用户名: 密码: 验证码:
用于行走功能恢复的硬膜外脊髓电刺激系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓损伤是指由于外界直接或间接因素导致的对脊髓任意部位的损伤或者在脊髓椎管内脊神经的损伤,在损害的相应节段出现各种运动、感觉和括约肌功能障碍,肌张力异常及病理反射等相应病变。脊髓损伤后的行走功能恢复是众多脊髓损伤患者的美好愿望,但目前尚无有效疗法能够恢复脊髓损伤导致的运动及感觉缺陷,许多脊髓损伤患者只能在轮椅上度过下半辈子,这给病人及家庭都带来灾难性的后果。
     近年来,部分临床研究证实对于与行走功能相关的腰骶段脊髓神经元回路依然完好的脊髓损伤(Spinal Cord Injury, SCI)患者,使用硬膜外脊髓电刺激(EpiduralSpinal Cord Stimulation, ESCS)和减重疗法(Partial Weight Bearing Therapy, PWBT)相结合的方法能够促进患者行走功能的改善。但这些临床研究仅对少数SCI患者进行,该疗法中合理的刺激参数(频率、脉宽、强度、位置等)、疗法的有效性及作用机理还需要通过长期的动物实验进行研究。而目前用于此研究的动物实验用植入式硬膜外脊髓刺激装置尚未见报道,亟待开发。
     脑―机接口(Brain―Computer Interface,BCI)可以建立起人脑与计算机或其他电子设备间的直接的交流和控制通道,能帮助患者恢复一定的自主生活能力。而使用头皮脑电(electroencephalograph, EEG)信号的BCI,由于具有无创性及信号易提取,引起了人们广泛的研究。从EEG信号中可以提取出运动意图,此运动意图可以转换成控制命令,控制ESCS的开始或停止,以及控制ESCS的刺激模式。通过将BCI与ESCS相结合,脊髓损伤后瘫痪患者便有可能通过运动想象产生不同的下肢动作,如站立或行走等,这给脊髓损伤患者带来了新的希望。这种全新的BCI控制ESCS的运功神经重建系统是否可行,很大程度上取决于EEG信号的特征提取与分类算法。
     本论文不仅对基于EEG的BCI的特征提取与分类方法进行了研究,而且研制了可用于动物实验的植入式ESCS系统,并建立了大鼠ESCS的有限元模型。最后采用研制的植入式ESCS装置进行了动物实验研究,得出了不同刺激参数对后肢运动功能的作用。主要的工作及结果包括以下方面:
     (1)研究了基于EEG信号的BCI的特征提取与分类方法。采用离散小波变换提取μ节律与β节律附近频带的特征信号,并使用支持向量机(SVM)方法进行分类;此外,还应用了模糊支持向量机(FSVM)方法对EEG信号进行分类,均实现了较高的分类准确率与互信息率。
     (2)研制了可用于动物实验的植入式ESCS系统,该系统可用于ESCS的行走功能作用研究,由植入式脉冲发生器、刺激电极、磁铁、外部控制器、上位机组成。采用固形胶及硅胶的封装方法,使刺激器具有生物兼容性,并能较好抵抗体液的侵蚀。针对大鼠脊髓解剖学结构,设计了具有3触点的镀金柔性电路板电极。封装后的植入式脉冲发生器体积为33mm×24mm×8mm,质量约12.6g,满足了外科植入要求。植入体采用了基于2.4GHz载波频率的体内外无线通讯方案,有效通讯距离可达1米。此外,还结合干簧管,设计了植入体的低功耗工作方案,刺激器平时工作在休眠状态,休眠电流仅40μA。使用单个普通3V纽扣电池时,刺激器能在体内工作2周左右。
     (3)建立了大鼠脊髓电刺激的场—神经元模型,研究了脉宽对后根、前根、背柱神经纤维激活效果的影响,并讨论了脊髓电刺激作用下募集的神经元结构。该模型可用于指导大鼠脊髓电刺激实验。
     (4)使用研制的植入式ESCS刺激器对大鼠进行脊髓电刺激的实验,研究了不同刺激参数对大鼠后肢运动功能的作用。首先,大鼠脊髓腰骶段为有效刺激节段。然后,对于运动阈下的刺激,大鼠胫骨前肌没有明显EMG响应;而当实施运动阈上刺激时,胫骨前肌的平均EMG峰峰值随着刺激强度增加而增强。随着刺激频率的增加,胫骨前肌的平均EMG峰峰值出现了下降趋势。最后,当刺激脉宽增加时,诱发平均EMG峰峰值逐渐上升。
Spinal cord injuries (SCI) disrupt both axonal pathways and segmental spinal cordcircuitry, producing severe impairments of motor, sensory, and autonomic function at andbelow the level of the injury. The recovery of walking function is one of the main goals ofpatients after spinal cord injury. However, there is no treatment available that restores theinjury-induced loss of function. Most people who experience SCI are destined to spend theremainder of their life in a wheelchair. The consequences of SCI are devastatingphysically and socially.
     Recent progress in clinic has shown epidural spinal cord stimulation (ESCS) combinedwith partial weight bearing training can facilitate standing and locomotion in patients withalmost intact neural circuits in the lumbar-sacral segment after spinal cord injuries.However, only a few spinal cord injured subjects were participated in these clinical trials.It is desirable to conduct further research in animals to decipher the potential mechanismsfor the exploration of optimal protocols and stimulating parameters to guide furtherclinical application of this promising treatment for motor function recovery after severeneural injury. There are no previous reports of the development of implantable ESCSdevice for animal research yet.
     The final option for restoring function to those with motor impairments is to provide thebrain with a new, non-muscular communication and control channel, a directbrain-computer interface (BCI) for conveying messages and commands to the externalword. Electroencephalography (EEG) based BCI can function in most environments,require relatively simple and inexpensive equipment, and non-invasive, offer thepossibility of a practical BCI. BCI technique makes it possible for paralyzed SCI patientsto control the ESCS device by their motor intention. The feasibility of this novel motorneural system reconstruction method largely depends on the techniques of personal motorintention acquisition and the signal processing.
     The research work has been done in this dissertation includes the following aspects:
     (1) The dissertation has investigated the feature extraction and the classificationmethods of EEG based BCI. Discrete wavelet transformation has been used for theextraction of features from sub-bands D2(16-32Hz) and D3(8-16Hz). The proposedfuzzy vector machine (FSVM) classifier and support vector machine (SVM) classifier onthe presented feature extraction methods achieve the high classification accuracy and largemutual information rate.
     (2) The dissertation presents the development of a fully implantable voltage-regulatedstimulator with bi-directional wireless communication for investigating underlying neuralmechanisms of ESCS facilitating motor function improvement. The stimulation systemconsists of a computer, an external controller, an implantable pulse generator (IPG), amagnet, the extension leads and a stimulation electrode. The IPG is coated with conformalcoating and silicone elastomer to keep tightness and biological compatibility. Thestimulation electrode is manufactured with flexible circuit board technique, and has threeround electrode contacts to target rat spinal cord structure. The contacts are separated with8mm center-to-center distance. The telemetry transmission between the IPG and theexternal controller is achieved by a commercially available transceiver chip with2.4GHzcarrier band. The magnet is used to activate the IPG only when necessary to minimize thepower consumption. The encapsulated IPG measures33mm×24mm×8mm, with a totalmass of~12.6g. The IPG supplied by a primary3V button battery can enable the chronicstimulation of spinal cord for about two weeks in the pilot study.
     (3) We develop a computer based integrated field-neuron model to study the influenceof pulse duration on the threshold of dorsal column fibers, dorsal root fibers and ventralroot fibers. Furthermore, the recruited neural structures under spinal cord stimulationcondition are discussed.
     (4) Animal experiments are conducted in Sprague-Dawley rats to validate the functionof the stimulator, and to investigate the relationship between ESCS parameters andhindlimb electromyography (EMG) responses. In our experiments, ESCS at lumbar-sacrallevel were effective for inducing hindlimb extension movements in normal anesthetizedrats. Stimulation under motor threshold did not induce observable changes in EMGresponse. However, when the stimulation amplitude was above motor threshold, the EMGresponses of the tibialis anterior (TA) muscle showed a progressive increase in thepeak-to-peak amplitude with increased stimulation amplitude. There was a progressivedecrease in the mean peak-to-peak amplitude with increasing frequency of stimulation. Incontrast, there was a progressive increase in the EMG amplitude with an increase instimulation pulse duration.
引文
[1] National Spinal Cord Injury Statistical Cente. Available:http://www.synapsebiomedical.com/support/PDFs/SCI_Reimbursement/SCI%20Facst%20and%20Figures%20NSCISC%202011%20Update.pdf
    [2] C. N. Shealy, J. T. Mortimer, and J. B. Reswick. Electrical inhibition of pain by stimulation ofthe dorsal columns: preliminary clinical report. Anes Analg,1967,46:489-91
    [3] R. Herman, J. He, S. D. Luzansky, et al. Spinal cord stimulation facilitates functional walking ina chronic, incomplete spinal cord injured. Spinal Cord,2002,40:65-68
    [4] M. R. Carhart, J. He, R. Herman, et al. Epidural spinal-cord stimulation facilitates recovery offunctional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst RehabilEng,2004,12:32-42
    [5] S. Harkema, Y. Gerasimenko, J. Hodes, et al. Effect of epidural stimulation of the lumbosacralspinal cord on voluntary movement, standing, and assisted stepping after motor completeparaplegia: a case study. Lancet,2011,6736:1-10
    [6] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, et al. Brain-computer interfaces forcommunication and control. Clinical Neurophysiology,2002,113:767-91
    [7] C. Watson, G. Paxinos, G. Kayalioglu. The Spinal Cord: A Christopher and Dana ReeveFoundation Text and Atlas.1stedition. Oxford: Academic Press,2009.216-18
    [8]李宏凯,孙久荣,戴振东.动物运动指令的中枢模式发生器对机器人运动控制的启示.机器人,2008,30:279-288
    [9] S. Grillner. Biological pattern generation: the cellular and computational logic of networks inmotion. Neuron,2006,52:751-66
    [10] A. Shumway-Cook and M. H.Woollacott.运动控制原理与实践(第3版).毕胜,燕铁斌,王宁华译.北京:人民卫生出版社,2009.116-38
    [11] G. B. T. The intrinsic factors in the act of progress in the manmal. Proc. Royal Soc. London B,1911,84:308-319
    [12] S. Grillner. Control of locomotion in bipeds, tetrapods and fish. Bethesda. Handbook ofPhysiology, American Physiol. Society, MD: Bethesda,1981.1179-1236.
    [13]李路明,郝红伟.植入式神经刺激器的现状与发展趋势.中国医疗器械杂志,2009,33(2):107-111
    [14] R. G. Dennis, D. E. Dow, and J. A. Faulkner. An implantable device for stimulation ofdenervated muscles in rats. Med Eng Phys,2003,25:239-253
    [15] D. Harnack, W. Meissner, R. Paulat, et al. Continuous high-frequency stimulation in freelymoving rats: Development of an implantable microstimulation system. Journal of NeuroscienceMethods,2008,167:278-291
    [16] T. Ativanichayaphong, J. Wei, C. E. Hagains, et al. A combined wireless neural stimulating andrecording system for study of pain processing. J Neurosci Meth,2008,170:25-34
    [17] R. E. Millard and R. K. Shepherd. A fully implantable stimulator for use in small laboratoryanimals. J Neurosci Meth,2007,166:168-177
    [18] H. Barbeau, M. Wainberg, and L. Finch. Description and application of a system for locomotorrehabilitation. Medical&Biological Engineering,1987,25:341-343
    [19] B. Dobkin, D. Apple, H. Barbeau, et al. Weight-supported treadmill vs over-ground training forwalking after acute incomplete SCI. Neurology,2006,66:484-493
    [20] Y. Goldshmit, N. Lythgo, M. P. Galea, et al. Treadmill training after spinal cord hemisection inmice promotes axonal sprouting and synapse formation and improves motor recovery. Journal ofneurotrauma,2008,25(5):449-65
    [21] M. Macias, D. Nowicka, A. Czupryn, et al. Exercise-induced motor improvement after completespinal cord transection and its relation to expression of brain-derived neurotrophic factor andpresynaptic markers. BMC neuroscience,2009,10:144
    [22] F. Gómez-Pinilla, Z. Ying, R. R. Roy, et al. Voluntary exercise induces a BDNF-mediatedmechanism that promotes neuroplasticity. Journal of neurophysiology,2002,88(5):2187-95
    [23] V. S. Boyce, M. Tumolo, I. Fischer, et al. Neurotrophic factors promote and enhance locomotorrecovery in untrained spinalized cats. Journal of neurophysiology,2007,98(4):1988-96
    [24] A. L. Hicks and K. A. M. Ginis. Treadmill training after spinal cord injury: It's not just about thewalking. The Journal of Rehabilitation Research and Development,2008,45(2):241-248
    [25] K. K. Mankala, S. K. Banala, and S. K. Agrawal. Novel swing-assist un-motorized exoskeletonsfor gait training. Journal of neuroengineering and rehabilitation,2009,6:24
    [26] S. Stevens and D. W. Morgan. Underwater treadmill training in adults with incomplete spinalcord injuries. Journal of rehabilitation research and development,2010,47(7):7-10
    [27] J. A. Hoffer, R. B. Stein, Morten K. Haugland, et al. Neural signals for command control andfeedback in functional neuromuscular stimulation: a review. Journal of rehabilitation researchand development,1996,33(2):145-57
    [28] W. T. Liberson, H. J. Holmquest, D. Scot, et al. Functional electrotherapy: stimulation of theperoneal nerve synchronized with the swing phase of the gait in hemiplegic patients. Arch. Phys.Med. Rehabil,1961,42:101-105
    [29] A. Kralj, T. Bajd, R. Turk, et al. Gait restoration in paraplegic patients: a feasibilitydemonstration using multichannel surface electrode FES. Journal of rehabilitation R&D,1983,20(1):3-20
    [30] J. Chae, L. Sheffler, and J. Knutson. Neuromuscular electrical stimulation for motor restorationin hemiplegia. Topics in stroke rehabilitation,2008,15(5):412-26
    [31] E. J. Nightingale, J. Raymond, J. W. Middleton, et al. Benefits of FES gait in a spinal cordinjured population. Spinal Cord,2007,45(10):646-57
    [32] M. K. Donovan-Hall, J. Burridge, B. Dibb, et al. The views of people with spinal cord injuryabout the use of functional electrical stimulation. Artificial organs,2011,35(3):204-11
    [33]毕胜.接受下肢功能性电刺激患者的选择.中国康复医学杂志,2000,15(3):187-188
    [34] A. W. Cook and S. P. Weinstein. Chronic dorsal column stimulation in multiple sclerosis.Preliminary report. N Y State J Med,1973,73:2868-72
    [35] M. R. Dimitrijevic, Y. Gerasimenko, and M. M. Pinter. Evidence for a spinal central patterngenerator in humans. Ann N Y Acad Sci,1998,860:360-76
    [36] T. Bajd and M. Munih. Basic functional electrical stimulation (FES) of extremities: an engineer'sview. Technology and health care,2010,18:361-9
    [37] K. Minassian, I. Persy, F. Rattay, et al. Human lumbar cord circuitries can be activated byextrinsic tonic input to generate locomotor-like activity. Human movement science,2007,26:275-95
    [38] J. A. Bamford, C. T. Putman, and V. K. Mushahwar, et al. Intraspinal microstimulationpreferentially recruits fatigue-resistant muscle fibres and generates gradual force in rat. TheJournal of physiology,2005,569:873-84
    [39] J. He, C. Ma, and R. Herman. Engineering Neural Interfaces for Rehabilitation of Lower LimbFunction in Spinal Cord Injured. Proceedings of the IEEE,2008,96:1152-1166
    [40] H.-C. Lo, C.-Y. Yeh, F.-C. Su, et al. Comparison of energy costs of leg-cycling wheel chairs withor without functional electrical stimulation and manual wheelchairs for patients after stroke. JRehabil Med,2010,42:645-649
    [41] U. H. K. Minassian, C. Hofer, M. Vogelauer, et. al. Stimulation of human lumbar posterior rootafferents with surface electrodes. In: Proc.9th Vienna Int. Workshop Functional ElectricalStimulation. Vienna, Austria: September19-22,2007.255-258
    [42] J. Holsheimer. Computer modelling of spinal cord stimulation and its contribution to therapeuticefficacy. Spinal Cord,1998,36:531-540
    [43] J. Holsheimer. Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation.Neuromodulation,2002,5(1):25-31
    [44] K. M. J. Ladenbauer, U. S. Hofstoetter, M. R. Dimitrijevic, et al. Stimulation of the HumanLumbar Spinal Cord With Implanted and Surface Electrodes: A Computer Simulation Study.IEEE Trans. Neural Syst. Rehabil. Eng.,2010,18(6):637-645
    [45] Y. Gerasimenko, R. Gorodnichev, E.Machueva, et al. Novel and direct access to the humanlocomotor spinal circuitry. The Journal of neuroscience,2010,30(10):3700-8
    [46] C. T. Moritz, S. Perlmutter, E. Fetz, et al. Direct control of paralysed muscles by cortical neurons.Nature,2008,456:639-42
    [47] L. R. Hochberg, M. Serruya, G. Friehs, et al. Neuronal ensemble control of prosthetic devices bya human with tetraplegia. Nature,2006,442:164-71
    [48]王琬.基于支持向量机的脑电识别:[硕士学位论文].武汉:华中科技大学,2007
    [49] C.-F. Lin and S.-D. Wang. Fuzzy Support Vector Machines. IEEE Transactions on neuralnetworks,2002,13(2):464-471
    [50] C.-F. Lin and S.-D. Wang. Training algorithms for fuzzy support vector machines with noisydata. Pattern Recognition Letters,2004,25:1647-1656
    [51] S.-M. Zhou, J. Q. Gan, and F. Sepulveda. Classifying mental tasks based on features ofhigher-order statistics from EEG signals in brain–computer interface. Information Sciences,2008,178:1629-1640
    [52] R. Davis, E. Gray, and J. Kudzma. Beneficial augmentation following dorsal column stimulationin some neurological diseases. Appl Neurophysiol,1981,44:37-49
    [53] R. C. Tallis, L. S. Illis, and E. M. Sedgwick. The quantitative assessment of the influence ofspinal cord stimulation on motor function in patients with multiple sclerosis. Int Rehabil Med,1983,5(1):10-16
    [54] B. Jilge, K. Minassian, F. Rattay, et al. Initiating extension of the lower limbs in subjects withcomplete spinal cord injury by epidural lumbar cord stimulation. Exp Brain Res,154:308-26
    [55] J. He and R. Herman. Epidural Spinal Cord Stimulation to Facilitate Functional Recovery afterSpinal Cord Injury: Combinations of Therapies for Synergistic Outcomes," in Spinal CordMedicine: Principles and Practice, V. W. Lin, Ed., ed: Demos Medical Publishing,2010
    [56] H. Huang, J. He, R. Herman, et al. Modulation effects of epidural spinal cord stimulation onmuscle activities during walking. IEEE Trans Neural Syst Rehabil Eng,2006,14(1):14-23
    [57] R. M. Ichiyama, Y. P. Gerasimenko, H. Zhong, et al. Hindlimb stepping movements in completespinal rats induced by epidural spinal cord stimulation. Neuroscience letters,2005,383:339-44
    [58] Y. Gerasimenko, R. R. Roy, and V. R. Edgerton. Epidural stimulation: comparison of the spinalcircuits that generate and control locomotion in rats, cats and humans. Exp Neurol,2008,209:417-25
    [59] R. R. Roy, D. L. Hutchison, D. J. Pierotti. EMG patterns of rat ankle extensors and flexorsduring treadmill locomotion and swimming. J Appl Phys,1991,70:2522-9
    [60] E. Jalilian, D. Onen, E. Neshev, et al. Implantable neural electrical stimulator for external controlof gastrointestinal motility. Med Eng Phys,2007,29:238-252
    [61] M.-A. Thil, B. Gerard, J. C. Jarvis. Two-way communication for programming and measurementin a miniature implantable stimulator. Med Biol Eng Comput,2005,43:528-534
    [62] Q. Zhou, Q. Zhang, X. Zhao, et al. Cortical electrical stimulation alone enhances functionalrecovery and dendritic structures after focal cerebral ischemia in rats. Brain Res,2010,1311:148-157
    [63] H. Lanmuller, Z. Ashley, E. Unger, et al. Implantable device for long term electrical stimulationof denervated muscles in rabbits. Med Biol Eng Comput,2005,43:535-540
    [64] J. S. Knutson, G. G. Naples, P. H. Peckham, et al. Electrode fracture rates and occurrences ofinfection and granuloma associated with percutaneous intramuscular electrodes in upper-limbfunctional electrical stimulation applications. Journal of rehabilitation research and development,2002,39:671-83
    [65] H. Burri and D. Senouf. Remote monitoring and follow-up of pacemakers and implantablecardioverter defibrillators. Europace,2009,11:701-9
    [66] J. H. Schulman, J. P. Mobley, J. Wolfe, et al. Battery powered BION FES network. In:Proceedings of the26th Annual International Conference of the IEEE EMBS. San Francisco,USA:September1-5,2004.4283-6
    [67] J. H. Schulman, J. P. Mobley, James Wolfe, et al. A1000+channel bionic communication system.In: Proceedings of the28th Annual International Conference of the IEEE EMBS. New York,USA:Aug30-Sept3,2006.4333-5
    [68] M. S. Chae, Z. Yang, M. R. Yuce, et al. A128-channel6mW wireless neural recording IC withspike feature extraction and UWB transmitter. IEEE transactions on neural systems andrehabilitation engineering,2009,17(4):312-21
    [69] X. Liu, A. Demosthenous, M. Rahal, et al. Recent advances in the design of implantablestimulator output stages. In: the18th European Conference on Circuit Theory and Design.Seville, Spain:August26to30,2007.204–207
    [70] R R. G. Dennis. Bipolar implantable stimulator for long term denevated muscle experiments.Med Biol Eng Comput,1998,36:225-228
    [71] Y. Gerasimenko, I. Lavrov, G. Courtine, et al. Spinal cord reflexes induced by epidural spinalcord stimulation in normal awake rats. Journal of Neuroscience Methods,2006,157:253-263
    [72] J. Holsheimer and J. J. Struijk. Electrode geometry and preferential stimulation of spinal nervefibers having different orientations: a modeling study. In:14th Annual international conferenceof the IEEE engineering in medicine and biology society. Paris, France:October29to November1,1992.1374-1375
    [73] J. Holsheimer and W. A. Wesselink. Optimum electrode geometry for spinal cord stimulation:the narrow bipole and tripole. Medical&biological engineering&computing,1997,35:493-7
    [74] J. Holsheimer, J. J. Struijk, N. R. Tas. Effects of electrode geometry and combination on nervefibre selectivity in spinal cord stimulation. Medical&biological engineering&computing,1995,33:676-82
    [75] F. Rattay, K. Minassian, MR Dimitrijevic. Epidural electrical stimulation of posterior structuresof the human lumbosacral cord:2. quantitative analysis by computer modeling. Spinal cord,2000,38:473-89
    [76] C. F. Jones. Cerebrospinal Fluid Mechanics During and after Experimental Spinal CordInjury:[Doctor degree thesis]. Vancouver: The University of British Columbia,2011
    [77] T. Iwahara, Y. Atsuta, E. Garcia-Rill, et al. Spinal cord stimulation-induced locomotion in theadult cat. Brain research bulletin,1992,28:99-105
    [78] G. Senqul, I. Tanaka, G. Paxinos, et al. Atlas of spinal cords of the rat, mouse, marmoset,macaque, and human. San Diego: Elsevier Academic Press,2012(in press)
    [79] D. Lee, B. Hershey, K. Bradley, et al. Predicted effects of pulse width programming in spinalcord stimulation: a mathematical modeling study. Medical&biological engineering&computing,2011,49(7):765-74
    [80] C. M. Russell, A. M. Choo, W. Tetzlaff, et al. Maximum principal strain correlates with spinalcord tissue damage in contusion and dislocation injuries in the rat cervical spine. Journal ofneurotrauma,2012,29:1574-85
    [81] V. C. Behr, T. Weber, T. Neuberger, et al. High-resolution MR imaging of the rat spinal cord invivo in a wide-bore magnet at17.6Tesla. MAGMA,2004,17:353-8
    [82] H. WaiBl. Zur Topographie der Medulla spinalis der Albinoratte (Rattusnorvegiens) Contributionto the topography of the spinal cord of the albino rat (Rattus norvegieus). Adv Anat EmbryolCell Biol,1973,47:1-42
    [83] L. A. Geddes and L. E. Baker. The specific resistance of biological material--a compendium ofdata for the biomedical engineer and physiologist. Medical&biological engineering,1967,5:271-93
    [84] J. J. Struijk, J. Holsheimer, G. Barolat, et al. Paresthesia Thresholds in Spinal Cord Stimulation:A Comparison of Theoretical Results with Clinical Data. IEEE transactions on rehabilitationengineering,1993,1(2):101-108
    [85] S. Joucla and B. Yvert. Improved focalization of electrical microstimulation usingmicroelectrode arrays: a modeling study. PloS one,2009,4(3):e4828
    [86] C. C. McIntyre, A. G. Richardson, et al. Modeling the Excitability of Mammalian Nerve Fibers:Influence of Afterpotentials on the Recovery Cycle Modeling the Excitability of MammalianNerve Fibers: Influence of Afterpotentials on the Recovery Cycle. Journal of Neurophysiology,2002,87:995-1006
    [87] J. A. Halter. A distributed parameter model of the myelinated nerve fiber:[Doctor degree thesis].Houston, Rice University,1989
    [88] A. Kuhn, T. Keller, M. Lawrence, et al. A model for transcutaneous current stimulation:simulations and experiments. Medical&biological engineering&computing,2009,47:279-89
    [89] A. N. V. D. Pol. Hypothalamic Hypocretin (Orexin): Robust Innervation of the Spinal Cord.The Journal of Neuroscience,1999,19(8):3171-3182
    [90] Y. S. Suh, K. Chung, R. E. Goggeshall. A study of axonal diameters and areas in lumbosacralroots and nerves in the rat. The Journal of comparative neurology,1984,222:473-81
    [91] T. X. Hoang, J. H. Nieto, B. H. Dobkin, et al. Acute implantation of an avulsed lumbosacralventral root into the rat conus medullaris promotes neuroprotection and graft reinnervation byautonomic and motor neurons. Neuroscience,2006,138:1149-60
    [92] J. L. Veale, R. F. Mark, S. Rees. Differential sensitivity of motor and sensory fibres in humanulnar nerve. Journal of Neurology,1973,36:75-86
    [93] M. Panizza, J. Nilsson, B. J. Roth, et al. Differences between the time constant of sensory andmotor peripheral nerve fibers: further studies and considerations. Muscle&nerve,1998,21:48-54
    [94] A. J. Fong, R. R. Roy, R. M. Ichiyama, et al. Recovery of control of posture and locomotionafter a spinal cord injury: solutions staring us in the face. Prog Brain Res.,2009,175:393-418
    [95] I. Lavrov, Y. Gerasimenko, R. Ichiyama, et al. Plasticity of spinal cord reflexes after a completetransection in adult rats: relationship to stepping ability. Journal of neurophysiology,2006,96:1699-710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700