用户名: 密码: 验证码:
背景噪声和地震面波反演东北地区岩石圈速度结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东北地区地处西伯利亚块体与中朝块体之间,东临西太平洋边缘海,区域内构造格局错综复杂,主要地质构造单元如松辽盆地、大兴安岭和张广才岭等均呈近北东向展布并被交错复杂的断裂系统所分割,著名的郯庐断裂带北段贯穿全区。本区经历多期构造作用,岩石圈减薄已得到地球化学和地震面波层析成像结果的证实。鉴于东北地区地质构造的复杂性和构造运动的特殊性,研究其岩石圈地震波速度结构,对于揭示该区区域构造特征及深部动力学机制等都具有重要意义。
     面波层析成像是通过反演面波频散曲线得到群速度分布,不同周期的群速度反映不同深度范围内的速度结构,周期越大,反映的深度越深;而且,与体波成像相比,面波成像具有更高的垂向分辨率。因此,该方法被广泛应用于地壳上地幔速度结构的研究。由于面波的固有衰减和散射,用地震面波成像的方法难以得到浅层的速度结构,而近年来发展的背景噪声成像方法摆脱了依赖有源地震的限制,能够提取短周期面波频散曲线,得到高分辨率的浅层结构。而从背景噪声中又难以提取可靠的长周期面波频散资料,因此仅用背景噪声成像很难得到深层的结构信息。本研究应用东北地区的黑龙江、吉林、辽宁和内蒙古四省区域地震台网119个宽频带台站记录的波形资料,结合背景噪声成像和传统的单台地震面波成像方法获得了研究区从浅至深直至约100km的群速度分布,充分发挥了两种方法的优势。
     由于两种方法在提取瑞利面波群速度频散曲线时所用资料和数据处理方法不尽相同,本研究先分别利用背景噪声和地震面波提取频散曲线,再由这些频散曲线反演面波群速度分布。其中,利用背景噪声测量频散曲线时,选取的数据为区域台网记录的2009年1月至2010年12月连续波形资料的垂向分量;数据处理分三步进行:(1)对单台数据进行预处理得到背景噪声;(2)计算并叠加台站对间背景噪声的互相关函数;(3)采用多重滤波方法测量频散曲线并对其进行人工筛选和质量控制。地震面波成像应用区域地震台网记录的2007年8月至2011年7月的波形资料,从302个震级大于5.5级、震中距60°以内、震源深度小于50km的地震事件中精心筛选出瑞利面波发育良好、频散特征明显的116个地震事件用于本次研究;对面波资料进行数据预处理后,采用多重滤波法测量出瑞利面波群速度频散曲线。
     经过上述数据处理,本研究分别应用背景噪声及地震面波提取的5-30s和25-70s瑞利面波群速度频散曲线,采用层析成像方法反演获取东北地区8-70s瑞利面波群速度分布,进而得到研究区从浅到深直至约100km的岩石圈速度结构。对于反演结果的可靠性,采用检测板分辨率分析方法进行检测。结果显示,背景噪声部分分辨率较高,能达到1°×1°;地震面波部分由于射线分布相对稀疏,大部分地区的反演结果能在2°×2°网格划分下得到较好恢复。对比两种方法在周期为25s和30s时的群速度图像说明其结果较为一致。
     反演结果表明东北地区岩石圈速度结构存在明显的横向不均匀性。周期为8s至15s的短周期群速度分布与地表构造特征有较好的对应关系;盆岭边界的大型断裂如依兰-伊通断裂对上地壳速度结构的影响明显,松辽盆地表现出较厚的低速沉积盆地特征。周期为20s至30s的群速度高低速分布与短周期相比出现了反转变化,表明以大兴安岭重力梯度带为界,西部地区莫霍面深度大于东部地区。周期为50s至70s的长周期群速度图表现为随着周期的增加东部低速区西移,而西部表现为高速稳定的特征,这可能反映了研究区受太平洋板块俯冲影响,大兴安岭以东地区软流圈热物质上涌的特征。
Northeast China is located between Siberian block and Sino-Korean block,aswell as to the west of the West Pacific marginal seas. The main geological tectonicunits such as the Songliao Basin,Daxinganling and Zhangguangcai Ridge show anearly north-east trending and are separated by the complex fault system,includingthe northern section of famous Tanlu fault zone running through the whole area. Thisregion has been underwent multiphase tectonism,the lithospheric thinning wasconfirmed by the results from geochemical studies and surface wave tomography.Therefore,it is significant for us to study the lithospheric structure under theNortheast China to reveal its regional tectonic features and deep dynamicsmechanism.
     Surface wave tomography provides the distribution of group velocity byinversing dispersion measurements. Surface waves at different periods are sensitive toEarth structure at different depths,with the longer period waves exhibiting sensitivityto greater depths. Compared to body wave tomography,surface wave tomography hasa higher vertical resolution,which is widely used in imaging the structure of crust andupper mantle. However,it is difficult to obtain the velocity structure at shallow depthsfrom teleseismic events due to intrinsic attenuation and scattering along ray paths.The development of ambient noise tomography now permits high resolution shallowdepths imaging by enabling the measurement of short-period surface wave dispersionmeasurements between pairs of seismic stations without earthquake,but it is difficultto extract long-period dispersion. In this study,we applied ambient noise tomography(ANT)together with classical single-station surface wave tomography(SS),takingadvantage of the two methods to image the lithospheric group velocity down to about100km depth under the Northeast China,using the waveform data recorded by119broadband stations from Heilongjiang,Jilin,Liaoning and Inner Mongolia regionalseismic network.
     The data and methods are different for ANT and SS to measure Rayleigh wave group velocity dispersion curves. In this study,we first measured dispersion curvesfrom ambient noise correlation and surface wave,respectively,and then inverted themto obtain the distribution of group velocity. The data we used in ANT was the verticalcomponent of continuous seismic observations from Jan.2009to Dec.2010whoseprocessing procedure was divided into three phases:(1)single station data preprocessto obtain the ambient noise;(2)cross-correlation and temporal stack to extract theinter-station correlation function;(3)measurement of group velocity dispersion bymultiple-filter method and quality control. To SS data,we selected116seismic eventswith clear Rayleigh wave signals and obvious dispersion characteristics out of302events which occurred from Aug.2007to Jul.2008. The magnitudes of these eventsare restricted Ms5.5and greater,their epicentral distances are less than60degreesand focal depths are less than100km. After preprocessing was executed,multiple-filter method was being applied to measure Rayleigh wave group velocitydispersion curves.
     After the data processing,group velocity dispersion measurements at periods of5-30s and25-70s had been obtained from ambient noise correlation and surfacewave,respectively,which were used to invert for group velocity structure of thelithosphere under the Northeast China to about100km depth. We used checkerboardtest to estimate resolution. It shows the resolution of inversion results from ANTreaches to1°×1°and that from SS is2°×2°due to the sparse ray paths distribution.The group velocities at the relatively periods like25s and30s are similar for bothmethods.
     Our results show obvious lateral heterogeneity of the lithosphere under NortheastChina. At the short periods of8-15s,group velocities are notably correlated with thesurface geology and controlled apparently by the large faults such as Yilan-Yitongfault. The Songliao Basin exhibits the significant low velocity which suggestsrelatively thick sediment. Compared with the group velocities of8-25s periods,thedistribution of the low-velocity(low-V)and high-velocity(high-V)at periods of20-30s show reverse changes,this result reveals that the Moho depths in the westernregion of North-South gravity lineament (NSGL) are deeper than that in the eastern region. At the long periods of50-70s,with the increase of the periods,the low-V inthe eastern regions move to the west;meanwhile,the western regions show stablehigh-V features. The results may reflect asthenospheric upwelling under the easternregions of NSGL due to the subduction of Pacific slab.
引文
车自成,刘良,罗金海.2002.中国及其邻区区域大地构造学[M].北京:科学出版社:250-261.
    陈国英,宋仲和,安昌强,等.1991.华北地区三维地壳上地幔结构[J].地球物理学报,34(2):172-181.
    陈国英,曾融生,吴大铭,等.1992.青藏高原瑞利面波相速度与深部结构的横向变化[J].地震学报,14(增刊):565-572.
    杜晓娟,孟令顺,张明仁.2009.利用重力场研究东北地区断裂分布及构造分区[J].地球科学与环境学报,31(2):200-206.
    房立华,吴建平,吕作勇.2009.华北地区基于噪声的瑞利面波群速度层析成像[J].地球物理学报,52(3):663-671.
    冯锐,朱介寿,丁韫玉,等.1981.利用地震面波研究中国地壳结构[J].地震学报,3(4):335-350.
    傅淑芳,程宁亚.1988.区域性的地震面波层析方法[J].地震学报,10(4):352-362.
    傅维洲,杨宝俊,刘财,等.1998.中国满洲里-绥芬河地学断面地震学研究[J].长春科技大学学报,28(2):206-212.
    高东辉,陈永顺,孟宪森,等.2011.黑龙江地区背景噪声面波群速度层析成像[J].地球物理学报,54(4):1043-1051.
    葛荣峰,张庆龙,王良书,等.2010.松辽盆地构造演化与中国东部构造体制转换[J].56(2):180-195.
    郭志,高星,王卫民,等.2010.采用地震背景噪音成像技术反演天山及周边区域地壳剪切波速度结构[J].科学通报,55(26):2627-2634.
    何正勤,丁志峰,叶太兰,等.2001.中国大陆及其邻域地壳上地幔速度结构的面波层析成像研究[J].地震学报,24(6):596-603.
    何正勤,丁志峰,叶太兰,等.2002.中国大陆及其邻域的瑞利波群速度分布图象与地壳上地幔速度结构[J].地震学报,24(3):252-259.
    何正勤,苏伟,叶太兰,等.2004.云南地区的短周期面波相速度层析成像研究[J].地震学报,26(6):583-590.
    何正勤,张天中,叶太兰,等.2000.河北平原北部的短周期面波频散与地壳中上部速度结构[J].地震学报,22(1):82-86.
    黄忠贤,胥颐,郝天珧,等.2009.中国东部海域岩石圈结构面波层析成像[J].地球物理学报,52(3):653-662.
    江为为,周立宏,肖敦清,等.2006.东北地区重磁场与地壳结构特征[J].地球物理学进展,21(3):730-738.
    李红谊,刘福田,孙若昧,等.2001.中国大陆东部及海域地壳-上地幔结构研究[J].地震学报,23(5):471-479.
    李锦轶.1998.中国东北及邻区若干地质构造问题的新认识[J].地质评论,44(4):339-347.
    李昱,姚华建,刘启元,等.2010.川西地区台阵环境噪声瑞利波相速度层析成像[J].地球物理学报,53(4):842-852.
    李志安,闰义.2000.中国东北造山带-盆地系统动力学研究[J].大地构造与成矿学,24(1):31-37.
    刘国兴,张志厚,韩江涛,等.2006.兴蒙、吉黑地区岩石圈电性结构特征[J].中国地质,33(4):824-831.
    刘洋,刘财,杨宝俊,等.2008.松辽盆地北部纵波速度区域特征分析及深层油气问题[J].地球物理学进展,23(3):785-792.
    刘志坤,黄金莉.2010.利用背景噪声互相关研究汶川地震震源区地震波速度变化[J].地球物理学报,53(4):853-863.
    卢造勋,蒋秀琴,潘科,等.2002.中朝地台东北缘地区的地震层析成像[J].地球物理学报,45(3):338-351.
    卢造勋,夏怀宽.1993.内蒙古东乌珠穆沁旗-辽宁东沟地学断面[J].地球物理学报,36(6):765-772.
    牛雪,卢造勋,姜德录,等.2000.郯庐断裂带北带地区主要构造单元壳幔结构特征与地震活动性[J].地震学报,22(2):145-150.
    潘佳铁,吴庆举,李永华,等.2011.华北地区瑞雷面波相速度层析成像[J].地球物理学报,54(1):67-76.
    彭艳菊,苏伟,郑月军,等.2002.中国大陆及海域Love波层析成像[J].地球物理学报,45(6):792-801.
    宋仲和,陈国英,安昌强,等.1992.中国东部及其相邻海域S波三维速度结构.地球物理学报,35(3):316-330.
    宋仲和,陈国英,安昌强,等.1993.中国大陆及邻区海域瑞利波群速度分布特征[J].地震学报,15(1):32-38.
    滕吉文,胡家富,张中杰.1995.中国西北地区岩石层瑞利波三维速度结构与沉积盆地[J].地球物理学报,38(6):737-749.
    滕吉文,张中杰,胡家富,等.2001.中国东南大陆及陆缘地带的瑞利波频散与剪切波三维速度结构[J].地球物理学报,44(5):663-677.
    田有,刘财,冯晅.2011.中国东北地区地壳、上地幔速度结构及其对矿产能源形成的控制作用[J].地球物理学报,54(2):407-414.
    吴福元,葛文春,孙德有,等.2003.中国东部岩石圈减薄研究中的几个问题[J].地学前缘(中国地质大学,北京),10(3):51-60.
    熊小松,高锐,张兴洲,等.2011.深地震探测揭示的华北及东北地区莫霍面深度[J].地球学报,32(1):46-56.
    徐果明,李光品,王善恩,等.2000.用瑞利面波资料反演中国大陆东部地壳上地慢横波速度的三维构造[J].地球物理学报,43(3):366-376.
    徐果明,姚华建,朱良保,等.2007.中国西部及其邻域地壳上地幔横波速度结构[J].地球物理学报,50(1):193-208.
    杨宝俊,刘万崧,王喜臣,等.2005.中国东部大兴安岭重力梯级带域地球物理场特征及其成因[J].地球物理学报,48(1):86-97.
    杨宝俊,穆石敏,金旭,等.1996.中国满洲里-绥芬河地学断面地球物理综合研究[J].地球物理学报,39(6):772-783.
    杨宝俊,唐建人,李勤学,等.2003.松辽盆地隆起区地壳反射结构与“断开”莫霍界面[J].中国科学(D辑),33(2):170-176.
    张成科,张先康,赵金仁,等.2002.长白山天池火山区及邻近地区壳幔结构探测研究[J].地球物理学报,45(6):812-820.
    赵盼盼,陈九辉,刘启元,等.2012.汶川地震区地壳速度相对变化的环境噪声自相关研究[J].地球物理学报,55(1):137-145.
    郑秀芬,欧阳飚,张东宁,等.2009.“国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J].地球物理学报,52(5):1412-1417.
    朱介寿,曹家敏,严忠琼.2007.中国及邻区瑞利面波高分辨率层析成像及其地球动力学意义[J].中国地质,34(5):759-767.
    朱良保,熊安丽.2007.面波频散测量的频时分析法[J].地震地磁观测与研究,28(1):1-13.
    朱良保,许庆,陈晓非.2002.中国大陆及其邻近海域的Rayleigh波群速度分布[J].地球物理学报,45(4):475-482.
    庄真,邓大量.1987.勒夫波群速度频散与太平洋地壳及上地幔三维速度构造[J].地球物理学报,30:246-260.
    Aki K.1957.Space and time spectra of stationary stochastic waves with special reference tomicrotremors[J].Bulletin of the Earthquake Research Institute,35:415-456.
    Alexander S S.1963.Surface wave propagation in the western United State.[Ph.D.thesis],California Institute of Technology.
    Barmin M P,Ritzwoller M H,Levshin A L.2001.A fast and reliable method for surface wavetomography[J].Pure and Applied Geophysics,158:1351-1375.
    Bensen G D,Ritzwoller M H,Bamin M P,et a1.2007.Processing seismic ambient noise datato obtain reliable broad-band surface wave dispersion measurements[J].Geophys.J.Int.,169:1239-1260.
    Bensen G D,Ritzwoller M H,Shapiro N M.2008.Broadband ambient noise surface wavetomography across the United States[J].J.Geophys.Res.,113(B05306).
    Bensen G D,Ritzwoller M H,Yang Y J.2009.A3D shear velocity model of the crust anduppermost mantle beneath the United States from ambient seismic noise[J].Geophys.J.Int.,177(3):1177-1196.
    Brenguier F,Campillo M,Hadziioannou C,et al.2008(b).Postseismic relaxation along theSan Andreas fault at Parkfield from continuous seismological observation[J].Science,321:1478-1481.
    Brenguier F,Shapiro N M,Campillo M,et al.2008(a).Towards forecasting volcanic eruptionsusing seismic noise[J].Nature Geoscience,1:126-130.
    Campillo M,Paul A.2003.Long-range correlation in the diffuse seismic code.Science,299(5606):547-549.
    Chen J H,Froment B,Liu Q Y et al.2010.Distribution of seismic wave speed changes associatedwith the12May2008Mw7.9Wenchuan earthquake.Geophys.Res.Lett.,37:L18302.
    Ditmar P G,Yanovskaya T B.1987.Generalization of Backus Gilbert method for estimation oflateral variations of surface wave velocities[J].Izv.Phys.Solid Earth,23(6):470-477.
    Duvall T L,Jefferies S M,Harvey J W,et a1.1993.Time-distance helioseismology[J].Nature,362:430-432.
    Dziewonski A,Anderson D L.1984.Seismic tomography of earth’s interior[J].AmericanScientist,72:483-494.
    Dziewonski A,Bloch S,Landisman M.1969.A technique for the analysis of transient seismicsignals[J].Bull.Seis.Soc.Am.,59:427-444.
    Feng C C,Teng T L.1983.Three-dimensional crust and upper mantle structure of the EurasianContinent[J].J.Geophys.Res.,88:2261-2273.
    Haskell N A.1953.The dispersion of surface waves on multilayered media[J].Bul.Seis.Soc.Am.,43:17-43.
    Herrmann R B,Ammon C J.2002.Computer programs in seismology:Surface Waves,ReceiverFunctions and Crustal Structure [M].Missouri:StLouis University,StLouis,MO,USA.
    Huang J L,Zhao D P.2006.High-resolution mantle tomography of China and surroundingregions[J].J.Geophys.Res.,111(B09305).
    Huang Z X,Su W,Peng Y J,et al.2003.Rayleigh wave tomography of China and adjacentregions[J].J.Geophys.Res.,108(B2).
    Landisman M,Dziewonski A,Sato Y.1969.Recent improvements in the analysis of surfacewave observations[J].Geophys.J.R.Astron.Soc.,17:369-403.
    Li H Y,Wei S,Wang C Y,et al.2009.Ambient noise Rayleigh wave tomography in westernSichuan and eastern Tibet[J].Earth and Planetary Science Letters,282:201-211.
    Liang C T,Langston C A.2008.Ambient seismic noise tomography and structure of easternNorth America[J].J.Geophys.Res.,113(B03309).
    Liang C T,Song X D,Huang J L.2004.Tomographic inversion of Pn travel times inChina[J].J.Geophys. Res.,109(B11304).
    Lin F C,Moschetti M P,Ritzwoller M H.2008.Surface wave tomography of the western UnitedStates from ambient seismic noise:Rayleigh and Love wave phase velocitymaps[J].Geophys.J.Int.,173:281-298.
    Liu Z K,Huang J L,Li J J.2010.Comparison of four techniques for estimating temporal changeof seismic velocity with passive image interferometry[J].Earthq.Sci.,23:511-518.
    Lobkis O I,Weaver R L.2001.On the emergence of the Green’s function in the correlations of adiffuse field[J].J.Acoust.Soc.Am.,110(6):3011-3017.
    Moschetti M P,Ritzwoller M H,Lin F C,et al.2010.Crustal shear velocity structure of thewestern US inferred from amient noise and earthquake data[J].J.Geophys.Res.,115(B10306).
    Nakanishi I,Anderson D L.1982.Worldwide distribution of group velocity of mantle Rayleighwaves as determined by spherical harmonic inversion[J].Bull.Seis.Soc.Am.,72:1185-1194.
    Niu Y L.2005.Generation and evolution of basaltic magmas:Some basic concepts and a newview on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China[J].GeologicalJournal of China Universities,11:9-46.
    Paige C C,Saunders M A.1982a.LSQR:An algorithm for sparse linear equations and leastsquares problems[J].ACM Trans.Math.Software,8(1):43-71.
    Paige C C, Saunders M A.1982b. LSQR: Sparse linear equations and least squaresproblems[J].ACM Trans.Math.Software,8(2):195-209.
    Ritzwoller M H, Levshin A L.1998. Eurasian surface wave tomography: Groupvelocities[J].J.Geophys.Res.,83:4839-4878.
    Sato Y.1955.Analysis of dispersed surface wave,I [J].Bull.Earthq.Res.Inst.Tokyo Univ.,33:33-47.
    Sato Y.1956a.Analysis of dispersed surface wave,Ⅱ[J].Bull.Earthq.Res.Inst.Tokyo Univ.,34:9-18.
    Sato Y.1956b.Analysis of dispersed surface wave,Ⅲ[J].Bull.Earthq.Res.Inst.Tokyo Univ.,34:131-138.
    Sato Y.1958.Atenuation dispersion and the wave guide of the G wave[J].Bull.Seis.Soc.Am.48:231-251.
    Schwab F,Knopoff L.1972.Fast surface wave and free mode computations[M].“Methods incomputational physics”[Bolt A ed.].New York:Academic Press,11:87-180.
    Sens-Sch nfelder C,Wegler U.2006.Passive Image Interferometry and seasonal variations ofseismic velocities at Merapi volcano,Indonesia[J].Geophys.Res.Lett.,33(21):L21302.
    Shapiro N M,Campillo M.2004.Emergence of broadband Rayleigh waves from correlations ofthe ambient seismic noise[J].Geophys.Res.Lett.,31:L07614.
    Shapiro N M,M Campillo,L Stehly,et al.2005.High resolution surface wave tomography fromambient seismic noise[J].Science,307(5715):1615-1618.
    Shapiro N M,Ritzwoller M H.2002.Monte-Carlo inversion for a global shear velocity model ofthe crust and upper mantle[J].Geophys.J.Int.,151:88-105.
    Snieder R A.2004.Extracting the Green’s function from the correlation of coda waves:Aderivation based on stationary phase[J].Phys.Rev.E,69(046610).
    Stehly L,Campillo M,Shapiro N M.2006.A study of the seismic noise from its long-rangecorrelation properties[J].J.Geophys.Res.,111(B10306).
    Tarantola T,Nercessian A.1984.Three-dimensional inversion without blocks[J].Geophys.J.R.astr.Soc.,76:299-306.
    Wapenaar K.2004.Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneousmedium by cross correlation[J].Phys.Rev.Lett.,93:254301.
    Weaver R L,Lobkis O I.2001.Ultrasonic without a sourse:thermal fluctuation correlations atMHz frequencies[J].Phy.Rev.Lett.,87(13):134301.
    Wu F Y,Walker R J,Ren X W,et al.2003.Osmium isotopic constraints on the age of lithosphericmantle beneath northeastern China[J].Chem.Geol.,196107-129.
    Xu G M.1988.Spherical Radon Transform[J].Geophysical Journal.95(2):361-370.
    Yang Y J,Li A B,Ritzwoller M H.2008.Crustal and uppermost mantle structure in southernAfrica revealed from ambient noise and teleseismic tomography[J].Geophys.J.Int.,174:235-248.
    Yang Y J,Ritzwoller M H,Levshin A L,et al.2007.Ambient noise Rayleigh wave omographyacross Europe[J].Geophys.J.Int.,168:259-274.
    Yanovskaya T B,Ditmar P G.1990.Smoothness criteria in surface wave tomography[J].Geophys.J.Int.,102:63-72.
    Yao H J,Van Der Hilst R D,de Hoop M V.2006.Surface-wave array tomography in SE Tibetfrom ambient noise and two-station analysis-I. Phase velocity maps[J].Geophys.J.Int.,166(2):732-744.
    Zhang Y S,Tanimoto T.1992.Ridges,hotspots and their interaction as observed in seismicvelocity maps[J].Nature,355:45-49.
    Zheng S H,Sun X L,Song X D,et al.2008.Surface wave tomography of China from ambientseismic noise correlation[J].Geochemistry,Geophysics,Geosystems,(95):2008GC001981.
    Zheng Y,Shen W S,Zhou L Q,et al.2011.Crust and uppermost mantle beneath the North ChinaCraton,northeastern China,and the Sea of Japan from ambient noise tomography[J].J.Geophys.Res.,116(B12312).
    Zhou L Q,Xie J Y,Shen W S,et al.2012.The structure of the crust and uppermost mantlebeneath South China from ambient noise and earthquake tomography[J].Geophys.J.Int.,189(3):1565-1583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700