用户名: 密码: 验证码:
川西地区地壳三维速度结构环境噪声高分辨率地震成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川西高原地处青藏高原东部边缘。川西地区高分辨率的地壳上地幔三维速度结构探测研究对于青藏高原动力学和大陆内部块体边界动力学来说无疑具有至关重要的意义。近年来,川西地区已成为青藏高原动力学和大陆内部块体边界动力学研究的热点。与之相应的地球物理探测工作也十分活跃。但是,由于台站覆盖区域及空间分辨率的限制,前期发表的研究结果对于全面了解川西高原地壳上地幔速度结构的横向变化仍存在较大的局限性。
     另一方面,川西高原也是中国大陆地震活动最为频繁的一个地区。川西地区高分辨率的地壳上地幔结构对于研究这一地区地震成因背景和地震形成的机理具有不可替代的作用。特别是,2008年5月12日在龙门山断裂带发生了汶川Ms8.0地震。这进一步激发了人们对这一地区深部构造背景研究的兴趣。一系列有关龙门山断裂带及其邻域的地壳上地幔三维速度结构的最新研究结果陆续发表。这些研究成果对于进一步理解汶川大震区及其邻域的地壳上地幔速度结构和汶川大地震的动力学背景无疑具有重要的参考意义。但是,比较不同作者给出的结果,我们不难发现它们之间尚存在不同程度的矛盾和差异。
     自2006年10月起,在国家重大基础研究项目(973)的支持下,中国地震局地质研究所地震动力学国家重点实验室在川西地区(26°N-32°N,100°E-105°E)布设了由297台宽频带数字地震仪组成的流动观测台阵(以下简称川西台阵),获得了汶川Ms8.0地震前后完整的地震活动的观测记录。这为利用天然地震数据研究川西地区三维高分辨率地壳上地幔速度结构图像积累了新的宝贵资料。
     利用川西台阵观测的远震P波波形数据和非线性接收函数方法,刘启元等(2009)已经给出了穿越汶川地震震中区(沿31°N)的二维地壳上地幔S波速度结构及地壳的平均泊松比。利用远震P波走时层析成像方法,郭飚等(2009)给出了川西地区(29°N-32°N,100°E-105°E)400km深度范围内地壳上地幔的三维P波速度结构。由于各种地球物理反演方法往往存在程度不同的非唯一性。对同一区域,采用不同数据源和多种地球物理反演技术研究其地下速度结构无疑成为解决这一问题最有效的途径。
     近年来,跨学科研究表明,通过对长时间段内的环境噪声进行互相关运算,可以提取接收点间的格林函数。环境噪声层析成像通过对两个台站长时间的环境地震噪声进行互相关计算提取台站间的格林函数,从而获取面波频散特征,并进一步通过地震面波层析成像获得地球内部的速度结构。利用环境地震噪声提取台站间的格林函数的工作由Shapiro等人于2005年取得了成功。此后,环境噪声的层析成像技术获得了快速发展,并成为广泛关注和研究的热点。特别是,利用环境噪声进行浅层面波成像的方法得到了广泛应用。环境噪声层析成像技术为利用密集台阵进行地下速度结构的高分辨率地震成像提供了新的途径。
     本文系统阐述了由环境噪声数据提取经验格林函数以及瑞雷波相速度图像的理论和方法,介绍了面波非线性全局搜索反演的近邻算法,并利用2007年1月-2007年12月川西台阵29°N以北的156个台站记录的环境地震噪声数据和姚华建等(2004)提出的基于图像分析的相速度频散曲线快速提取方法,筛选并得到11,358条瑞雷波相速度频散曲线。在此基础上,利用瑞雷波相速度层析成像技术及面波速度结构反演方法,研究了川西台阵下方高分辨率的地壳三维横波速度结构。本文得到的结果为研究川西高原和四川盆地的地壳结构提供了新的独立观测证据,为进一步的深入研究提供了重要的约束。
     本文对从环境噪声数据提取相速度频散曲线的方法作了如下改进:1)川西台阵覆盖区域的地形复杂,且在龙门山断裂带的两侧地形高差变化很大;为此,在计算相速度频散曲线时考虑了相应的高程修正;2)为了更好地获取近距离台站的相速度频散信息,改进了经验格林函数提取相速度频散曲线时所用的滤波窗,使其能够更好地压制经验格林函数曲线上零点附近的强振幅波形。经过上述处理,频散曲线的短周期部分有了较大改善。
     关于环境噪声面波层析成像方法,本文研究得到以下几点认识:
     1)作为一种无源方法,环境噪声面波层析成像摆脱了天然地震研究方法对于震源参数的依赖,只要有足够长时间连续的地震噪声的观测记录,就可以通过互相关方法提取到质量较好的格林函数。
     2)利用密集台阵环境噪声数据的地震成像的分辨率大大优于经典面波成像的结果,而观测台阵的合理布局对于射线路径均匀覆盖研究区域,充分发挥环境噪声方法的优势至关重要。观测台站的布设格局决定了射线路径的分布,台站密度决定了能够提取的射线路径的数量,而台站孔径和密度则决定了提取的面波频散曲线的频带宽度。
     3)由于10s-20s周期段的噪声源主要来自于海浪,导致互相关函数的振幅呈现与季节相关的时间变化。但是,这并不影响相位信息整体的稳定性,从经过正向和逆向叠加处理的经验格林函数中提取的相速度信息仍然是可靠的。
     4)环境噪声方法也有其自身的局限性,目前得到周期40s以上的信息仍比较困难,以至于仅用环境噪声数据的地震成像深度难以超越地壳的范围。除非与其他地震观测数据相结合,这种方法目前尚难以独立用于超过一般地壳深度范围的地震层析成像。另外,环境噪声互相关函数的短周期部分(<10s)在0时刻附近往往出现一段振幅较强的波形。当台站间距很小(如小于30km)的时候,该波形将会干扰后续的信号,影响频散曲线的提取。
     利用面波相速度层析成像方法,本文给出了川西地区0.25°x0.250周期2s-35s的瑞雷波相速度分布,并利用近邻算法反演了273个格点的瑞雷波相速度分布,我们得到了川西地区的地壳三维横波速度结构。本文的成像结果表明,观测台阵覆盖的川滇地块、松潘—甘孜地块和四川盆地的地壳速度结构具有显著差异和各自不同的特点。具体表现为:
     1)浅部2km-8km深度的S波速度结构(相应于短周期2s-8s相速度分布)与地表构造特征相吻合,作为川滇地块、松潘—甘孜地块和四川盆地之间的边界断裂,龙门山断裂带和鲜水河断裂带对上述三个地块上地壳的速度结构具有明显的控制作用,四川盆地前陆低速特征表明相应区域存在较厚的沉积盖层,厚度约为8km-10km。
     2)中上地壳8km-20km的S波速度结构(相应于中周期12s-18s相速度分布)表明,川滇地块和松潘—甘孜地块中上地壳速度结构存在明显的不均匀横向变化,并形成了尺度不同,高低速相间的分块结构,而四川盆地中地壳S波速度整体高于另外两个块体。
     3)中下地壳20km-40km的S波速度结构(相应于长周期25s-35s相速度分布)表明,松潘—甘孜地块,特别是川滇地块中下地壳表现出具有比较广泛的低速分布,意味着它们的中下地壳相对软弱,而四川盆地的中下地壳呈现整体性的高速特征,意味着四川盆地具有比较坚硬的中下地壳;并且以汶川地震的震中为界,龙门山断裂带的地壳结构显示了北段为高速、南段为低速的分段特征。
     4)周期大于12s的相速度分布表明,随着周期的加大,龙门山断裂带与鲜水河断裂带及安宁河断裂带交汇处东侧高速异常区逐渐增大,表明川滇地块运动方向的改变应与四川盆地坚硬地壳的阻挡作用密切相关。
     5)本文得到的相速度成像结果与相应的地壳上地幔瑞雷波地震反演的结果是吻合的,同时它们也与相应的接收函数反演结果基本一致。本文利用环境噪声数据得到的瑞雷波相速度频散数据可以为研究川西台阵下方地壳结构,特别是对接收函数反演,提供重要的有价值的约束。
     6)本文给出的研究区下方的地壳三维S波速度结构表明,川滇地块的中下地壳具有大面积分布的S波低速区,这对该地区存在中下地壳的通道流的推断是一个有力的支持。但是,在松潘—甘孜地块内,其地壳速度结构相对来说较为复杂,尽管该地区中下地壳也存在大面积的S波低速区,但通道流模型(Channel flow)是否能够解释该地区的地壳变形仍有待进一步的深入研究和更高分辨率的实验证据。尽管如此,松潘—甘孜地块的中下地壳强度应明显小于四川盆地相应深度范围的地壳强度,这意味着松潘—甘孜地块向东逃逸受到了四川盆地坚硬的中下地壳的阻挡。本文的结果为这一推断提供了高分辨率地壳三维速度结构的证据,并为进一步的动力学数值模拟研究奠定了重要基础。
The western Sichuan plateau is located on the eastern margin of Tibetan Plateau. In recent years, the western Sichuan has become the key region for understanding the dynamics of the Tibetan Plateau and the continental block boundaries, so that the geophysical explorations are very active in this area, because the high-resolution imaging of the crustal and upper mantle velocity structure beneath the western Sichuan region is very important for the dynamics of the Tibetan Plateau and active blocks in the continent.
     On the other hand, the western Sichuan plateau is a high-seismicity region in China's continent. The high-resolution seismic imaging of the crustal and upper mantle velocity structure beneath this area also plays a key role in understanding the genesis of earthquakes in this region. However, limited to the station coverage, the resolution of the early published results is poor. In particular, the occurrence of the Wenchuan earthquake (Ms8.0) in May 12th of 2008 motivates again the great interest to explore the crustal structure beneath the western Sichuan region. Although a series of new results have been published about this issue, they are different given by different authors.
     Before the Wenchuan earthquake, the State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration carried out the deployment of a dense movable array composed of 297 broadband seismic stations in the western Sichuan (26°N-32°N,100°E-105°E) in October of 2006 (called the Western Sichuan Array hereafter). Its main task originally was to carry out high-resolution integrative seismic studies of the crust and upper mantle structure underneath the western Sichuan, as a part of the project entitled "Dynamic process and prediction of large earthquakes on active block boundaries" and funded by the National Basic Research Program (called 973 Program, for short). The Western Sichuan Array has collected a big amount of data, including the records before and after the Wenchuan earthquake. These data are great valuable for investigating the 3D high-resolution crust and upper mantle structure beneath the western Sichuan.
     In terms of the non-linear receiver function inversion technique, Liu et al. (2009) presented the 2-D S-wave velocity structure of crust and upper mantle and the average Poisson's ratio over the crust along the 31°N profile through the Wenchuan earthquake epicenter from the Western Sichuan Array data. By using teleseismic P-wave traveltime tomography technique, Guo et al. (2009) presented the 3D P-wave velocity structure of the crust and upper mantle within the depth range of 400km beneath the western Sichuan region. To overcome the non-uniqueness of geophysical inversions, the investigation of the crustal velocity structure beneath a region from different data by using different methods will be the most efficient.
     Recent studies show that surface-wave Green's function between two seismograph stations can be estimated from the long-time cross-correlation of ambient seismic noise. Ambient noise tomography is a method that obtains the surface wave dispersion by the long-time cross-correlation of ambient seismic noise between two seismograph stations and then yields the Earth's interior velocity structure by the surface wave tomography technique. Shapiro et al. (2005) successfully extracted from the ambient seismic noise cross-correlation function by using group velocity dispersion. Since then, the technique of ambient noise tomography has been developing rapidly and become widespread concerned. In particular, ambient seismic noise has been widely used for surface wave tomography of shallow underground structure. Ambient noise tomography technology provides a new way to obtain the high-resolution underground velocity structure by use of the dense seismic array.
     In this thesis, the theory and method of extracting empirical Green's functions (EGFs) and then obtaining Rayleigh wave phase velocity tomography through a long-time ambient noise cross-correlation are introduced. And also the neighbourhood algorithm (NA) as a global searching method for non-linear inversion is mentioned. By use of the image transformation technique of measuring interstation phase velocity dispersion presented by Yao et al. (2005), we have selected 11,358 of Rayleigh wave phase velocity dispersion curves. On this basis, we studied the high-resolution 3-D shear velocity of crustal structure in western Sichuan by using Rayleigh-wave phase velocity tomography and velocity structure inversion. Our results provide a new independent evidence to study the crustal structure of the western Sichuan plateau and the Sichuan Basin, and important constraints are given for further study.
     The method of measuring phase velocity dispersion curves from ambient noise is improved here as followed: 1) The Western Sichuan region has complex terrain, and both sides of the Longmen Shan faults have dramatic elevation differences. Therefore, the corrections of elevation are considered while calculating the distance between station pairs.2) In order to gain the phase velocity dispersion of stations at short range, we have improved the filter window for extracting phase velocity dispersion curves from the EGFs so that the strong amplitude around the zero point of EGFs can be more effectively suppressed. After the above process, the short-period dispersion curves are greatly improved.
     By means of ambient seismic noise tomography, our results can be summarized as follows:
     1) As a passive method without earthqukes, surface-wave tomography from ambient seismic noise can be free from the dependence of the natural seismic source parameters. Only if the continuous records of seismic noise are long enough, the high quality EGFs will be extracted by cross-correlation.
     2) The resolution of ambient seismic noise tomography by use of the dense seismic array is much better than the results from traditional surface-wave tomography. The intensive and uniform distribution of dispersion curves is very important to high-resolution surface-wave tomography.
     3) The seismic noise sources in periods of 10s-20s are mainly from sea waves, which lead to amplitude variations of cross-correlation relataed to seasonal changes. However, phase velocity dispersion curves will be still reliable, if they are extracted from the superposition of the positive and negative branches of EGFs.
     4) The method of ambient seismic noise tomography also has its own limitations known as the difficulties to obtain the information of periods above 40s, so that it is almost impossible to image the depth beyond the crust only by ambient noise data. Otherwise, the strong amplitude around the zero point of cross-correlation functions can disturb the signals if two stations are very close to each other (e.g., the distance of station-pair is less than 30km)
     By means of surface-wave tomography from ambient seismic noise, we obtained the Rayleigh wave phase velocity maps in periods of 2-35s divided by grids of 0.25°×0.25°. And then we achieved the 3-D S-wave velocity structure of the crust in western Sichuan from NA inversion of the 273 grid points of Rayleigh wave phase velocity distribution. Our results manifest the significant discrepancies between the crustal structures of the Chuandian block, Songpan-Garze block and Sichuan basin, which can be summarized as follows.
     1) The S-wave velocity structure of shallow crust in a depth range of 2km-8km (corresponding to the short-period phase velocity distribution of 2s-8s) is consistent with the surface structural features. As boundaries of the Chuandian block, Songpan-Garze block and Sichuan Basin, the Longmen Shan faults and Xianshuihe faults have performed significant control effects to them. The evident low-velocity structure of the foreland in the Sichuan basin suggests that thick sedimentary layer does exist as a thickness of about 8km-10km.
     2) The S-wave velocity structure of the upper-middle crust in a depth range of 8km-20km (corresponding to the intermediate period phase velocity distribution of 12s-18s) shows that the S-wave velocity structure of upper-middle crust in the Chuandian block and Songpan-Garze block exists obvious non-uniform lateral variations with sub-blocks of different scales and high-low velocity variation. The S-wave velocity of the middle crust in the Sichuan Basin as a whole is higher than the other two blocks.
     3) The S-wave velocity structure of the middle-lower crust in a depth range of 20km-40km (corresponding to the long period phase velocity distribution of 25s-30s) shows that the middle-lower crust of Songpan-Garze block, especially Chuandian block has a relatively wide range of low velocity distribution, which means they are relative weak in the lower crust. And the crust of the Sichuan Basin shows overall high-velocity characteristics, which means the Sichuan Basin has a relatively rigid middle-lower crust. Divided by the epicenter of Wenchuan earthquake, the crustal structure of the Longmen Shan fault shows that the high-velocity feature in the northern part and low-velocity feature in the southern part.
     4) Phase velocity maps of period above 12s showed that with the periods increased, the east side of the junction of the Longmen Shan fault, Xianshuihe faults and Anning fault appears gradually increasing high-velocity anomaly. It indicats the direction changes of the Chuandian block movement should be closely related to the hard crustal blocking from Sichuan Basin.
     5) Our results from phase velocity imaging and the S wave velocity inversion of the crust and upper mantle structure fit well with each other. Meanwhile, they are also basically similar with the results from receiver function's inversion. The Rayleigh wave phase velocity dispersion from ambient seismic noise can provide important and valuable constraints for exploring the crustal structure beneath the Western Sichuan Array, especially for receiver function's inversion.
     6) The 3-D S-wave velocity structure of the study area shows that the middle and lower crust of the Chuandian block have a large area of S-wave low-speed zone distribution, which can support the Channel flow conjecture in this area. But the S-wave velocity structure of crust in the Songpan-Garze block is relatively complex. Although a large area of S-wave low-speed zone distribution also exists in the middle and lower crust of the Songpan-Garze block, whether the Channel flow model can explain the crustal deformation or not still needs further research and higher resolution exploration. However, the middle and lower crust of the Songpan-Garze block is evidently weaker than the corresponding depth of the Sichuan Basin, which means the eastward escaped Songpan-Garze block is resisted by the hard middle and lower crust of the Sichuan Basin. Our results have provided the evidenced of the above deductions by a high-resolution 3-D crustal velocity structure and laid an important foundation for further study of the dynamics simulations.
引文
陈学波,吴跃强,杜平山等.1988.龙门山构造带两侧速度结构特征.见:国家地震局科技监测司编.中国大陆深部构造的研究与进展.北京:地震出版社,97-113.
    陈九辉,刘启元,李顺成等,2009.汶川Ms8.0地震余震序列重新定位及其地震构造研究.地球物理学报,52(2):390-397.
    陈国英,宋仲和,安昌强等,1995.中国北部及其邻区地壳上地幔三维速度结构.地球物理学报,38(3):311-328.
    陈国英,曾融生,吴大铭等,1992.青藏高原瑞雷面波相速度与深部结构的横向变化.地震学报,14(增刊):565-572.
    邓起东,陈社发,赵小麟.1994.龙门山及其邻区的构造和地震活动及动力学,地震地质,16(4):389-403
    陈运泰,许力生,张勇等,2008.2008年5月12日汶川特大地震震源特性分析报告.http://www.csi.ac.cn/sichuan/chenyuntai.pdf (2008-5-25)
    房立华,2009.华北地区瑞雷面波噪声层析成像研究.博士论文,中国地震局地球物理研究所.
    房立华,吴建平,吕作勇,2009.华北地区基于噪声的瑞雷面波群速度层析成像.地球物理学报,52(3):663-671.
    冯锐,朱介寿,丁韫玉等,1981.利用地震面波研究中国地壳结构.地震学报,3(4):335-350.
    郭飚,刘启元,陈九辉等,2009.川西龙门山及邻区地壳上地幔远震P波层析成像.地球物理学报,52(2):346-355.
    雷建设,赵大鹏,苏金蓉等,2009.龙门山断裂带地壳精细结构与汶川地震发震机理.地球物理学报,52(2):339-345.
    李光品,徐果明,高尔根等,2000.中国东部地壳上地幔横波品质因子的三维层析成像.地震学报,22(1):73-81.
    刘启元,1985.美国大陆岩石圈的地震台阵研究计划[J],地震地质译丛,8(6):21-24.
    刘启元,1986.美国大陆岩石圈的地震台阵研究计划,地震地质译丛,8(6):21-24.
    刘启元,2000.高分辨率地震成像研究—21世纪地震学发展的重要趋势[J],国际地震动态No.4,9-11.
    刘启元,陈九辉,李顺成等,2008.汶川Ms8.0地震:川西流动地震台阵观测数据的初步分析.地震地质,30(3):584-596.
    刘启元,李昱,陈九辉等,2009.汶川M,8.0地震:地壳上地幔S波速度结构的初步研究.地球物理学报,52(2):309-319.
    鲁来玉,何正勤,丁志峰等,2009.华北科学探测台阵背景噪声特征分析.地球物理学报,52 (10):2566-2572, DO1:10.3969/j.issn.0001-5733.2009.10.015.
    齐诚,陈棋福,陈颙,2007.利用背景噪声进行地震成像的新方法.地球物理学进展,22(3):771-777.
    瞿辰,朱介寿,蔡学林,2003.青藏地区面波高分辨率层析成像.物探与化探,27(1):73-78.
    宋仲和,陈国英,安昌强等,1993.中国大陆及其海域地壳-上地幔三维速度结构.中国科学(B),23(2):180-188.
    滕吉文,胡家富,张中杰,1995.中国西北地区岩石层瑞雷波三维速度结构与沉积盆地.地球物理学报,38(6):737-749.
    王卫民,赵连锋,李娟等,2008.四川汶川8.0级地震震源过程.地球物理学报,51
    (5):1403-1410.
    王椿镛,吴建平,楼海等,2003.川西藏东地区的地壳P波速度结构.中国科学(D辑),33(增刊):181-189.
    王椿镛,楼海,吕智勇等,2008.青藏高原东部地壳上地幔S波速度结构—下地壳流的深部环境.中国科学D辑,38(1):22-32.
    王琪,张培震,Freymueller J. T.,等,2001.中国大陆现今地壳运动和构造变形.中国科学,D辑,31(7):529-536.
    王小亚,符养,2002.GPS监测的中国及其周边现时地壳形变.地球物理学报,45(2):198-209.
    闻学泽,张培震,杜方等,2009.2008年汶川8.0级地震的历史与现今地震活动背景.地球物理学报,52(2):444-454.
    吴建平,曾融生,1996.青藏高原东部地区Q值结构反演,地震学报,18,208-214.
    吴建平,黄媛,张天中等,2009.汶川Ms8.0级地震余震分布及周边区域P波三维速度结构研究.地球物理学报,52(2):320-328.
    徐果明,1989.沿球面大圆的积分逆变换及其应用.地球物理学报,32(2):153-162.
    徐果明,李光品,王善恩等,2000.用瑞雷面波资料反演中国大陆东部地壳上地幔横波速度的三维构造.地球物理学报,43(3):366-375
    徐果明,姚华建,朱良保等,2007.中国西部及其邻域地壳上地幔横波速度结构.地球物理学报,50(1):193-208.
    徐锡伟,闻学泽,叶建青等,2008.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,30(3):597-629.
    胥颐,黄润秋,李志伟等,2009.龙门山构造带及汶川震源区的S波速度结构.地球物理学报,52(2):329-338.
    许志琴,侯立玮,王宗秀等,1992.中国松潘-甘孜造山带的造山过程.北京:地质出版社.
    许志琴,杨经绥,姜枚,1999.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,6(3),139-151.
    姚振兴,李白基,梁尚鸿等,1981. 青藏高原地区瑞雷波群速度和地壳构造.地球物理学报,24(3):287—295
    姚华建,徐果明,肖翔等,2004.利用基于图像分析的双台面波相速度频散曲线快速提取方法.地震地磁观测与研究,25(1):1-8.
    易桂喜,姚华建,朱介寿等,2008.中国大陆及邻区Rayleigh面波相速度分布特征.地球物理学报,51(2):402-411.
    张培震,徐锡伟,闻学泽等,2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,51(4):1066-1073.
    张勇,冯万鹏,许力生等.2008.2008年汶川大地震的时空破裂过程.中国科学D辑:地球科学,38(10):1186-1194.
    周兵,朱介寿,秦建业,1991.青藏高原及邻近区域s波三维速度结构.地球物理学报, 34(4):426-441.
    朱介寿,2008.汶川地震的岩石圈深部结构与动力学背景.成都理工大学学报(自然科学版),35(4):348-356.
    朱介寿,曹家敏,蔡学林等,2002.东亚及西太平洋边缘海高分辨率面波层析成像.地球物理学报,45(5):646-664.
    朱良保,许庆,陈晓非,2002.中国大陆及邻近海域的Rayleigh波群速度分布.地球物理学报,45(4):475-482.
    Aki K.,1957. Space and time Spectra of stationary stochastic waves, with special reference to microseisms. Bull. Earthquake Res. Inst. Univ. Tokyo,35,415-456.
    Aki K., Richards P. G.,1980. Quantitative Seismology, Theory and methods. Vol.1, W. H. Freeman. San Francisco, CA.
    Ammon, C. J., G. E. Randall, and G. Zandt (1990), On the nonuniqueness of receiver function inversion, J. Geophys. Res.,95 (B10),15,303-15,318.
    Bakulin A., Calvert R.,2006. The virtual source method:theory and case study. Geophysics, 71 (4), SI139-SI150.
    Bardos C., Garnier J., Papanicolaou G.,2008. Identification of Green's functions singularities by cross correlation of noisy signals. Inverse Problems,24,015011.
    Beghein C., Resovsky J. S., Trampert J.,2002. P and S tomography using normal-mode and surface wave data with a neighbourhood algorithm. Geophys. J. Int.,149,646-658.
    Bensen G. D., Ritzwoller M. H., Barmin M. P., et al,2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int.,169 (3):1239-1260.
    Bensen G. D., Ritzwoller M. H., Shapiro N. M.,2008. Broadband ambient noise surface wave tomography across the United States. J. Geophys. Res.,113, doi:10.1029/2007 JB005248.
    Bostock M. G., Rondenay S.,1999. Migration of scattered teleseismic body waves. Geophys. J.Int.,137,732-746.
    Bourjot L., Romanowicz B.,1992. Crust and upper mantle tomography in Tibet using surface waves. Geophys. Res. Let.,19:881-884.
    Brandon C., Romanowicz B. A.,1986. "No-lid" zone in the central Chang-Thang platform of Tibet:Evidence from pure path velocity mensurements of long-period Rayleigh waves. J. Geophys. Res.,91:6547-6564.
    Brenguier F., Shapiro N. M., Campillo M., Nercessian A., Ferrazzini V.,2007.3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlation. Geophys. Res. Let,34, L02305, doi:10.1029/2006GL028586.
    Brocher T. M.,2005. Empirical relations between elastic wavespeeds and density in the Earth's Crust. Bull. Seism. Soc. Am.,95 (6),2081-2092.
    Bromirski P. D., Duennebier F. K., Stephen R. A.,2005. Mid-ocean microseisms. Geochem. Geophys. Geosyst.,6, Q04009, doi:10.1029/2004GC000768.
    Burchfiel B. C., Chen Z., Liu Y., et al.,1995. Tectonics of the Longmen Shan and adjacent regions. Int. Geol. Rev.,37:661-735.
    Burchfiel B. C.,2003. New technology:New geological challenges. Geo. Soc. Amer. Today, 14 (2):4-10.
    Burchfiel B. C., Royden L. H., van der Hilst R. D., Hager B. H., Chen Z., King Q. W., Li C., Lu J., Yao H., Kirby E., 2008. A geological and geophysical context for Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today,18 (7), doi:10.1130/GSATG18 A.1.
    Campillo M., Paul A.,2003. Long-Range correlations in the diffuse seismic coda. Science, 299 (5606):547-549.
    Cara M.,Leveque J.,1987. Waveform inversion using secondary observables. Geophys. Res. Let.,14:1046-1049.
    Chen Z., Burchfiel B.C., Liu Y., et al.,2000. Global positioning system measurements from eastern Tibet and their implications for India-Eurasia intercontinental deformation.J. Geophys. Res.,105 (B7):16215-16227.
    ChoⅠ., Tada T., Shinozaki Y.,2006. A generic formulation for microtremor exploration methods using three-component records from a circular array. Geophys. J. Int.,165,236-258.
    Claerbout J. F.,1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics,33 (2),264-269, doi:10.1190/1.1439927.
    Cole S.,1988. Examination of a passive seismic dataset using beam steering. SEP,57,417-426.
    Cole S.,1995. Passive seismic and drill-bit experiments using 2-D arrays. Ph.D. thesis, Stanford University.
    Colin de Verdiere Y.,2006a. Mathematical models for passive imaging Ⅰ:general background. URL:http://fr.arxiv.org/abs/math-ph/0610043/.
    Colin de Verdiere Y.,2006b. Mathematical models for passive imaging Ⅱ:Effective Hamiltonians associated to surface waves. URL: http://fr.arxiv.org/abs/mathph/0610044/.
    Curtis A., Trampert J., Snieder R.,1998. Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures. J. Geophys. Res.,103:26919-26947.
    Curtis A., Woodhouse J. H.,1997. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from the inter-event surface wave phase velocity inversion. J. Geophys. Res.,102:11789-11813.
    Dahlen F. A., Tromp J.,1998. Theoretical Global Seismology. Princeton Univ. Press, Princeton, New Jersey.
    Dahlen F., Hung S. H., Nolet G.,2000. Frechet kernels for finite-frequency traveltimes-I. Theory. Geophys. J. Int.,141,157-174.
    De HoopM. V., De Hoop A. T.,2000. Wave-field reciprocity and optimization in remoting sensing. Proc. R. Soc. Lond. A (Math. Phys. Eng. Sci.),456,641-682.
    De Hoop M. V., van der Hilst R. D.,2005. On sensitivity kernels for'wave-equation' transmission tomography. Geophys. J. Int.,160,621-633.
    De Hoop M. V., Solna K.,2008. Estimating a Green's function from field-field correlations in a random medium. SIAM J. Appl. Math.,69 (4),909-932.
    Derode A., Larose E., Campillo M., et al.,2003. How to estimate the Green's function of a heterogeneous medium between two passive sensors? Application to acoustic waves. Appl. Phys. Letts.,83 (15):3054-3056.
    Dewey J. F., Shackleton R. M., Chang C., Sun Y.,1988. The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. London, Ser. A,327,379-413.
    Duvall T. L., Jefferies S. M., Harvey J. W., Pomerantz M. A.,1993. Time-distance helioseismology. Nature,362,430-432.
    Dziewonski A., Bloch S., Landisman M.,1969. A technique for the analysis of transient seismic signals. Bull. Seism. Soc. Am.,59,427-444.
    Dziewonski A. M., Anderson D. L.,1981. Preliminary reference Earth model. Phys. Earth Planet. Interiors,25,297-356.
    Ekstrom G. J.,2000. Mapping the lithosphere and asthenosphere with surface waves:Lateral structure and anisotropy. Geophys. Monogr. Ser.,121,239-255.
    Ekstrom G. J., Tromp J. E., Larson W. F.,1997. Measurements and global models of surface wave propagation. J. Geophys. Res.,102:8137-8158.
    Engdahl E.R.,van der Hilst R. D.,Buland R. P.,1998. Global teleseismic earthquake relocation from improved travel times and procedures for depth determination. Bull. Seism. Soc. Am.,88, 722-743.
    England P. C., Houseman G. A.,1986. Finite strain calculation of continental deformation, Comparison with the India-Asia collision zone. J. Geophys. Res.,91:3664-3676.
    Ewing M., Press F.,1952, Crust structure and Surface Wave dispersion. part Ⅱ Solomon Islands earthquake of July 29,1950. Bull. Seism. Soc. Am.,42 (4):315-325.
    Feng C. C., Teng T. L.,1983. Three-dimensional crust and upper mantle structure of the Eurasian Continent. J. Geophys. Res.,88:2261-2273.
    Gouedard P., Stehly L., Brenguier F.,2008. Cross-correlation of random fields:Mathematical approach and applications. Geophysical Prospecting,56,375-393.
    Griot D. A., Montagner J. P.,1998. Phase velocity structure from Rayleigh and Love waves in Tibet and its neighboring regions. J. Geophys. Res.,103:21215-21232.
    Haskell N. A.,1953. The Dispersion of Surface Waves on Multilayered Media. Bull. Seism. Soc. Am.,43:17-34.
    Hennino R., Tregoures N., Shapiro N. M., et al.,2001. Observation of equipartition of seismic waves. Phys. Rev. Lett.,86:3447-3450.
    Herrmann, R. B. and C. J. Ammon (2002). Computer Programs in Seismology version 3.20: Surface Waves, Receiver Functions, and Crustal Structure, St. Louis University, Missouri. Online at http://mnw.eas.slu.edu/People/RBHerrmann/.
    Huang Z., Su W., Peng Y., Zheng Y., Li H.,2003. Rayleigh wave tomography of China and adjacent regions. J. Geophys. Res.,108 (B2):2073, doi:10.1029/2001JB001696.
    Huang Z, Luo Y, Peng Y J, et al.2004. Azimuthal anisotropy of Rayleigh waves in East Asia. Geophys Res Let,31, L15617, doi:10.1029/2004G020399
    Ji C. , Hayes G.,2008. Preliminary result of the May 12,2008 Mw7.9 eastern Sichuan. http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/us2008ryan/finite_fault.php
    Kennett B. L. N., Engdahl E. R., Buland R.,1995. Constraints on the velocity structure in the earth from travel times. Geophys. J. Int.,122,108-124.
    Knopoff L., Muller S., Pilant W. L., 1966. Structure of the crust and upper mantle in the Alps from the phase velocity of Rayleigh waves. Bull. Seism. Soc. Am.,56,1009-1044.
    Landisman M., Dziewonski A. M., Sato Y.,1969. Recent improvements in the analysis of surface wave observations. Geophys.J.,17,369-403.
    Langston C. A.,1989. Scattering of long-period Rayleigh waves in Western North America and the interpretation of coda Q measurements. Bull. Seism. Soc. Am.,793,774-789.
    Lev E., Long M. D., van der Hilst R. D.,2006. Seismic anisotropy in eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet. Sci. Lett., 251,293-304.
    LiH. Y., Su W., Wang C. Y., et al.,2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth and Planet. Sci. Lett.,282,201-211, doi:10.1016/ j.epsl.2009.03.021.
    Lin F. C., Ritzwoller M. H., Townend J., et al.,2007. Ambient noise Rayleigh wave tomography of New Zealand. Geophys. J. Int.,170 (9):649-666.
    Lin F. C., Moschetti M. P., Ritzwoller M. H.,2008. Surface wave tomography of the western United States from ambient seismic noise:Rayleigh and Love wave phase velocity maps. Geophys. J. Int.,173 (2):281-298, doi:10.1111/j 1365-246X.2008.03720.x.
    Liu Q. Y., J H Chen, S C Li, et al.,2008. Wenchuan Ms8.0Earthquake:The Crustal Velocity Structure and Stress Field From the Western-Sichuan Seismic Array Observation.2008 AGU Fall Meeting, San Francisco (Invited).
    Lobkis O. I., Weaver R. L.,2001. On the emergence of the Green's function in the correlations of a diffusive field. J. acoust. Soc. Am.,110 (6):3011-3017.
    Malcolm A. E., Scales J. A., van Tiggelen B. A.,2004. Extracting the Green's function from diffuse, equipartitioned waves. Phys.Rev.E,70,015601.
    Masters G., Laske G., Bolton H., Dziewonski A.,2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle:implications for chemical and thermal structure. Geophys. Monogr. Ser.,117,63-87.
    Metha K., Snieder R., Calvert R., Sheiman J.,2008. Acquisition geometry requirements for generating virtual-source data. Leading Edge,27,620-629.
    Molnar P., Tapponnier P.,1975. Cenozoic tectonics of Asia:Effects of a continental collision. Science,189,419-426.
    Molnar P., England P., Martinod J.,1993. Mantle dynamics, uplift of the Tibetan Plateau, the Indian Monsoon. Rev. Geophys.,31,357-396.
    Montagner J. P.,1986. Regional three-dimensional structures using long-period surface waves. Annales Geophysicae,4 (3):283-294.
    Montagner J. P., Nataf H.,1986. A simple method for inverting the azimuthal anisotropy of surface waves. J. Geophys. Res.,91,511-520.
    Montagner J. P., Jobert N.,1988. Vectorial tomography. Ⅱ. Application to the Indian Ocean. Geophys. J. R. Astron. Soc.,94,309-344.
    Montagner J. P., Tanimoto T.,1991. Global upper mantle tomography of seismic velocities and anisotropies. J. geophys. Res.,96,20337-20351.
    Montagner J. P.,2002. Upper mantle low anisotropy channels below the pacific plate. Earth Planet. Sci. Lett.,202,263-274.
    Mooney W. D., Laske G., Masters G.,1998. CRUST5.1:A global crustal model at 5°x5°. J. Geophys. Res.,103,727-747.
    Moschetti M. P., Ritzwoller M. H., Shapiro N. M.,2007. Surface wave tomography of the western United States from ambient seismic noise:Rayleigh wave group velocity maps. Geochem. Geophys. Geosyst.,8, Q08010, doi:10.1029/2007GC001655.
    Nakanishi I..Anderson D. L.,1982. Worldwide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seism. Soc. Am.,72:1185-1194.
    NoletG.,1985. Solving or resolving inadequate and noisy tomographic systems. J. Comput. Phys.,61,463-482.
    Nolet G.,1990. Partitioned waveform inversion and two-dirnerlsiOnal structure under the network of autonomously recording seismographs. J. Geophys. Res.,95:8499-8512.
    Okabe A., Boots B., Sugihara K.,1992. Spatial Tessellations Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, New York.
    Parsons T., Chen J., Kirby E.,2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan Basin. Nature, doi:10.1038/natureO7177.
    Passier M. L., Van der Hilst R. D., Snieder R. K.,1997, Surface wave waveform inversions for local shear-wave velocities under eastern Australia. Geophys. Res. Lett.,24,1291-1294.
    Paul A., Campillo M., Margerin L., Larose E., Derode A.,2005. Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves. J. Geophys. Res.,110, B08302, doi:10.1029/2004JB003521.
    Rayleigh L.,1885. On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc., s1-17 (1):4-11.
    Rickett J., Claerbout J.,1996. Passive seismic imaging applied to synthetic data. SEP,92, 83-90.
    Rickett J., Claerbout J.,1999. Acoustic daylight imaging via spectral factorization: helioseismology and reservoir monitoring. The Leading Edge,18:957-960.
    Ritzwoller M. H., Lavely E. M.,1994. Long period surface waves and mantle boundary undulations. Geophys. J. Int.,116:205-216.
    Ritzwoller M. H., Levshin A. L.,1998. Eurasian surface wave tomography:Group velocities. J. Geophys. Res.,83:4839-4878.
    Ritzwoller M., Levshin A., Ratnikova L., Egorkin A.,1998. Intermediate-period group velocity maps across Central Asia, western China and parts of the Middle East. Geophys J. Int.,134:315-328.
    Ritzwoller M., Shapiro N., Barmin M., Levshin A.,2002. Global surface wav difraction tomography. J. Geophys. Res.,107 (B12),2335, doi:10.1029/2002JB001777.
    Romanowicz B.,1982. Constraints on the structure of the Tibet Plateau from pure-path phase velocities of Love and Rayleish waves. J. Geophys. Res.,87:6865-6883.
    Roux P., Sabra K. G., Kuperman W. A., et al.,2005. Ambient noise cross correlation in free space:theoretical approach. J. acoust. Soc. Am.,117 (1):79-84.
    Royden L. H., Burchfiel B. C., King R. W., et al.,1997. Surface deformation and lower crustal flow in eastern Tibet. Science,276 (5313):788-790.
    Roux P., Fink M.,2003. Green's function estimation using secondary sources in a shallow water environment. J. Acoust. Soc. Am.,113:1406-1416.
    Roux P., Kuperman W. A.,2004. Extracting coherent waveforms from ocean noise. J. Acoust. Soc.Am.,116:1995-2003.
    Roux P., Sabra K. G., Kuperman W. A., Roux A.,2005. Ambient noise cross-correlation in free space: Theoretical approach. J.Acoust. Soc.Am.,117 (1),79-84.
    Sabra K. G., Gerstoft P., Roux P., et al.,2005. Extracting time-domain Greens function estimates from ambient seismic noise. Geophys. Res. Lett.,32(3):L03310, doi:10.1029/2004 GL021862.
    Sabra K. G., Gerstoft P., Roux P., Kuperman W. A.,2005b. Surface wave tomography from microseisms in Southern California. Geophys. Res. Lett.,32, L14311, doi:10.1029/ 2005GL023155.
    Sambridge M.,1999a. Geophysical inversion with a neighbourhood algorithm-Ⅰ. Searching a parameter space. Geophys. J. Int.,138 (2):479-494.
    Sambridge M.,1999b. Geophysical inversion with a neighbourhood algorithm-Ⅱ. Appraising the ensemble. Geophys. J. Int.,138 (3):727-746.
    Sato Y.,1955. Analysis of dispersed Surface Waves by Means of Fourier transform, Ⅰ. Bull. Earthq.Res.Inst,33:33-48.
    Sebai A., Stutzmann E., Montagner J. P., et al., 2006. Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography. Phys. Earth planet. Inter.,155 (1-2):48-62.
    Shapiro N. M., Campillo M.,2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett.,31 (7):L07614, doi:10.1029/2004 GL019491.
    Shapiro N.M.,Campillo M.,Stehly L., et al.,2005. High-resolution surface-wave tomography from ambient seismic noise. Science,307 (5715):1615-1618.
    Shen Z. K., Lu. J., Wang M., et al.,2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res.,110:B11409.
    Simons F. J., Zielhuis A., van der Hilst R. D.,1999. The deep structure of the Australian continent inferred from surface wave tomography. Lithos,48,17-43.
    Simons F. J., van der Hilst R. D., Montagner J. P., Zielhuis A.,2002. Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle. Geophys. J. Int.,151,738-754.
    Smith M. L., Dahlen F. A.,1973. The Azimuthal Dependence of Love and Rayleigh Wave Propagation in a Slightly Anisotropic Medium. J. Geophys. Res.,78 (17):3321-3333.
    Snieder R., Nolet G.,1987. Linearized scattering of surface waves on a spherical Earth. J. Geophys.,61:55-63.
    Snieder R.,1988. Large-scale waveform inversions of surface waves for lateral heterogeneity 2, Application to surface waves in Europe and the Mediterranean. J. Geophys. Res.,93: 12067-12080.
    Snieder R.,2004. Extracting the Green's function from the correlation of coda waves:A derivation based on stationary phase. Phys. Rev. E,69,046610.
    Snoke J. A., Sambridge M.,2002. Constraints on the S-wave Velocity Strsucture in a Continental Shield From Surface-Wave Data:Comparing Linearized Least-Squares Inversion and the Direct-Search Neighbourhood Algorithm. J. Geophys. Res.,107(B5),2094, doi: 10.1029/2001JB000498.
    Spetzler J., Trampert J., Snieder R.,2002. The effect of scattering in surface wave tomography. Geophys.J. Int.,149,755-767.
    Stehly L., Campillo M., Shapiro N. M.,2006. A study of the seismic noise from its long-range correlation properties. J. Geophys. Res.,111 (B10), B10306, doi:10.1029/2005JB004237.
    Tarantola A., Valette B.,1982. Generalized nonlinear inverse problem solved using the least squares criterion. Rev. Geophys. Space Phys.,20 (2):219-232.
    Tarantola A., Nercessian A.,1984. Three-dimensional inversion with blocks. Geophys.J. R. astr.Soc.,76 (2):299-306.
    Tapponnier P., Xu Z., Roger F., Meyer B., Arnaud N., Wittlinger G., Yang J.,2001. Oblique stepwise rise and growth of the Tibet Plateau. Science,294,1671-1677.
    Trampert J., Woodhouse J.,1995. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds. Geophys. J. Int.,122:675-690.
    Trampert J., Woodhouse J.,1996. High resolution global phase velocity distributions. Geophys. Res. Lett.,23,21-24.
    Wapenaar K., Thorbecke J., Draganov D.,2004. Relations between reflection and transmission responses of three-dimensional inhomogeneous media. Geophys. J. Int.,156:179-194.
    Wapenaar K.,2006. Green's function retrieval by cross-correlation in case of one-sided illumination. Geophys. Res. Lett.,33, L19304, doi:10.1029/2006GL027747.
    Weaver R. L., Lobkis O. I.,2001. Uhrasonic without a source:thermal fluctuation correlations at MHz frequencies. Phys. Rev. Lett.,87 (13):134301.
    Weaver R. L., Lobkis O.1.,2003. Elastic wave thermal fluctuations, ultrasonic waveforms by correlation of thermal phonons. J. Acoust. Soc. Am.,113:2611-2621.
    Weaver R. L., Lobkis O. I.,2004. Diffuse fields in open systems and the emergence of the Green's function. J. acoust. Soc. Am.,116 (5):2731-2734.
    Yang Y., Ritzwoller M. H., Levshin A. L., Shapiro N. M.,2007. Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int.,168,259-274.
    Yang Y., Ritzwoller M. H.,2008. Characteristics of ambient seismic noise as a source for surface wave tomography. Geochem. Geophys. Geosyst.,9, doi:10.1029/2007GC001814.
    Yao H. J., van der Hilst R. D., de Hoop M. V.,2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps. Geophys. J. Int.,166 (2):732-744.
    Yao H. J., Beghein C., van der Hilst R. D.,2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-11. Crustal and upper-mantle structure. Geophys. J. Int.,173 (36):205-219.
    YaoH. J., van der Hilst R. D.,2009. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys. J. Int.,179 (4),1113-1132, doi:10.1111/j.1365-246X.2009.04329.x.
    YaoH. J., Xu G. M., Zhu L. B., et al.,2005. Mantle structure from interstation Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions. Phys. Earth planet. Inter.,148(1),39-54, doi:10.1016/j.pepi.2004.08.006.
    Yao H., Campman X., de Hoop M. V., van der Hilst R. D.,2009. Estimation of surface-wave Green's function from correlations of direct waves, coda waves, and ambient noise in SE Tibet. Phys. Earth Planet. Inter.,177(1-2):1-11.
    Yoshizawa K., Kennett B. L. N.,2002. Non-linear wavefom inversion for surface waves with a neighborhood algorithm-application to multimode dispersion measurements. Geophys. J. Int.,149:118-133.
    Yu G. K., Mitchell B. J.,1979. Regionalized shear velocity models of Pacific upper mantle from observed Love and Rayleigh waves dispersion. Geophy. J.,57:331-340
    Yuan, X., J. Ni, R. Kind, J. Mechie, and E. Sandvol (1997), Lithospheric and upper mantle structure of Southern Tibet from a seismological passive source experiment, J. Geophys. Res., 102 (B12),27,491-27,500.
    Zhang Z. J., Wang. Y. H., Chen Y., et al.,2009. Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophys. Res. Lett.,36 (17), L17310, doi:1029/2009GL 039580.
    Zheng S.,Sun X.,Song X.,Yang Y., Ritzwoller M. H.,2008. Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosyst.,9, Q05020, doi:10.1029/2008GC001981.
    Zhu, L. P., and H. Kanamori (2000), Moho depth variation in south California from teleseismic
    receiver functions,J. Geophys. Res.,105,2969-2980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700