用户名: 密码: 验证码:
喷雾冷却无沸腾区换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来电子设备体积小、集成度高和功率密度高的发展趋势已使散热问题成为影响其发展的重要瓶颈。作为先进散热技术之一的喷雾冷却有着散热功率高、冷却均匀、无沸腾滞后效应、介质需求量小等特点,备受研究者关注。然而现有的研究,因实验条件的差异所得结论亦有所不同。对喷雾冷却的认识相对缺乏,且关注热点主要集中沸腾区,无沸腾区换热很少涉及。
     鉴于此,本文重点对喷雾冷却中无沸腾区的换热特性进行理论以及实验研究。以水为冷却介质,采用半实心旋流式机械雾化喷嘴、实心机械雾化的喷嘴,对影响无沸腾换热特性的因素、强化换热方法等进行了较为系统的研究。
     实验方面主要研究工作:
     1、喷嘴雾化特性:运用相位多普勒粒子分析仪(PDPA)对实心、半实心喷嘴雾化特性进行测试分析。结果表明:液滴径向、轴向速度、粒径分布不均匀,半实心喷嘴非均匀性更为明显;半实心喷嘴雾化中心区有一旋流导致的回流区,对应于换热面有一明显的滞止区。回流区内液滴颗粒数密度小,速度、粒径均较边界处小。
     2、研究喷嘴雾化特性、壁面粗糙度对换热特性的影响。结果表明,液滴速度、粒径、数量通量、介质质量通量共同影响着无沸腾区换热。结合理论分析与实验结果,研究发现:1)液滴速度、数量通量对换热有着积极的影响,因其增加会增加液膜扰动和运动速度;2)壁面温度对换热特性有着积极的影响,壁面温度越高液膜蒸发越快,换热增强;3)由于滞止区的存在,壁面温度分布不均匀,在平均温度为90℃时,局部区出现沸腾;4)粗糙度越大,换热性能越强。此外,本文对雾化特性(液滴粒径、速度、质量通量)影响进行了较为系统的分析,提出质量通量为决定无沸腾区换热特性的最主要因素。
     3、系统地研究了倾斜喷射时,喷嘴倾斜角度、喷射高度对喷雾换热特性的影响。通过对半实心旋流式机械雾化喷嘴倾斜喷射散热特性的研究,发现:1)当倾斜喷射底面椭圆长轴与换热面相切时换热性能最佳,此时的喷嘴高度为最佳喷射高度;其次为底面长轴与换热面内接和外接。2)倾斜角度在0-49°范围内变化时,倾斜角度越大对滞止区冲刷作用越强,换热增加。结合不同高度喷嘴雾化特性,对上述结论进行理论分析,给出倾斜喷射的角度限制条件和最佳高度计算关系式。
     4、对刻有微槽道冷却面的换热特性进行了系统的理论和实验分析。采用实心机械雾化喷嘴,质量通量为44—53Kg/m2s时,研究结果表明刻有微槽道结构的散热面可明显增强换热性能。对于槽道高度较小(0.1mm)的工况,面积增加比例超过了热流增加比例。槽道高度较大时(0.2mm、0.4mm),热流增加比例远小于面积增加比例。结合喷嘴雾化特性和理论分析发现当槽道高度较小时,其不仅增加了换热面积,更有利于液膜的扩散,减小液膜厚度,换热系数增加;本文的实验工况下,高度为0.2mm微结构槽道换热最佳,其次为0.1mm和0.4mm微槽。
     5、研究了喷雾冷却中无沸腾区换热关系式。对本文的实验结果进行无量纲化处理,发现影响无沸腾区换热的主要因素为包括反映质量通量的Re数,表征粒径、液滴速度综合效应的Weber数及本文提出的与壁面温度相关的无量纲温度ξ。对实心喷嘴高流量(240     理论研究方面:
     重点考察了沸腾区中“二次成核”对换热特性的影响。基于喷雾冷却换热原理和气泡-液滴动力学基本知识,对有气泡产生的换热表面进行数值研究,研究成核范围系数β成核系数φ变化对换热的影响,提出了反映换热特性的最佳成核范围系数β和成核系数φ。研究结果表明,随着成核系数φ增大,换热性能变好。当φ>6时,换热性能随着成核系数的增强不明显;成核范围系数β=8为极值位置,增大或者减小都使得换热性能减弱。通过φ=6,β=3,5,8,10的各种情况下的换热量计算,并与Cho,Ponzel提出的经验公式所计算结果进行比较,发现在β=8,10的时,本文计算结果与经验公式结果符合很好,由此可以得出φ,β的最佳值分别为6,8.
Developmental Trend of future electronic systems is smaller size, higher integration value, high heat flux and how to remove the so amount of heat flux is a great challenge for this domain. Spray cooling is an advanced control cooling technology increasing interest for electronic cooling and other high flux heat removal technique, which is characterized by small fluid inventory, high heat transfer coefficient and no hysteresis of boiling.However, the current studies which contradict each other because of the experimental condition mainly focused on boiling regime and the conclusion was only apporiate for high temperature. The non-boiling regime's spray cooling performances, as an important part of the spray cooling process, has been investigated by very few researchers.
     In view of this, the primary purpose of this paper is to develop comprehensive design tools vital to the implementation of spray cooling heat transfer performance using semi-solid swirl nozzles and solid pressure-atomizing nozzles with a large ranged mass flux.
     The main experimental studies:
     1. Spray characteristics:The spray parameters, mainly the droplet diameter, velocity and the spray pattern, were measured by a Dantec PDPA (Phase Doppler Particle Analyzer).It showed that distribution of the streamwise mean velocity and Sauter Mean Diameter (SMD) of droplet were not uniform and this tendencies were more obvious to semi-solid swir pressure-atomizing nozzles.There was a stagnation zone at the center of the heated surface which may be attributed to the effect of the recirculating zone resulting from the strong rotational flow. In the recirculating zone the SMD and mean velocity are minimum, while at outer side of the spray zone, they are comparatively large.
     2. Studying the spray characterics, surface roughness influencing the heat transfer performance of the spray cooling in the non-boiling regime.The results showed that droplet velocity, droplet diameter, droplet number flux and mass flux all affected the heat transfer. Combining theoretical analysis with experimental results, we concluded that:1) heat flux was increased with the increasing of droplet velocity and droplet number flux; 2) Flim evaporation is very important to heat transfer in non-boiling regime of spray cooling. As test surface temperature increased, film evaporation increased as well and heat transfer performance enhanced; 3) The surface temperature unevenly distributed in the non-boiling regimen using semi-soild swir nozzle.4) Compared with smooth wall, the rough wall has better heat transfer performance and cooling efficiency in non-boiling region.Besides those, the effect of spray characteristics on heat transfer was studied thoroughly and the conclusion that mass flux was the main factor to affect the heat transfer was proposed.
     3. Experiments were performed to study the effects of spray inclination angle (the angle between the normal of the square test surface and the axis of symmetry of the spray), the mass flux as well as the surface temperature on the heat transfer performance in non-boiling regime by using water sprays. Experiments revealed that there is an optimal orifice-to-surface distance where heat transfer performance is best. And this occurred when the major axis of the elliptical spray impact area is just intersecting the square test surface at inclined sprays. Knowing the inclination angle and spray cone angle as well as the test size, the optimum orifice-to-surface distance can be easily determined. Too small orifice-to-surface distances would result in only a small fraction of the test surface impacted by the spray, while too large a distance causes a substantial fraction of the spray liquid falling wastefully outside the test surface. Both extremes made heat transfer performance decrease. The heat transfer performance and the cooling efficiencies increased with increasing inclination angle from 0°to 49°. Despite the increased heat transfer, it takes longer time at larger inclination angles for the test surface to reach a steady state between power increments.
     4. Experiments were conducted to study the effects of enhanced surfaces on heat transfer performance during water spray cooling in non-boiling regime. The surface enhancement is straight fins. The structures were machined on the top surface of heated copper blocks with a cross-sectional area of 10 mm×10 mm. The spray was performed using solid pressure-atomizing nozzles with a mass flux of 44-53 Kg/ (m2·s). It is found that the heat transfer is obviously enhanced for straight fin surfaces relative to the flat surface. However, the increment decreases as fin height increases. For flat surface and enhanced surfaces with a fin height of 0.1 mm and 0.2 mm, as mass flux increases, heat flux increases as well. However, for finned surface with a height of 0.4 mm, heat flux is not sensitive to coolant mass flux. Changed film thickness and the form of water/surface interaction due to enhanced surface structure (different fin height) are the main reasons for changing of local heat transfer coefficient. Straight fin surface not only increased the area of heat transfer, but also provided a driving force for liquid spreading and enhanced heat transfer. The optimum heat transfer performance in the experiments is the enhanced surface with fins in 0.2mm height, and the surface with fins in 0.1mm and 0.4mm height next.
     5. Studying the heat flux corrlection in the non-boiling regime.The former datas was normalized in terms of non-dimensional groups.It showed that the main dimensional number influencing the heat transfer were Re Number,Weber Number and non-dimensional temperatureξ. Furthermore, Generalized correlations were developed for local Nusselt number as a function of the spray Reynolds number (116.2     The main theoretical studies
     Based on the fundamental principle of spray cooling and bubble-droplet dynamics, a numerical method was developed to study the heat transfer characteristics of heated surface which have the bubble generated with a focus on "secondary nucleation" and the influence of "secondary nuclei range" coefficient(β)and secondary nucleation coefficient (φ) in the whole spray cooling. The results indicated that increasing the secondary nucleation (φ) could result in the heat flux increased, whenφis 6, the heat flux in not increasing obviously. The point whichβis 8 is extreme point, increasing and reducing theβcould weaken the effect of heat transfer. In the case ofφ=6,β=3,5,8,10,comparing the calculating results to the results computed from the correlation provided by Cho,Ponzel,we conclude that the simulation fits the correlation well whenβis 8 and 10.So the primeφ,βare 6 and 8.
引文
[1]Lee D. J.1998.Bubble Departure Radius under Microgravity [J]. Chem. Eng. Comm, 70(6):175-189
    [2]姚寿广,马哲树,罗林等.2003.电子电器设备中高效热管散热技术的研究现状及发展[J].华东船舶工业学院学报,8(4):9-12.
    [3]李腾,刘静.2004.芯片冷却技术的最新研究进展及其评价[J].制冷学报,24(3):22-32
    [4]马晓雁.2006.高效微射流阵列热沉内流体压降和传热特性的研究[D].北京:北京工业大学.
    [5]李庆友,王文,周根明.2005.电子元器件散热方法研究[J].电子器件,2005,28(4):937-941
    [6]Moore Samuel K.2008. Multicore is Bad News for Supercomputers [J].IEEE Spectrum,45 (15):15.
    [7]Kim, J.2007. Spray cooling heat transfer:The state of the art [J]. Int. J. Heat Fluid Flow 28(11):753-767.
    [8]王迎昆.2008.高密度组装微通道换热研究[D].西安:西安电子科技大学硕士学位论文.
    [9]Tuckerman D.B. Pease R.F.W.1981. High-performance Heat Sinking for VLSI [J]. IEEE Electron Device Lett.,5 (2):126-129.
    [10]Tuckerman D.B.1984.Heat-transfer Microstructures for Integrated Circuits [D]. California: Standford University.
    [11]徐德好.2006.微通道液冷冷却设计与优化[J].电子机械工程,22(2):14-18
    [12]S. V. Garimella, C. B. Sobhan.2003. Transport in micro channels-A critical review [J].Annul. Rev. Heat Transfer,13(1):1-50
    [13]I. Mudawar.2001. Assessment of High-Heat-Flux Thermal Management Schemes [J].IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES,24(6) 122-141.
    [14]MARK E. STEINKE, SATISH G. KANDLIKAR,J. H. MAGERLEIN.EVAN G. COLGAN、 ALAN D. RAISANEN.2006. Development of an Experimental Facility for Investigating Single-Phase Liquid Flow in Micro channels [J].Heat Transfer Engineering,27(4):41-52,
    [15]Lee Y and Berrossian A.1978. The characteristic of heat exchanger using heat pipe or thermosyphons [J].International Journal of Heat Transfer.21(2):221-229
    [16]Wang YX, Ma HB, Peterson GP.2001.Investigation of temperature distribution on radiator fins with micro heat pipes [J]. AIAA J.Thermophys Heat Transfer 15(1):42-49
    [17]朱颖,张汝春.2005.机械切割加工喷雾冷却方法[J].煤矿机械,(6):73—75
    [18]刘剑,缪佳兴.2004.喷雾冷却技术及其应用[J].工具技术,38(11):750—52
    [19]徐志海,余岳峰.2006.喷雾冷却燃气轮机进气对对燃机性能的影响分析[J].华东电力,34(3):70—73
    [20]袁伟平,王文生.2006.喷雾冷却技术在烧碱三效逆流蒸发中的应用[J].氯碱工业,(5):28-29
    [21]罗静.2002.喷雾冷却技术在炼铜转炉烟气收尘中的应用[J].有色冶金设计与研究,23(2):13—16.
    [22]单建华.1997.喷雾冷却法治理造气废水[J]小氮肥设计技术,1997(4):20—21
    [23]Cader T., Westra L.J., Eden R.C.2004.Spray Cooling Thermal Management for Increased Device Reliability [J].EEE Transactions on Device and Materials Reliability,4(4):605-613
    [24]Shedd T.A.2007. Next Generation Spray Cooling:High Heat Flux Management in Compact Spaces [J]. Heat Transfer Engineering,2007,28(2):87-92.
    [25]Selvam R.P., Sarkar M., Ponnappan R.2005. Modeling of Spray Cooling:Effect of Droplet Velocity and Liquid to Vapor Density Ratio on Heat Transfer. Thermal and Fluids Analysis Workshop (TFAWS).
    [26]Lin L.C., Ponnappan R.2002.Critical Heat Flux of Multinozzle Spray Cooling in a Closed Loop [C].IECEC:341-346.
    [27]Hunnel C.A., Kuhlman J.M., Gray D.D. Spray Cooling in Terrestrial and Simulated Reduced Gravity [M]. AIP Conference Proceedings
    [28]Silk E.A., Golliher E.L., Selvam R.P.2008. Spray Cooling Heat Transfer:Technology Overview and Assessment of Future Challenges for Micro-Gravity Application [J]. Energy conversion and management,49(2):453-468
    [29]Chow, L. C., Sehembey, M. S., and Pais, M. R.1997. High Heat Flux Spray Cooling [J].Annul. Rev. Heat Transfer,129(8):291-318.
    [30]田棨薰.2005.水及R-134a喷雾雾滴粒径(d32)分布及流(热)场测量[D].台湾:国立中山大学
    [31]Glaspell S.L.2006. Effects of the Electric Kelvin Force on Spray Cooling [D].Morgantown: West Virginia University.
    [32]Xia Chunlin.2002. Spray/jet Cooling for Heat Flux High to 1kw/cm2 [J].IEEE SEMI-THERM Symposium,159-163.
    [33]吕晓兰,何雄奎,宋坚利等.2007.标准扇形雾喷头雾化过程测试分析[J].农业工程学报,23(9):95-100.
    [34]Tan ShiWei.2001.Computer simulation of a spray cooling system with fc-72,PH.D's thesis, school of mechanical,materials and aerospace engineering in the college of engineering and computer science at the university of central Florida
    [35]Daniel P. Rini, Ruey-Hung Chen, and Louis C. Chow.2001. BUBBLE BEHAVIOR AND HEAT TRANSFER MECHANISM IN FC-72 POOL BOILING [J]. Experimental Heat Transfer,14(1):27-44,
    [36]Yang J., Chow L.C., Pais M.R, et al.1992.Liquid Film Thickness and Topography Determination using Fresnel Difraction and Holography [J].Experimental Heat Transfer,5(4): 239-252.
    [37]Yang J., Chow L.C., Pais M.R.1996.An Analytical Method to Determine the Liquid Film Thickness Produced by Gas Atomized Sprays [J]. Journal of Heat Transfer,118(2):255-258.
    [38]Putsch, A.G., Shedd. T.A.,2006. Adiabatic and diabetic measurements of the liquid film thickness during spray cooling with FC-72[J]. International Journal of Heat and Mass Transfer 49(4),2610-2618.
    [39]TIMOTHY A. SHEDD.2007.Next Generation Spray Cooling:High Heat Flux Management In Compact Spaces [J]. Heat Transfer Engineering,28(2):87-92.
    [40]Daniel P. Rini, Ruey-Hung Chen, Louis C. Chow.2002.Bubble, Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling [J]. Journal of Heat Transfer, 124(2):63-72
    [41]鲁钟琪.2002.两相流与沸腾换热[M].清华大学出版社
    [42]A.K. Das, P.K. Das, P. Saha.2006.Heat transfer during pool boiling based on evaporation from micro and macrolayer [J].International Journal of Heat and Mass Transfer 49 (19)3487-3499
    [43]M.G.Cooper and J.P.Lloyd.1966.Transient local Heat Flux in Nucleate Boiling[M].//proceedings of the 3rd international heat transfer conference Chicago.193-203.
    [44]R.Mesler and G.Mailen.1997. Nucleate boiling in thin liquid films [J].I AICHE journal,23 (6):954-957.
    [45]Yang.Jidong.1993.spray cooling with air atomize nozzle [M]. Kentucky:School of mechanical engineering in the University of Kentucky.
    [46]Sehmbey, M. S., Chow, L. C.et al.1995.Spray cooling of Power Electronics at Cryogenic Temperatures [J]. Thermophys.Heat Transfer,9(1):123-128.
    [47]Y.Haramura and Y.Katto.1983.A new hydrodynamic model of critical heat flux applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids[J]. Int.J.Heat Mass Transfer,26(2):389-399.
    [48]Zhang H., Mudawar I., Hasan M.M.2002.Experimental and Theoretical Study of orientation effects on flow boiling CHF [J]. International Journal of Heat and Mass Transfer,45(5)4463-4471
    [49]Zhang H., Mudawar I., Hasan M.M.2004.Investigation of interfacial behavior during the flow boiling CHF transient [J]. International Journal of Heat and Mass Transfer,47(6):1275-1288
    [50]Zhang H., Mudawar I., Hasan M.M.2005.Flow boiling CHF in Microgravity [J]. International Journal of Heat and Mass Transfer,48(8):3107-3118
    [51]Shi-chuneYao.1994. Dynamics and Heat Transfer of Impacting Sprays Cooling [J]. Annul. Rev. Heat Transfer,351-381.
    [52]I.Mudawar K.A.Estes.1996.Optimizing and Prediction CHF in spray Cooling of a Square Surface [J]. Journal of heat transfer,118(8):672-679.
    [53]Estes, K.A., Mudawar,1.1995. Correlation of Sauter mean diameter and Critical heat flux for spray cooling of small surfaces [J]. International Journal of Heat and Mass Transfer 38 (16):2985-2996
    [54]Visaria M., Mudawar 1.2008. Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux [J]. International Journal of Heat and Mass Transfer,51(11):2398-2410.
    [55]Um Jae Yong.1997. Thermal Analysis of Spray Cooling and its Application in Metal Cutting [D]. Lexington University of Kentucky
    [56]Cabrera E., Gonzalez J.E.2003.Heat Flux Correlation for Spray Cooling in the Nucleate Boiling Regime [J]. Experimental Heat Transfer,16(3):19-44.
    [57]Ghodbane M., Holman J.P.1991.Experimental study of spray cooling with Freon-113 [J].International journal of heat and mass transfer,34(4/5):1163-1194.
    [58]Shedd T.A., Pautsch A.G.2005. Spray Impingement Cooling with Singleand Multiple Nozzle Arrays. Part Ⅱ:Visualization and Empirical Models [J]. International Journal of Heat and Mass Transfer,48(15):3176-3184.
    [59]Some Thierry, Kim Jungho, Lehmann Eckhard et al.2007. Pressure Based Prediction of Spray Cooling Heat Transfer Coefficients [C]. IMECE2007,:1131-1138.
    [60]Michele Ciofalo.2007. The Nukiyama curve in Water Spray Cooling:Its Derivation FromTemperature-Time Histories and its Dependence on The Quantities that Characterize Drop Impact [J]. International Journal of Heat and Mass Transfer,50 (25/26):4948-4966.
    [61]D.E.Tilton1989. Spray cooling, Ph.D. Dissertation. [M] Lexington,KY.University of Kentucky.
    [62]M.S.Sehmbey, M.R.Pais, and L.C.Lhow.1992.Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling [J].Thermophys.HeatTransfer, 6(3):505-512.
    [63]Bohumil Horacek, Kenneth T. Kiger, Jungho Kim.2005.Single nozzle spray cooling heat transfer mechanisms[J].International Journal of Heat and Mass Transfer 48 (8):1425-1438
    [64]M. Sehmbey, L. Chow, M. Pais, T. Mahefkey.1995.High heat flux spray cooling of electronics, in[M]//12th Symposium on Space Nuclear Power and Propulsion, Albuquerque, NM, January, AIP Conference Proceedings No.324:903-909.
    [65]M. Pais, L. Chow, E. Mahefkey.1992.Surface roughness and its effects on the heat transfer mechanism of spray cooling [J]. J. Heat Transfer,114 (1):211-219.
    [66]L. Ortiz, J. E. Gonzalez.1999. Experiments on Steady-State High Fluxes Using Spray Cooling [J]. Experimental Heat Transfer,12(2):215-233.
    [67]Stodke and Stephan.2005.Spray cooling heat transfer on micro-structured surfaces[M]//In:6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Matsushima, Miyagi, Japan.
    [68]Cheng-Chieh Hsieh, Shi-Chune Yao.2006.Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J].International Journal of Heat and Mass Transfer, 49 (6) 962-974
    [69]Silk EA, Kim J, Kiger K.2006. Spray cooling of enhanced surfaces:impact of structured surface geometry and spray axis inclination[J].Int J Heat Mass Transfer,49(11):4910-4920.
    [70]Kim and Kiger.2007.Spray cooling of high aspect ratio open microchannels [J] Journal of Heat Transfer,129(7):1052-1059.
    [71]Chen, R.H., Chow, L.C., Navedo, J.E.2002. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J].International Journal of Heat and Mass Transfer,45(9):4033-4043.
    [72]Chen, R.H., Chow, L.C., Navedo, J.E.2004. Optimal spray characteristic in water spray cooling [J]. International Journal of Heat and Mass Transfer,47(9):5095-5099.
    [73]J.D. Bernardin, I. Mudawar.1997. Film boiling heat transfer of droplet streams and sprays [J]. International Journal of Heat and Mass Transfer,40 (7):2579-2593.
    [74]Y.M. Qiao, S. Chandra.1998.Spray cooling enhancement by addition of a surfactant[J]. ASME Journal of Heat Transfer 120 (8):92-98.
    [75]W. Jia, H.-H. Qiu.2003.Experimental investigation of droplet dynamics and heat transfer in spray cooling [J]. Experimental Thermal and Fluid Science,27 (3):829-838
    [76]Lanchao Lin, Rengasamy Ponnappan.2003.Heat transfer characteristics of spray cooling in a closed loop [J]. International Journal of Heat and Mass Transfer 46 (11):3737-3746
    [77]Shanjuan Jiang, Vijay K. Dhir.2004. Spray cooling in a closed system with different fractions of non-condensibles in the environment [J]. International Journal of Heat and Mass Transfer 47:5391-5406
    [78]Li B.Q., Cader T., Schwarzkopf J., et al.2006.Spray Angle Effect during Spray Cooling of Microelectronics:Experimental Measurements and Comparison with Inverse Calculations [J]. Applied Thermal Engineering,26(6):1788-1795.
    [79]Visaria M., Mudawar I.2008.Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux [J]. International journal of heat and mass transfer,51(8):2398-2410.
    [80]郭永献.2009喷雾液膜流动理论及电子器件喷雾冷却实验研究[D].西安:电子科技大学博士论文
    [81]Hsieh C.C.2003.Two-phase Transport Phenomena in Microfluidic Devices [D].Pittsburgh: Carnegie Mellon University,2003.
    [82]Yoshida K., Yoshiyuki A., Toshiharu O., Yasuhiko M., Akira N.2001.Spray Cooling under Reduced Gravity Condition [J]. ASME Journal of Heat Transfer,123(2):309-318.
    [83]Tatiana Gambaryan-Roisman, Olympia Kyriopoulos, Ilia Roisman et al. Gravity Effect on Spray Impact and Spray Cooling. Microgravity Science and Technology,19(3/4):151-154
    [84]刘其聂.2009.喷雾冷却换热特性实验研究及其系统仿真[D]合肥:中国科技大学硕士论文
    [1]余建祖.2002.电子设备热设计及分析技术[M].高等教育出版社.182-183
    [2]Mudawar 1.2001. Assessment of High-Heat Flux Thermal Management Schemes [J].IEEE Transactions on Components and PackagingTechnologies. Vol.24:1-20.
    [3]Lin L.C., Ponnappan R.2002.Critical Heat Flux of Multinozzle Spray Cooling in a Closed Loop [C].IECEC.341-346.
    [4]Pautsch A. G.2004. Heat Transfer and Film Thickness Characteristics of Spray Cooling with Phase Change [D]. Madison:University of Wisconsin.
    [5]I.Mudawar K.A.Estes.1996.Optimizing and Prediction CHF in spray Cooling of a Square Surface [J]. Journal of heat transfer,118(8):672-679.
    [6]Estes K.A., Mudawar 1.1995. Correlation of Sauter Mean Diameter and Critical HeatFlux for Spray Cooling of Small Surfaces [J]. International Journal of Heat and Mass Transfer,38: 2985-2996.
    [7]Visaria M., Mudawar I.2008.Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux [J]. International journal of heat and mass transfer,2008,51(8):2398-2410.
    [8]Pautsch A.G.. Shedd T.A.2005.Spray Impingement Cooling with Single and MultipleNozzle Arrays, Part I:Heat Transfer Data Using FC-72 [J]. International Journal of Heat and Mass Transfer,48:3167-3175.
    [9]Pautsch A. G, Shedd T. A., Nellis G. F.2004.Thickness Measurements of the Thin Film in Spray Evaporative Cooling [J]. Inter Society Conference on Thermal Phenomena,70-76.
    [10]Kim J. H., Rainey K. N., You S. M. et al.2002.Mechanism of Nucleate Boiling HeatTransfer Enhancement From Microporous Surfaces in Saturated FC-72 [J].Journal of Heat Transfer, 124(3):500-506.
    [11]Ashwood Andrea C, Shedd.2007.Timothy A. Spray Cooling with Mixtures of Dielectric Fluids [C].23rd IEEE SEMI-THERM Symposium,144-148.
    [12]Wexler E., Tuchinsky L., Loutfy R. et al.2005.Enhanced Liquid Cooling with Phase Change in Multi-Channel Heat Sinks [EB].5.13.
    [13]Estes K.A., Mudawar I.1995.Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces [J]. International Journal of Heat andMass Transfer,38: 2985-2996.
    [14]Li B.Q., Cader T., Schwarzkopf J., et al.2006.Spray Angle Effect during Spray Cooling of Microelectronics:Experimental Measurements and Comparison with Inverse Calculations [J]. Applied Thermal Engineering,26:1788-1795.
    [15]Hsieh C.C.2003.Two-phase Transport Phenomena in Microfluidic Devices [D].Pittsburgh: Carnegie Mellon University.
    [16]Avram Bar-Cohen, Mehmet Arik, Michael Ohadi.2006. Direct Liquid Cooling of High Flux Micro and NanoElectronic Components [J]. Proceedings of the IEEE,94(8):1549-1570.
    [17]Coursey Johnathan Stuart.2007. Enhancement of Spray Cooling Heat Transfer using Extended Surfaces and Nanofluids [D]. Park:University of Maryland.
    [18]Arik M.2001.Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids [D].Minneapolis:Univ. Minnesota.
    [19]Silk E. A., Kim J., Kiger K.2005. Effect of Spray Cooling Trajectory Angle on Heat Flux upon A Straight Finned Enhanced Surface. ASME International Heat Transfer Summer Conference, New York, HT2005-72634.
    [20]Mudawar I., Bharathan D., Kelly K. et al.2008.Two-phase Spray Cooling of Hybrid Vehicle Electronics [J]. I-THERM,1210-1221.
    [21]李腾,刘静.2004.芯片冷却技术的最新研究进展及其评价[J].制冷学报,24(3):22-32
    [22]Yang J L, Chow C. Paris M R.1996. Nucleate Boiling Heat Transfer in Spray Cooling [J].Journal of Heat Transfer,118:668-671.
    [23]郭永献.2009喷雾液膜流动理论及电子器件喷雾冷却实验研究[D].西安:电子科技大学博士论文
    [24]杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社,1999年9月:315.
    [25]P. J. O'Rourke and A. A. Amsden.2000.A Spray/Wall Interaction Submodel for the KIVA-3
    Wall Film Model [J]. SAE Paper 2000-01-0271.
    [26]Roy Jean Issa.2003.Numerical modeling of the dynamics and heat transfer of impacting sprays for a wide range of pressures [D].University of Pittsburgh
    [27]D. W. Stanton and C. J. Rutland.1998. Multi-Dimensional Modeling of Thin Liquid Films and Spray-Wall Interactions Resulting from Impinging Sprays [J]. International Journal of Heat and Mass Transfer,41:3037-3054.
    [28]黄素逸.2001.动力工程现代测试技术[M].武汉:华中科技大学出版社。
    [29]刘明侯.2006.实验理论测量课堂讲义[M].合肥:中国科学技术大学
    [1]Chen, R.H., Chow, L.C., Navedo, J.E.2002. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J].International Journal of Heat and Mass Transfer,45(9): 4033-4043.
    [2]Chen, R.H., Chow, L.C., Navedo, J.E.2004. Optimal spray characteristic in water spray cooling [J]. International Journal of Heat and Mass Transfer,47(9):5095-5099.
    [3]J.D. Bernardin, I. Mudawar.1997. Film boiling heat transfer of droplet streams and sprays [J]. International Journal of Heat and Mass Transfer,40 (7):2579-2593.
    [4]M. Sehmbey, L. Chow, M. Pais, T. Mahefkey.1995.High heat flux spray cooling of electronics, in[M]//12th Symposium on Space Nuclear Power and Propulsion, Albuquerque, NM, January, AIP Conference Proceedings No.324:903-909.
    [5]M. Pais, L. Chow, E. Mahefkey.1992.Surface roughness and its effects on the heat transfer mechanism of spray cooling [J]. J. Heat Transfer,114 (1):211-219.
    [6]L. Ortiz, J. E. Gonzalez.1999. Experiments on Steady-State High Fluxes Using Spray Cooling [J]. Experimental Heat Transfer,12(2):215-233.
    [7]曹建明.2005.喷雾学研究的国际进展[J].长安大学学报,251:82-87.
    [8]曹建明.2005.喷雾学[M].北京:机械工业出版社。
    [9]田棨薰.水及R-134a喷雾雾滴粒径(d32)分布及流(热)场测量[D]台湾:国立中山大学,2005:2,38.
    [10]郭永献.2009喷雾液膜流动理论及电子器件喷雾冷却实验研究[D].西安:电子科技大学博士论文
    [11]Coursey Johnathan Stuart.2007. Enhancement of Spray Cooling Heat Transfer using
    Extended Surfaces and Nanofluids [D]. Park:University of Maryland.
    [12]Estes K.A., Mudawar 1.1995. Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces [J]. International Journal of Heat and Mass Transfer,38: 2985-2996.
    [13]Mudawar I., Estes K.A.1996. Optimization and Predicting CHF in Spray Cooling of a Square Surface [J]. Journal of Heat Transfer, (118):672-680.
    [14]Some Thierry, Kim Jungho, Lehmann Eckhard et al.2007. Pressure Based Prediction of Spray Cooling Heat Transfer Coefficients [C]. IMECE2007:1131-1138.
    [15]A. H. Lefebvre.1989. Atomization and Sprays. [M] Hemisphere Publishing Corporation
    [16]刘期聂,程文龙,赵锐等.喷雾冷却喷嘴雾化特性研究[C].2008年中国工程热物理学会传热传质学术会议,083453.
    [17]程文龙,刘期聂,赵锐等.喷雾冷却参数优化实验研究[C].2008年中国工程热物理学会传热传质学术会议,083454.
    [18]Ghodbane M., Holman J.P.1991. Experimental study of spray cooling with Freon-113 [J].International journal of heat and mass transfer,34(4/5):1163-1194.
    [19]Qiao. Y. M., Chandra. S.1998. Spray Cooling Enhancement by Addition of A Surfactant [J]. Journal of Heat transfer,120:92-98.
    [20]Nitin Karwa, Sunil R. Kale, P.M.V.2007.Subbarao. Experimental Study of Non-Boiling Heat Transfer from a Horizontal Surface by Water Sprays [J].ExperimentalThermal and Fluid Science,32:571-579.
    [21]Horacek B., Kiger K.T., Kim J.2005.Single Nozzle Spray Cooling Heat Transfer Mechanisms [J]. International Journal of Heat and Mass Transfer,48:1425-1438.
    [22]Ciofalo M.2007.The Nukiyama curve in Water Spray Cooling:Its Derivation From Temperature-Time Histories and its Dependence on The Quantities that Characterize Drop Impact [J]. International Journal of Heat and Mass Transfer,50(25-26):4948-4966.
    [23]A. K. Lichtarowicz, R. K. Duggins, and E. Markland.1965. Discharge Coefficients for Incompressible Non-Cavitating Flow through Long Orifices [J]. Journal of Mechanical Engineering Science,7:2
    [24]金超花.2007.静电喷雾雾滴输运沉积特性的研究[D].江苏:江苏大学硕士学位论文,
    [25]刘明侯.2006.实验理论测量课堂讲义[M].合肥:中国科学技术大学
    [26]Silk, E.A.2006. Investigation into Enhanced Surface Spray Cooling [D]. Ph.D. Maryland: School of Mechanical Engineering, University of Maryland, College Park, MD.
    [27]D. P. Schmidt, I. Nouar, P. K. Senecal et al.1999.Pressure-Swirl Atomization in the Near Field [J]. SAE Paper 01-0496, SAE,1999.
    [28]Flunet 6.3 help.2006 [M] Fluent Corporation.
    [29]Shi-chuneYao.1994. Dynamics and Heat Transfer of Impacting Sprays Cooling [J]. Annul. Rev. Heat Transfer.351-381.
    [30]Nitin Karwa, Sunil R. Kale, P.M.V. Subbarao.2007. Experimental study of non-boiling heat transfer from a horizontal surface by water sprays [J]. Experimental Thermal and Fluid Science,32 571-579
    [31]K. Oliphant, B.W. Webb, M.Q. McQuay.1998. An experimental comparison of liquid jet array and spray impingement cooling in the nonboiling regime [J]. Experimental Thermal and Fluid Science 18,1-10.
    [32]Cheng-Chieh Hsieh, Shi-Chune Yao.2006.Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces [J].International Journal of Heat and Mass Transfer. 49:962-974
    [33]W. Jia, H.-H. Qiu.2003.Experimental investigation of droplet dynamics and heat transfer in spray cooling[J].Experimental Thermal and Fluid Science.27:829-838
    [1]Cheng-Chieh Hsieh, Shi-Chune Yao.2006.Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J].International Journal of Heat and Mass Transfer, 49 (6) 962-974
    [2]Silk EA, Kim J, Kiger K.2006. Spray cooling of enhanced surfaces:impact of structured surface geometry and spray axis inclination[J].Int J Heat Mass Transfer,49(11):4910-4920.
    [3]Li B.Q., Cader T., Schwarzkopf J., et al.2006.Spray Angle Effect during Spray Cooling of Microelectronics:Experimental Measurements and Comparison with Inverse Calculations [J]. Applied Thermal Engineering,26(6):1788-1795.
    [4]Visaria M., Mudawar I.2008.Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux [J]. International journal of heat and mass transfer,51(8):2398-2410.
    [5]郭永献.2009喷雾液膜流动理论及电子器件喷雾冷却实验研究[D].西安:电子科技大学博士论文
    [6]Stodke and Stephan.2005.Spray cooling heat transfer on micro-structured surfaces[M]//In:6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Matsushima, Miyagi, Japan.
    [7]Visaria M., Mudawar I.2008.Theoretical and Experimental Study of the Effects of Spray Inclination on Two-Phase Spray Cooling and Critical Heat Flux [J]. International journal of heat and mass transfer,51(8):2398-2410.
    [8]W. Jia, H.-H. Qiu.2003.Experimental investigation of droplet dynamics and heat transfer in spray cooling[J].Experimental Thermal and Fluid Science.27:829-838
    [1]Stodke and Stephan.2005.Spray cooling heat transfer on micro-structured surfaces[M]//In:6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Matsushima, Miyagi, Japan.
    [2]Cheng-Chieh Hsieh, Shi-Chune Yao.2006.Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces[J].International Journal of Heat and Mass Transfer, 49 (6) 962-974
    [3]Silk EA, Kim J, Kiger K.2006. Spray cooling of enhanced surfaces:impact of structured surface geometry and spray axis inclination[J].Int J Heat Mass Transfer,49(11):4910-4920.
    [4]Kim, and Kiger.2007. Spray cooling of high aspect ratio open microchannels[J].Journal of Heat Transfer,129 (7):1052-1059.
    [5]K. Oliphant, B.W. Webb, M.Q. McQuay.1998. An experimental comparison of liquid jet array and spray impingement cooling in the nonboiling regime[J]. Experimental Thermal and Fluid Science 18,1-10.
    [6]Incropera F P, Dewitt D P, Bergman T L, Lavine A S.2007.Fundamentals of Heat and Mass Transfer[M].6thed. John Wiley& Sons, Inc.90-103
    [1]V.P. Isachenko, V.I. Kushnyrev, S.V. Gorin.1979. Experimental study of heat transfer in cooling of a vertical surface by a liquid spray [J]. Heat Transfer-Soviet Research 11 (4): 142-145.
    [2]M. Ciofalo, I. Di Piazza, V. Brucato.1999. Investigation of the cooling of hot walls by liquid water sprays [J]. International Journal of Heat and Mass Transfer.42:1157-1175.
    [3]M. Fabbri, S. Jiang, V.K. Dhir.2005. A comparative study of cooling of high power density electronics using sprays and microjets [J].ASME Journal of Heat Transfer.127:38-48.
    [4]Yao W., Zhang H.X., Miao J.Y. et al. Analysis and Design of a Spray Cooling Thermal Control System for Spacecraft High Power Density Components [J].AIAA,57th International Astronautical Congress, IAC-06-C2,2006:5711-5714.
    [5]姚伟,范含林.2005.未来航天器高功率密度载荷的热控制技术[J].航天器工程,14(3):21-25.
    [6]安珍彩,雷树业,何玮菁等.2004.雾化喷射下的波动液膜的电测量[J].工程热物理学报,25:121-123.
    [7]芦秋敏,雷树业.2005.雾化喷射冷却的机理及模型研究[J].工程热物理学报.26(5):817-819.
    [8]郑可可,雷树业,陈建平等.2002.无沸腾喷雾冷却中流量和喷头高度对换热性能的影响[J].工业加热,5:8-11.
    [9]郭永献.2009喷雾液膜流动理论及电子器件喷雾冷却实验研究[D].西安:电子科技大学博士论文
    [10]J.R. Rybicki, and I. Mudawar.2006. Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays [J].Int. J. Heat and Mass Transfer,49:5-16.
    [11]K. Oliphant, B.W. Webb, M.Q. McQuay.1998. An experimental comparison of liquid jet array and spray impingement cooling in the nonboiling regime [J]. Experimental Thermal and Fluid Science 18,1-10.
    [12]Nitin Karwa, Sunil R. Kale, P.M.V. Subbarao.2007. Experimental study of non-boiling heat transfer from a horizontal surface by water sprays [J]. Experimental Thermal and Fluid Science,32:571-579
    [13]Estes K.A., Mudawar I.1995.Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces [J]. International Journal of Heat andMass Transfer,38: 2985-2996.
    [14]Chen, R.H., Chow, L.C., Navedo, J.E.2002. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J].International Journal of Heat and Mass Transfer,45(9):4033-4043.
    [15]Chen, R.H., Chow, L.C., Navedo, J.E.2004. Optimal spray characteristic in water spray cooling [J]. International Journal of Heat and Mass Transfer,47(9):5095-5099.
    [16]Tan ShiWei.2001.Computer simulation of a spray cooling system with fc-72[D].PH.D's thesis, school of mechanical,materials and aerospace engineering in the college of engineering and computer science at the university of central Florida
    [17]J.D. Bernardin, I. Mudawar.1997. Film boiling heat transfer of droplet streams and sprays [J]. International Journal of Heat and Mass Transfer 40; 2579-2593
    [1]Selvam P.P., Lin L.C., Rengasamy Ponnappan.2005.Computational Modeling of Spray Cooling: Current Status and Future Challenges [C]. STAIF,55-63.
    [2]Selvam R. Panneer, Hamilton Matthew, Silk Eric A.2007. Spray Cooling Modeling:Liquid Film Thickness Effect on Heat Transfer [C]. Space Technology and Applications International Forum-STAIF:110-117.
    [3]Selvam R.P., Sarkar M., Sarkar S., Ponnappan R.2006. Effect of Vapor Bubble Size on Heat Transfer in Spray Cooling[C]. Space Technology and Applications International Forum-STAIF:145-152.
    [4]Selvam R.P., Lin Lanchao, Ponnappan Rengasamy.2006. Direct Simulation of Spray Cooling: Effect of Vapor Bubble Growth and Liquid Droplet Impact on Heat Transfer [J]. International J of Heat and Mass Transfer,49(6):4265-4278.
    [5]Chow, L. C., Sehembey, M. S., and Pais, M. R..1997. High Heat Flux Spray Cooling [J].Annul. Rev. Heat Transfer,129(8):291-318.
    [6]I.Mudawar K.A.Estes.1996.Optimizing and Prediction CHF in spray Cooling of a Square Surface[J]. Journal of heat transfer,118(8):672-679.
    [7]Lanchao Lin, Rengasamy Ponnappan.2003.Heat transfer characteristics of spray cooling in a closed loop [J]. International Journal of Heat and Mass Transfer 46 (11):3737-3746
    [8]Ruey-Hung Chen, Louis C. Chow, Jose E. Navedo.Effects of spray characteristics on critical heat flux in sub cooled water spray cooling[J].International Journal of Heat and Mass Transfer,45:4033-4043
    [9]Tan ShiWei.2001.Computer simulation of a spray cooling system with fc-72,PH.D's thesis, school of mechanical,materials and aerospace engineering in the college of engineering and computer science at.the university of central Florida
    [10]Daniel P. Rini、 Ruey-Hung Chen、 Louis C. Chow.2002.Bubble, Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling [J]. Journal of Heat Transfer, 124(2):63-72.
    [11]I.Mudawar, K.A.Estes.Optimizing and Prediction CHF in spray Cooling of a Square Surface. 1996.Journal of heat transfer [J].8(118)
    [12]A. H. Lefebvre.1989. Atomization and Sprays[M]. Hemisphere Publishing Corporation.
    [13]Van P.Carey.Liquid-Vapor Phase-Change Phenomena.[M]1992.Hemisphere Publishing Corporation
    [14]Esmailizadeh, L, and mesler. Bubble Entrainment with Drops.1990. Journal of Colloid and Interface Science [J].2(134)
    [15]Cho.Chris, Ponzel.Rainer.1997.Experimental study on the spray cooling of a heated solid surface. American Society of Mechanical Engineers,Fluids Engineering Division (Publication) FED, v 244, ASME Fluids Engineering Division.265-272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700