用户名: 密码: 验证码:
地震背景噪声理论研究及在华北地区的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用地震背景噪声来提取经验格林函数,得到台站间短周期面波信息,并进一步通过面波成像来研究地下结构,这一数据处理方法即为地震背景噪声方法。该方法目前已成为近年来地震学研究的热点问题之一。相对于传统的依赖地震的面波成像方法,新方法通过计算台站对之间长时间的噪声互相关函数,近似得到台站间的经验格林函数。从这些经验格林函数中可以提取较短周期的面波频散信息,从而更好地研究地壳和上地幔结构。基于这种思想,本文首先阐述了地震背景噪声方法的背景和发展历程,探讨了新方法相对于传统面波方法的优势所在。然后利用了华北地区133个宽频带地震台站3个月(2007年1月一2007年4月)的连续波形数据记录进行噪声互相关叠加,得到Rayleigh波的经验格林函数。利用多重滤波技术从经验格林函数中提取了周期为10-20s的Rayleigh面波群速度频散曲线,最后通过面波层析成像计算得到了华北地区不同周期的群速度图像。得到的结果显示了华北地区的浅部地壳速度结构具有横向不均匀性的特征。本文研究结果表明,短周期的群速度分布与该区域地质结构、地形紧密相关;华北地区的地壳结构具有明显的横向不均匀性,华北盆地和沉积盆地地区,存在低速体,而太行山和燕山隆起地区存在高速体。利用背景噪声方法的研究表明,通过长时间的地震背景噪声互相关得到的台站间的经验经验格林函数近似于真实的经验格林函数,能够反映地下结构信息。这种通过噪声获取面波成像的方法不需要地震源,更容易得到大量数据,可以用于研究一个地区的精细结构,这是相对于传统方法的一大优势。这一新的无源成像方法将具有广阔的研究前景和实用价值。
Recently, one of the hotly discussed problems in seismology is using ambient noise to extract the Green's function. The Green's functions between pairs of stations can be estimated from the time derivative of the long-time cross-correlation of ambient seismic noise. These Gfs reveal velocity dispersion at relatively short periods, which can be used to resolve structures in the crust and uppermost mantle better than with traditional surface-wave tomography. In this paper, the developing background and process of this method will be introduced firstly. And then its physical principle will be also shown from four different viewpoints. We present the Capital area study of surface wave dispersion, using ambient noise observed at133broad-band stations in the Digital Seismic Network in Capital Circle. Three month long vertical-component time-series recorded between Jan,2007and Mar,2007have been correlated with one another to yield estimated fundamental mode Rayleigh wave Green's Functions. We filter these Green's functions to compute Rayleigh wave group dispersion curves at periods of10-20s, using frequency-time analysis technique. After selecting the highest quality dispersion curve measurements, we compute group velocity maps from10-20s. Group velocity maps with a grid spacing of0.5°×0.5°at7S,12S,16S, and23S are reconstructed. The resulting ambient noise group velocity maps reveal the lateral velocity changes in the crust, especially in upper crust very well. Our results reveal an evident lateral heterogeneity of the curst in North China and demonstrate significant agreement with known geological and tectonic features at short periods. Orogenic belt and uplift areas, such as Yanshan uplift and Taihangshan uplift have high velocities, while depressions and sedimentary basins, such as North China basin, have low velocities. These results are evidence that surface wave tomography based on cross-correlations of long time-series of ambient noise data can be achieved over a broad period band on nearly a continental scale and yield higher resolution and more reliable group speed maps than based on traditional earthquake-based measurements.
引文
房立华,吴建平,吕作勇。华北地区基于噪声的瑞利面波群速度层析成像.地球物理学报,2009 52(3):663-671.
    房立华。华北地区瑞利波噪声层析成像研究[博士论文]。北京:中国地震局地球物理研究所,2009
    潘佳铁,吴庆举,李永华等.华北地区瑞雷面波相速度层析成像.地球物理学报,201154(1):67-76
    詹中文.地震背景噪声的理论与实践.中国科学技术大学,2008。
    朱良保,王清东。地震背景噪声互相关函数的面波理论表达形式.地球物理学报,2011,54(7):1835-1841
    李昱、姚华建、刘启元等,2010,川西地区台阵环境噪声瑞利波相速度层析成像, 地球物理学报,53(4),842-852。
    刘志坤、黄金莉,2010,利用背景噪声互相关研究汶川地震震源区地震波波速变化,地球物理学报,53(4),853-863。
    鲁来玉、何正勤、丁志峰等,2009,华北科学探测台阵背景噪声特征分析,地球物理学报,52(10),2566-2572。
    齐诚、陈棋福、陈颐,2007,利用背景噪声进行地震成像的新方法,地球物理学进展,22(3),771-777
    王伟涛,倪四道等,2011,地球背景噪声干涉应用研究的新进展,中国地震,27(1)。
    Thorme Lay and Terry C.Wallace.Modern Global Seismology, San Ddiego:Academic Press,1995
    Duvall T L, jefferies S M, Harveyj W, et al. Time-distance helioseismology J]. Nature, 1993,362:430-432.
    Weaver R L, Lobkis O I. Uhrasonic without a source:thermal fluctuation correlations at MHz frequencies[J]. Physical Review I etters,2001,87(13):134301. Lobkis O I, Weaver R L. On the emergence of the Green's function in the correlations of a diffuse field[J]. J. Acoust. Soc. Am.,2001,110(6):3011-3017.
    Campillo M, Paul A. Long-range correlations in the diffuse seismic coda[J], Science, 2003,299:547-549.
    Larose E。Derode A, Cam pillo M, et al. Imaging from one bit correlations of wideband diffuse wave fields[J]. Journal of Applied Physics,2004,95:8393-8399.
    Rickett J, Claerbout J. Acoustic daylight imaging via spectral factorization:helioseismology and reservoir monitoring[J].
    The Leading Edge,1999,18:957-960.
    Hennino R, Tregoures N, Shapiro N M, et al. Observation of equipartition of seismic waves[J]. Physical Review Letters.2001,86:3447-3450.
    Campillo,M. Phase and correlation in'Random'seismic fields and the recomstruction of the green function, Pure and Applied Geophysics 2002,163(2-3):475-502
    Shapiro, N. M., and M. Campillo, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett.,31, L07614, doi:10.1029/2004GL019491.
    Shapiro, N. M.,M. Campillo, L. Stehly, andM. H. Ritzwoller (2005), High resolution surface wave tomography from ambient seismic noise, Science,307,1615-1618.
    Friedrich A, Kruger F, Klinge K. Ocean-generated microseismic noise located with the Grafenberg array[J]. J. Seismol.,1998,2:47-64.
    Friedrich A, Kruger F, Klinge K. Ocean-generated microseismic noise located with the Grafenberg array [J]. J. Seismol.,1998,2:47-64.
    Stehly I, Campillo M, Shapiro N M. Origin of the seismic noise investigated from its correlation properties. Eos Trans.
    AGU,2005,86(52), Fall M eet. Suppl.
    Roux P, Sabra K G, Gerstoft P, et al. P waves from cross-correlation of seismic noise EJ. Geophysical Research Letters,2005,32, L19303, doi:10.1029/2005GL023803.
    Fry B, Stehly I, Cam pillo M.et al. Surface wave tomography of the central alps: merging traditional source and non-traditional noise dispersion measurem ents. Eos Trans. AGU,2005,86(52), Fall M eet. Suppl.
    Takagi N, Sato H, Nishimura T, et al. Group velocity measurement of Rayleigh and Love waves in northeastern Japan on the basis of the cross-correlation analysis of microseism s. Eos Trans. AGU,2005,86(52), Fall Meet. Suppl
    Yao H, de Hoop M D. High resolution surface-wave tomography in SE tibet from ambient seism ic noise and a two station method. Eos Trans. AGU,2005,86(52), Fall M eet. Suppl
    Bensen G D, Ritzwoller M H, Shapiro N M, et al. Extending ambient noise surface wave tomography to continental scales:application across the united states. Eos Trans. AGU 2005,86(52), Fall Meet. Suppl.
    Ritzwoller M H. Yang Y, Shapiro N M, et al. Broad-band ambient noise surface wave tomography across eurasia:early results. Eos Trans. AGU,2005,86(52), Fall M eet. Suppl.
    Campillo M, Stehly I. Shapiro N. Absolute time measurements from seismic noise: monitoring temporal velocity changes and correction of station clock drifts. Eos Trans.
    AGU,2005,86(52), Fall Meet. Suppl.
    Bensen G D, Ritzwoller M H, Shapiro N M, et al. Extending ambient noise surface wave tomography to continental scales:application across the united states. Eos Trans. AGU, 2005,86(52), Fall Meet. Suppl. issn.0001-5733.2011, 07.017
    Folger D S, Doser D, Velasco I, et al. Determining subsurface structure from microtremors using a passive circular array. Eos Trarts. AGU,2005,86(52), Fall Meet. Suppl.
    Weaver, R. L. (2005), Information from seismic noise, Science,307,1568-1569.
    WeaverR.L, LDbkis0.1.Ultrasonics without a source:Thermal fluctuation correlation at MHZ frequencies.Phys. Rev. Lett.2001,87:10.1103/physrevlett.87.134301
    Derode A, Larose E, Tanter M, et al. Recovering the Green'S function from field-field correlations in an open scattering medium[J]. J. Acoust. Soc. Am.,2003,113(6): 2973-2976.
    Yao H, Vander Hilst R D, De Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅰ. Phase velocity maps. Geophys.J. Int 2006,166:732-744
    Ditmar P G, Yanovskaya T B. Generalization of Backus-Gilbert method for estimation of lateral variations of surface wave velocities. Phys. Solid Earth, Izvestia Acad. Sci. U.S.S. R,1987,23(6):470-477
    Yanovskaya T B, Ditmar P G. Smoothness criteria in surface wave tomography. Geophys. J.Int.,1990,102:63-72
    Aki K,1957, Space and time spectra of stationary stochastic waves with special refernce to microtremors, Bull Earthq Res Inst,35,415-456.
    Baig A M, Camplillo M and Brenguier F,2009, Denoising seismic noise cross correlations, J Geophys Res,114, B08310, doi:10.1029/2008JB0060085.
    Barmin M P, Levshin A L, Yang Y and Ritzwoller M H,2011, Epicentra location based on Rayleigh wave empirical Green's functions from ambient seismic noise, Geophys J Int, 184(2),869-884.
    Huang H, Yao and Hilst R D van der,2010, Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry, Geophys Res Lett,37, L21310, doi: 10.1029/2010GL044981.
    Koper K D, Seats K and Benz H,2010, On the composition of Earth's short-period seismic noise field. Bull Seismol Soc Am,100,606-617.
    Li H, Su W, Wang C Y et al,2009, Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet, Earth Planet Sci Lett,282,201-211.
    Hennion R, Tregoures N, Shapiro N M et al,2001, Observation of equipartition of seismic waves, Phys Rev Lett,86,3447-3450.
    Hasselmann K A,1963, A stratistical analysis of the generation of microseisms, Rev Geophys,1,177-209.
    Chang X, Niu F, WangB,2010, Coseismic velocity change in t he rupture zone of the 20 08 Mw7.9 Wenchuan earthquake observed from ambient seismic noise, Bull Seismol Soc Am, 100(5B),2539-2550.
    Draganov D, Wapenaar K, Mulder W, et al,2007, Retrieval of reflections from seismic backgroud-noise measurements, Geophys Res Lett,34(4).
    Zhan Z, Ni S, Helmberger D V et al,2010b, Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise, Geophys J Int,182,408-420.
    Zhan Z, Ni S,2012a, Stationary phase appoximation in the ambient noise method revisited, Earthquake Science,23,425-431.
    Yokoi T and Margarlyan S,2008, Consisitency of the spatial autocorrelation method with seismic interferometry and itsconsequence, Geophysical Prospecting,56,435-451.
    Zeng X and Ni, S,2010, A persistent localized microseismic source near the Kyushu Island, Japan, Geophys Res Lett,37,L24307, doi:10.1029/2010GL045774.
    Li H, Su W, Wang C Y et al,2009, Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet, Earth Planet Sci Lett,282,201-211.
    Prieto G A, Lawrence J F et al,2010, Impulse Response of Civil Structures from Ambient noise Analysis, Bull Seismol Soc Am,100,2322-2328.
    Rhie J and Romanowicz B,2004, Excitation of Earth's continuous free oscillations by atmosposphere-ocean-seafloor, Nature,431,552-556.
    Gu Y J, Dublanko C, Lerner L A, et al,2007, Probing the source of ambient seismic noise near the coasts of southern Italy, Geophys Res Lett,34,L22315, doi:I0.1029/2007GL031967.
    Friedrich A, Kruger F and Klinge K,1998, Ocean-generated microseismic noise located with the Grefenberg array, J Seismol,2,47-64.
    Bensen G D, Ritzwoller M H and Shapiro N M,2008. Braadband ambient noise surface wave tomography across the United States, J Geophys Res,113, no. B05306, doi 10.1029/2007JB005248.
    Bonnefoy-claudet S, Cotton F and Bard P Y,2006, The nature of noise wave field and its applications for siteeffects studies:A literature review, Earth Sci Rev,79,205-227.
    Fang L H, Wu J P, Ding Z F, et al,2010, High resolution Rayleigh wave group velocity tomograpy in North China from ambient seismic noise, Geophys J Int,181,1171-1182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700