马吉,向梁山.非道路用柴油机气流运动及喷雾数值模拟分析[J].小型内燃机与摩托车.2011(4):41-44.
    [43]罗马吉,文醉,刘高飞,向梁山.非道路用柴油机进气压缩过程数值模拟[J].武汉理工大学学报.2010(5):91-95.
    [44]曹晓辉,范秦寅,袁银男,姜树李,郭晨海.关于喷雾流动蒸发燃烧的数值模拟研究[J].内燃机工程.2011(2):68-73.
    [45]曹海波,杨世春,张良.柴油机喷雾夹角对缸内三维流场的影响[J].内燃机与动力装置.2012(1):22-27.
    [46]刘劲松.基于CFD的柴油机喷雾过程模拟计算研究[D].[硕士论文].浙江:浙江大学,2010.
    [47]孙平.根据压缩终了缸内流场对进气系统的评价方法[D].[硕士论文].山东:山东大学,2011.
    [48]赵振武.内燃机气道的稳流试验技术研究[D]. [硕士论文].天津:天津大学,2003.
    [49]Hu D. An introduction of air passage experiment sets and their four evaluation methods[J]. Journal of Chongqing University of Technology:Natural Science, 2010,33(3):355-359.
    [50]Liu F S, Li X R, Jiang Q Q. Particle image velocimetry(PIV) measurements of the inlet fields flow characteristics for a variable swirl system [J]. Journal of Beijing Institute of Technology,2006,26(6):492-495.
    [51]Liu G, Wang Y, Zhou G M, et al. PIV measurements of the evolvement of in-cylinder tumble flow field in a flour-vale gasoline engine[J]. Journal of Academy of Military Transportation,2009,11(3):57-62.
    [52]Shao Y P, Zhang J H, Li J. Investigation on in-cylinder air motion for 4-valve diesel engines[J]. Chinese Internal Combustion Engine Engineering,2000,21(4):11-15
    [53]Wu Z J, Huang Z, Sun J M. Experimental study on in-cylinder swirl formation process in four-valve diesel engine[J]. Journal of Combustion Science and Technology,2001,7(2):158-162.
    [54]冯明志,许振忠,李玉峰,等.四气门火花点火式发动机缸内的空气运动[J].天津大学学报,2000,33(3):355-359.
    [55]王健,林荣文,刘德新,等.四气门汽油机缸内滚流运动的LDA试验研究[J].燃烧科学与技术,2004,10(4):350-353.
    [56]马宏伟,贺象,张晶辉,徐春龙,刘胜.内燃机进气道流场显示试验研究[J].内燃机工程,2013,34(1):46-50.
    [57]Heywood JB. Fluid motion within the cylinder of internal combustion engines. The 1986 Freeman Scholar Lec ture.J Fluids Eng 1986;109(1987):3-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700