用户名: 密码: 验证码:
低温多效蒸发海水淡化系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全球大约有25%的人口缺乏保质保量的淡水供应,超过80%的国家存在淡水资源不足的问题。海水淡化技术已经成为解决淡水短缺问题的一条重要途径。低温多效蒸发海水淡化技术是主要的海水淡化方法之一。低温多效蒸发海水淡化系统通常被分为顺流、逆流、并流和混流流程。低温多效蒸发海水淡化系统中各效蒸发器的蒸发管的喷淋密度的大小对装置正常运行非常重要,本文的计算分析考虑到工程实际,所有的计算结果都保证各效喷淋密度都满足装置正常运行的要求,即喷淋密度在0.03-0.08kg/(m·s)范围内。
     在质量和能量平衡方程的基础上,建立了低温多效蒸发海水淡化系统的数学模型,其中包括蒸发器、冷凝器、预热器、海水冷却器和热力压缩器等;考虑了盐水沸点升高及蒸汽流经除沫器以及在效间通道和管束中流动时因阻力而造成的温度损失;海水的物性参数为浓度和温度的函数,饱和蒸汽和淡水的物性参数为温度的函数;针对系统的数学模型编制了计算求解程序。
     以额定产水量为10000 t/d的系统为例,研究了不同的因素对无热压缩的低温多效蒸发海水淡化混流系统的影响。在其他条件不变的情况下,首效加热蒸汽温度对造水比的影响不大,对蒸发器总面积的影响较大,提高首效加热蒸汽温度有利于降低蒸发器总面积。增加系统效数可以显著提高系统的造水比。建议尽量将预热器放在混流点前,而且越靠近首效越好,尤其是当预热量比较大时,有利于避免蒸发器总面积的急剧增加。
     对于带热压缩的低温多效蒸发海水淡化混流系统,以额定产水量3500 t/d为例,研究了不同的因素对系统的影响。结果表明:TVC引射蒸汽位置位于混流点位置后一效蒸发器之后时,系统的造水比达到最大值,蒸发器总面积达到最小值。为了减少系统蒸发器的换热面积可以适当的升高首效加热蒸汽的温度。TVC动力蒸汽的状态对系统的造水比的影响较大,对蒸发器总面积的影响不大,提高TVC动力蒸汽的温度和压力将有利于系统造水比提高。当系统可设置的预热器个数有限时,要尽量将预热器设置在TVC引射蒸汽位置以前的位置,而且越靠近首效越好,这样既有利于提高系统造水比,也有利于降低蒸发器总面积,有助于降低海水淡化成本。
     对无热压缩的低温多效蒸发海水淡化混流和并流系统进行了对比研究。在其他条件相同的情况下,混流系统的造水比始终高于并流系统,混流系统和并流系统的造水比都随系统效数的增加而增加。混流系统的蒸发器总面积随效数的变化幅度不大,而并流系统的变化幅度较大。两系统的造水比和蒸发器总面积都随首效加热蒸汽温度的升高而减小,但变化幅度不大。混流系统和并流系统的造水比和蒸发器总面积都随额定产水量的增加而增加,但是,增加系统的额定产水量将导致混流系统的造水比和蒸发器总面积相对于并流系统的优势降低。
     对带热压缩的低温多效蒸发海水淡化混流和并流系统进行了对比研究。结果表明:在相同的条件下,混流流程的系统造水比具有相当大的优势,但需要的蒸发器换热面积也较大。带TVC的混流流程受TVC引射蒸汽位置的影响较大。首效加热蒸汽温度对混流和并流系统的造水比和蒸发器总面积的影响都不大,对并流系统的影响要略强于混流系统。混流和并流系统的造水比受TVC动力蒸汽参数的影响都很大,蒸发器总面积受TVC动力蒸汽参数的影响都很小。混流系统受TVC动力蒸汽参数的影响更大一些。预热位置越靠前混流和并流系统的性能会越好,混流系统受预热位置的影响更大一些。
At present, about 25% of the world's people lack the quality and quantity of freshwater supplies. More than 80% of the countries have serious water problems. Seawater desalination has emerged as an important source of fresh water. Low-temperature multi-effect distillation (LT-MED) is one of main methods of seawater desalination. LT-MED desalination system is commonly divided into forward feed configuration, backward feed configuration, parallel feed configuration and mixed feed configuration. The spray density is very important for operation. Taking the actual conditions into account, the processes with spray density of evaporation tube in the range of 0.03-0.08 kg/(m·s) were selected as feasibility ones.
     Based on the mass and energy conservation, the mathematical models of a mixed feed LT-MED desalination system and a mixed feed LT-MED desalination system with thermal vapor compressor (TVC) were established, in which included evaporator, condenser, preheater, brine cooler etc. The temperature losses were considered caused by the boiling point elevation (BPE) of seawater and the flow pressure drop when steam flow through tube bundle, demisters and pipelines. The property parameters of seawater were considered as the functions of temperature and concentration. And the property parameters of fresh water and saturated steam were considered as the functions of temperature. A computer program was carried out to solve the model.
     Different factors impacting on the mixed feed LT-MED desalination system without thermal vapor compressor (TVC) were analyzed. The calculation was based on the system with a rated water production 10000 t/d. When other relative parameters are unchanged, the total area of evaporators is more sensitive to the change of the heating steam temperature of the first effect than gained output ratio (GOR). As the number of effects increase, GOR rises significantly while within some range, the total area of evaporators decreases. It is benefit for the performance of the system that the position of preheater moves toward the first effect.
     For the mixed feed LT-MED desalination system with TVC, The calculation was based on the system with a rated water production of 3500 t/d. Many factors impacting on the system performance were analyzed. The results show that when the entrained steam position of TVC is at the effect just behind the mixed feed position, GOR reaches the maximum value and the total area of evaporators reaches the minimum value which is benefit to reduce the water cost. The impact of motive steam parameters of TVC on GOR is greater than on total area of evaporators and it is better to increase the parameters of motive steam for reducing the cost of water. For reducing the water cost it is also better to put preheater at the position before the entrained steam position of TVC.
     Comparative study on parallel feed and mixed feed LT-MED desalination systems without TVC was done under different factors impacting on the systems. When the other factors are unchanged, the more the number of evaporators, the better the performance of mixed feed system compared to the parallel feed system. The impact of the heating steam temperature of the first effect on the performance difference of the two systems is very little. The less the rated water production, the better the performance of mixed feed system compared to the parallel feed system.
     Comparative study on parallel feed and mixed feed LT-MED desalination systems with TVC was done under different factors impacting on the systems. Under the same conditions, GOR of the mixed feed LT-MED desalination system has a considerable advantage, but the total area of evaporators is also larger. The impact of the entrained steam position of TVC on the mixed feed LT-MED desalination system is greater. The influence of motive steam parameters of TVC on GOR is greater than on total area of evaporators and it is better to increase the parameters of motive steam for reducing the cost of water. It is benefit for the performance of the two systems that the position of preheater moves toward the first effect. And the impact of the position of preheater on the mixed feed LT-MED desalination system is more significant.
引文
[1]Water, The Power, Promise, and Turmoil of North America' s Fresh Water[G]. National Geographic Special Edition, November 1993.
    [2]Middle East Desalination Research Center. R&D Programs and Annual Report [R].2001.
    [3]J.W. P.O'Meara. The OSW-20 years later, Desal [J]. Water Reuse,2(2)(1992) 31-38.
    [4]J.W. P.O'Meara. The OSW-20 years later, Part Ⅱ, Desal [J]. Water Reuse,2(3)(1992) 22-27.
    [5]J.W. P.O'Meara, The OSW-20 years later, Part Ⅲ, Desal [J]. Water Reuse,2 (4)(1992) 31-36.
    [6]J. E. Peters and J. D. Knight. Water supply for the U. S. naval station at Guantanamo Bay, Desal [J]. Water Reuse,6(3)(1996) 50-54.
    [7]C. Sommariva and R. Venkatesh. MSF Desalination [J]. MEDRC Newsletter,18(2002) 1-3.
    [8]A.A. Alawadhi. Regional Report on Desalination GCC Countries [C], in:Proceedings of the IDA World Congress on Desalination and Water Reuse, Manama, Bahrain, March 8-13, pp.2002.
    [9]Drinking Water from the Sea [J]. Middle East Electricity, April 2005, pp.21-22.
    [10]IDA Desalination Inventory Report[R]. No.17, International Desalination Association, Topsfield, MA, USA.
    [11]IDA Desalting Inventory 2004:Desalination Business Stabilized on a High Level, Int. Desal [J]. Water Reuse,14 (2)(2004) 14-17.
    [12]Global Water Intelligence [C], Market Profile:Desalination Markets 2007 Preview, October 2006, p.27.
    [13]杜宇.基于凝汽式机组的水电联产系统热经济性分析[D].大连:大连理工大学能源与动力学院,2009.
    [14]E. D. Howe. Fundamentals of Water Desalination [C]. Marcel Dekker, New York,1974.
    [15]O.K. Buros. The U. S.A.I.D. Desalination Manual [C]. International Desalination and Environmental Association,1980.
    [16]K. S Spiegler and A. D. K. Laird. Principles of Desalination,2nd edn[M]. Academic Press, New York,1980.
    [17]A. Porteous. Desalination Technology[C]. Applied Science Publishers, London,1983.
    [18]H.G. Heitmann. Saline Water Process ing[C]. VCH Verlagsgesellschaft, Germany,1990.
    [19]K.S. Spiegler and Y.M. El-Sayed. A Desalination Primer [J], Balaban Desalination Publications, Santa Maria Imbaro, Italy,1994.
    [20]B. Van der Bruggen. Desalination by distillation and by reverse osmosis—trends towards the future [J].Membr. Tech.,2003(2)(2003)6-9.
    [21]R. Rantenbach, J. Widua and S. Chafer. Reflections on Desalination Processes for the 21st Century, in:Proceedings of IDA World Congress on Desalination and Water Sciences [J]. Vol. I, AbuDhabi, United Arab Emirates, November 18-24,1995, pp.117-136.
    [22]R. Rautenbach. Progress in Distillation, in:Proceedings of the DESAL'92 Arabian Gulf Regional Water Desalination Symposium [J]. Al Ain, UAE, November 15-17,1992.
    [23]F.I. Jambi and J. M. Wie. The Royal Commission Gas Turbine/HRSG/Desalination Cogeneration Plant [C].1989 ASME COGEN-TURBO,3rd International Symposium on Turbomachinery, Combined-Cycle and Cogeneration, American Society of Mechanical Engineers, New York,1989, pp.275-280.
    [24]A. D. Khawaji, T. Khan and J. M. Wie. Gas Turbine Operating Experience in a Power/Seawater Desalination Cogeneration Mode [C], ASME ASIA'97 Congress & Exhibition, Paper Reprint No 97-AA-120, Singapore, September 30-October 2,1997.
    [25]B. A. Kamaluddin, S. Khan and B. M. Ahmed. Selection of optimally matched cogeneration plants [J]. Desalination,93(1993)311-321.
    [26]A.M. El-Nashar. Cogeneration for power and desalination-state of the art review [J]. Desalination,134 (2001) 7-28.
    [27]A.M. Al Mudaiheem and H. Miyamura. Construction and Commissioning of Al Jobail Phase Ⅱ Desalination Plant, in:Proceedings of the Second IDA World Congress on Desalination and Water Re-use [C]. Bermuda, Vol. II, November 17-22,1985, pp.1-11.
    [28]M. F. Al Ghamdi, C. H. Hughes and S. Kotake. The Makkah-Taif MSF desalination plant [J]. Desalination,66 (1987) 3-10.
    [29]M. A. K. Al-Sofi, M. A. Al-Hussain, A. A. Z. Al-Omran and K. M. Farran. A Full Decade of Operating Experience on Al-Khobar-Ⅱ Multi Stage Flash (MSF) Evaporators (1982-1992), in:Proceedings of the IDA and WRPC World Conference on Desalination and Water Treatment [C]. Yokohama, Japan, November 3-6,1993, pp.271-279.
    [30]The 12 MIGD Multistage Flash Desalination Units [C]. Mod. Power Sys.,15 (7) (1995) 11-14.
    [31]C. Sommariva. The 72 MIGD multi-stage flash distillation plant at Al Taweelah, Abu Dhabi, UAE, Desal [J]. Water Reuse,6(1)(1996) 30-36.
    [32]A. D. Khawaji, J. M. Wie and T. Khan. Operating Experience of the Royal Commission Acid-Dosed MSF Seawater Desalination Plant, in:Proceedings of IDA World Congress on Desalination and Water Reuse [J]. Vol. II, Madrid, Spain, October 6-9,1997, pp.3-19.
    [33]A. Harris, Seawater Chemistry and Scale Control. Desalination Technology Development and Practice, in:A. Porteous (Ed.) [J]. Applied Science Publishers, London, UK,1983, 31-56.
    [34]S. A. Al-Saleh and A. R. Khan. Evaluation of Belgard EV 2000 as Antiscalant Control Additive in MSF Plant, in:Proceedings of the IDA and WRPC World Conference on Desalination and Water Treatment [C]. Yokohama, Japan, November 3-6,1993, pp. 483-490.
    [35]F. Pujadas, Y. Fukumoto and K. Isobe. Performance Test of Antiscalant AQUAKREEN KC-550 under a Wide Range of Temperature Conditions at the MSF Desalination Plant in Abu-Dhabi, in:Proceedings of IDA World Congress on Desalination and Water Reuse [J]. Vol. Ⅱ, Washington, DC, August 1991, pp.25-29.
    [36]American Cyanamid Company. Performance of CYANAMER P-80 on an MSF Seawater Distillation Unit Operating at 112°C Top Temperature, Ras Abu Fontas Power and Water Station [R]. Qatar,29 October 1986-24 January 1987.
    [37]G. F. Casini. The application of a high temperature scale control additive in a Middle East MSF plant [J]. Desalination,47 (1983) 19-22.
    [38]J. C. Bernard and E. Demolins. Scale Control Additive Practical Experiences in Multistage Flash Plants, in:Proceedings of the Second IDA World Congress on Desalination and Water Reuse [C], Vol. I, Bermuda, November 17-22,1985, pp.301-305.
    [39]H. G. Heitmann. Chemical Problems and Chemical Conditioning in Seawater Desalination, Saline Water Processing, in:H. G. Heitmann (Ed.) [C]. VCH Verlagsgesellschaft, Germany, 1990, pp.55-66.
    [40]M. Al-Ahmad and F. A. A. Aleem. Scale formation and fouling problems effect on the performance of MSF and RO desalination plants in Saudi Arabia [J]. Desalination,93 (1-3) (1993) 287-310.
    [41]I. Barthelmes and H. Bohmer. Fouling and scaling control in MSF desalination units by on-load tube cleaning, Desal [J]. Water Reuse,7 (2) (1997),27-33.
    [42]S. Patel and M. A. Finan. New antifoulants for deposit control in MSF and MED plants, Desal [J]. Water Reuse,9 (2) (1999) 61-69.
    [43]A.I. Dabbour, J. M. Wie and S. Sheikh. Removal of Calcium Sulfate Scale by EDTA, in: Proceedings of the IDA World Congress on Desalination and Water Reuse [C]. San Diego, August 29-September 3,1999.
    [44]D. P. Logan and S. P. Rey. Scale Control in Multi-Stage Flash Evaporators [J]. Materials Performance, June 1986, pp.38-44.
    [45]A. D. Khawaji and J. M. Wie. Potabilization of desalinated water at Madinat Yanbu Al-Sinaiyah [J]. Desalination,98 (1994) 135-146.
    [46]H. A. Kirby. The Dubai E Power Generation and Desalination Station, ASME COGEN-TURBO International Symposium on Turbomachinery, Combined-Cycle and Cogeneration, in:G. K. Serovy (Ed.) [C]. IGTI-vol.1, American Society of Mechanical Engineers, New York,1987, pp.9-16.
    [47]World Health Organization. Health effects of the removal of substances occurring naturally in drinking-water with special reference to demineralized and desalinated water [J]. EURO Reports and Studies, Vol.16,1979, pp.24.
    [48]B. Liberman and I. Liberman. A post treatment computer program, Desal [J]. Water Reuse, 9 (2) (1999) 51-55.
    [49]E. Gabbrielli. A tailored process for remineralization and potabilization of desalinated water [J]. Desalination,39 (1981) 503-520.
    [50]H. Ludwig and M. Hetscel. Treatment of distillatesand permeates from seawater desalination plants [J]. Desalination,58 (1986) 135-324.
    [51]Y. Yamauchi, K. Tanaka, K. Hattori, M. Kondo and N. Ukawa. Remineralization of desalinated water by limestone dissolution filter [J]. Desalination,66(1987) 365-383.
    [52]N. A. Nada, A. Zahrani and B. Ericsson. Experience on pre- and post-treatment from sea water desalination plants in Saudi Arabia [J]. Desalination,66 (1987) 365-383.
    [53]H. Al-Rqobal and A. Al-Munayyis. A recarbonation process for treatment of distilled water by MSF plants in Kuwait [J]. Desalination,73 (1989) 295-312.
    [54]P. C.M. Kutty, A. A. Nomani and T. S. Thankachan. Evaluation of Water Quality Parameters in Drinking Water from SWCC MSF Plants, in:Proceedings of the IDA World Conference on Desalination and Water Reuse [C]. Washington, DC, August 25-29,1991.
    [55]A. Al-Radif, D.M. K. Al-Gobaisi, A. El-Nashar and M.S. Said. Review of design and specifications of the world largest MSF units 4×[10-12.8 MIGD] [J]. Desalination, 84 (1991) 45-84.
    [56]IDA Desalination Yearbook 2006-2007. Water Desalination Report, Global Water Intelligence and International Desalination Association [G]. Topsfield, MA, USA.
    [57]M. Al-Shammiri and M. Safar. Multiple-effect distillation plants:state of the art [J]. Desalination,126 (1-3) (1999) 45-59.
    [58]A. Ophir and F. Lokiee. Advanced MED process for most economical sea water desalination [J]. Desalination,182 (1-3) (2005) 187-198.
    [59]T. Michels. Recent achievements of low-temperature multiple effect desalination in the western area of Abu Dhabi, UAE [J]. Desalination,93 (1993) 111-118.
    [60]A. Ophir, A. Gendel and G. Kronenberg. The LT-MED process for SW Cogen Plants, Desal [J]. Water Reuse,4 (1) (1994) 28-31.
    [61]M. A. Darwish. Desalination Process:A Technical Comparison, in:Proceedings of IDA World Congress on Desalination and Water Sciences, Abu Dhabi, United Arab Emirates [C]. Vol. Ⅰ, November 18-24,1995, pp.149-173.
    [62]L A. Awerbuch. Vision for Desalination-Challenges and Opportunities, in:Proceedings of the IDA World Congress and Water Reuse [C]. Manama, Bahrain, March 8-13,2002.
    [63]Akili D. Khawaji, Ibrahim K. Kutubkhanah and Jong-Mihn Wie. Advances in seawater desalination technologies [J]. Desalination,221(2008) 47-69
    [64]O.K. Buros. The Desalting ABC [C]. International Desalination Association, Topsfield, MA, USA,1990.
    [65]梁承红,姜宏,邢红宏.反渗透海水淡化技术的发展与应用[J].海军航空工程学院学报.2007,22(4):494-500.
    [66]Y. Ayyash, H. Imai, T. Yamada, T. Fukuda and T. Taniyama. Performance of reverse osmosis membrane in Jeddah Phase I Plant [J]. Desalination,98 (1994) 215-224.
    [67]A. R. Al-Badawi, S. S. Al-Harthi, H. Imai, H. Iwahashi, M. Katsube and N. Fujiwara. Oper-ation and Analysis of Jeddah 1-Phase Ⅱ Plant, in:Proceedings of the IDA and World Congress on Desalination and Water Sciences [C]. Abu Dhabi, United Arab Emirates, Vol. Ⅲ, November 18-24,1995, pp.41-54.
    [68]N. Nada, Y. Yanaga and K. Tanaka. Design Features of the Largest SWRO Plant in the World —33.8 MGD in Madina and Yanbu, in:Proceedings of the IDA and World Congress on Desalination and Water Sciences [C]. Abu Dhabi, United Arab Emirates, Vol. V, November 18-24,1995, pp.3-15.
    [69]M. B. Baig and A. Al Kutbi. Design features of 20 MIGD SWRO seawater plant, Al Jubail, Saudi Arabia [J]. Water Supply,17 (1999) 127-134.
    [70]A. H. H. Al-Sheikh. Seawater reverse osmosis pretreatment with an emphasis on the Jeddah Plant operating experience [J]. Desalination,110 (1-2)(1997) 183-192.
    [71]S. Bou-Hamad, M. Abdel-Jawad, S. Ebrahim, M. Al-Mansour and A. Al-Hijji. Performance evaluation of three different pretreatment systems for seawater reverse osmosis technique [J]. Desalination,110(1-2) (1997)85-92.
    [72]B. Durham and A. Walton. Membrane pretreatment of reverse osmosis:long-term experience on difficult waters [J]. Desalination,122 (2)(1999) 157-170.
    [73]S. H. Ebrahim, M. M. Abdel-Jawad and M. Safar. Conventional pretreatment system for the Dohareverse osmosis plant:technical and economic assessment [J]. Desalination,110 (1-3) (1995) 179-187.
    [74]R. Rautenbach, T. Linn and D. M. K. Al-Gobaisi. Present and future pretreatment concept-strategies for reliable and low-maintenance reverse osmosis seawater desalination [J]. Desalination,110(1-2)(1997) 97-106.
    [75]Z. Amjad. R0 systems current fouling problems & solutions, Desal [J]. Water Reuse, 6 (4) (1997) 55-60.
    [76]S. Bou-Hamad, M. Abdel-Jawad, M. Al-Tabtabaei and S. Al-Shammari. Comparative performance analysis of two seawater reverse osmosis plants:twin hollow fine fiber and spiral wound membranes [J]. Desalination,120 (1-2) (1998) 95-106.
    [77]H. I. Shaban. Reverse osmosis membranes for seawater desalination state-of-the-art [J]. Separ. Puri. Methods,19(2)(1990) 121-131.
    [78]I. Moch, Jr. Hollow fiber permeators & reverse osmosis, Desal [J]. Water Reuse,3 (2) (1993) 30-37.
    [79]S. S. Whipple and C. R. Granlund. Spiral wound reverse osmosis, Part Ⅰ:technology, Desal [J]. Water Reuse,3(2)(1993) 44-46.
    [80]A.M. Hassan, A.M. Al-Abanmy, M. Al-Thobiety, T. Al-Lohabi, I. Al-Masudi, A. A. Al-Grier, L.M. Bakheet, M. M. I. Amri, K. Aryah and M. Al-Hydaibi. Performance Evaluation of SWCC SWRO Plants, in:Proceedings of the IDA World Conference on Desalination and Water Reuse [C]. Washington, DC, August 25-29,1991.
    [81]J. W. Oldfield and R. M. Kain. Economic Material Selection for Reverse Osmosis Desalination Plants, in:Proceedings of the 12th International Symposium on Desalination & Water Re-Use [C]. Malta, April 15-18,1991.
    [82]A. Abu-Saf iah. Material selection for the high pressure section of seawater RO plants, Desalination [J].84 (1991) 279-308.
    [83]M. Jasner. Application of of austenitic nitrogenalloyed 6M0 stainless steel for seawater desalination (RO) and waste water treatment [J]. Desalination,84(1991) 335-348.
    [84]S. A. Shumway. The work exchanger for SWRO energy recovery, Desal [J]. Water Reuse, 8 (4) (1999) 27-33.
    [85]S. J. Duranceau, J. Foster, H. J. Losch, R. E. Weis, J. A. Harn and J. Nemeth. Interstage turbine, Desal [J]. Water Reuse,8(4)(1999) 34-40.
    [86]W. Childs and A. Dabiri. Hydraulic driven RO pump & energy recovery system, Desal [J]. Water Reuse,9 (2) (1999) 21-29.
    [87]W. E. Johnson. The story of freeze desalting, Desal [J]. Water Reuse,3 (4)(1993) 20-27.
    [88]King Abdulaziz City for Science and Technology. Solar Energy Water Desalination Engineering Test Facility [G]. Riyadh, Saudi Arabia,1986.
    [89]A. Y. Maalej. Solar Still Performance, in:Proceedings of the 12th International Symposium on Desalination & Water Re-Use [C]. Malta, April 15-18,1991.
    [90]A. Hanafi. Design and Performance of Solar MSF Desalination Systems, in:Proceedings of the 12th International Symposium on Desalination & Water Re-Use [C]. Malta, April 15-18,1991.
    [91]E. Delyannis and V. Belessiotis. Solar desalination, Desal [J]. Water Reuse,4 (4) (1995) 9-14.
    [92]E. Zarza. Testing of MED Solar Desalination Plant at the Plataforma Solar De Almeria, in:Proceedings of IDA World Congress on Desalination and Water Reuse [C]. Vol. V, Madrid, Spain, October 6-9,1997, pp.45-55.
    [93]S. Toyama and K. Murase. Solar Still Made from Wasted Materials, in:Proceedings of the IDA World Congress on Desalination and Water Reuse [J]. Manama, Bahrain, March 8-13,2002.
    [94]0. A. Hamed, E.I. Eisa and W. E. Abdalla. Overview of solar desalination [J]. Desalination,93 (1993) 563-579.
    [95]A.M. El-Nashar. An optimal design of a solar desalination plant [J]. Desalination, 93 (1993) 597-614.
    [96]A. Withers. Options for recarbonation and remineralisation and disinfection for desalination plants [J]. Desalination,179 (1-3) (2005) 11-24.
    [97]张维润等.电渗析工程学[M].北京:科学出版社,1995:100.
    [98]Middle East Desalination Research Center. R&D Programs and Annual Report [R].2001.
    [99]G. F. Leitner. Desalination R&D in Saudi Arabia, Desal [J]. Water Reuse,8 (4) (1999) 50-59.
    [100]M. H. Al-Attar, J. Al-Sulaimi, M. Abdel-Jawad and G. F. Leitner. Kuwait Institute for Scientific Research, Desal [J]. Water Reuse,5(4) (1996),19-28.
    [101]S. Ebrahim, M. Abdel-Jawad, S. Bou-Hamad and M. Safar. Fifteen years of R&D program in seawater desalination at KISR, Part I, pretreatment technologies for RO systems [J]. Desalination,135 (2001) 141-153.
    [102]M. Abdel-Jawad, E. E. F. El-Sayed, S. Ebrahim, S. A. Al-Saffar, M. Safar, M. Tabtabaei and G. Al-Nuwaibit. Fifteen years of R&D program in seawater desalination at KISR, Part Ⅱ, RO system performance [J]. Desalination,135 (2001) 155-167.
    [103]B. M. Misra. R&D on Desalination and Membrane Technology at Bhabha Atomic Research Center, Desal [J]. Water Reuse,6(4) (1997) 35-39.
    [104]Mexico 2006 4th Water Forum. DESALINATION THE SUSTAINABLE SOLUTION AND HOPE FOE THE FUTURE GENERATION by Leon Awerbuch, leading edge tenologies [C].
    [105]International Desalination Association. Worldwide Desalting Plant Inventory, Desalination in 2008 [G]. Global Market Snapshot.
    [106]沈胜强,孙甜悦,刘晓华,杨洛鹏.TVC在MED海水淡化装置中的作用和性能分析[J].热科学与技术.2010.6:144-148.
    [107]谢冬雷.带热压缩的低温多效海水淡化系统的研究[D].大连:大连理工大学能源与动力学院,2007.
    [108]曹开智.低温多效蒸发海水淡化变工况分析与实验研究[D].大连:大连理工大学能源与动力学院,2006.
    [109]杨洛鹏,沈胜强,杨荣如.低温多效蒸发海水淡化系统的变工况性能分析[J].热科学与技术.2006.6:118-121.
    [110]杨洛鹏,沈胜强,KLAUSGenthner.低温多效蒸发海水淡化系统热力分析[J].化学工程.2006.11:20-24.
    [111]孙甜悦.低温多效蒸发海水淡化装置进水流程分析[D].大连:大连理工大学能源与动力学院,2010.
    [112]魏巍.低温多效蒸馏海水淡化系统热力性能计算与仿真[D].大连:大连理工大学能源与动力学院,2008.
    [113]沈胜强,杨洛鹏.低温多效蒸馏海水淡水—发电联产系统经济性分析[J].热能动力工程.2006.1:22-26.
    [114]吴静波.低压下浓盐水沸腾及强化传热的实验研究[D].大连:大连理工大学化工学院,2009.
    [115]刘晓华,沈胜强,Klaus Genthner,蒋春龙.多效蒸发海水淡化系统模拟计算与优化[J].石油化工高等学校学报.2005.12:16-19.
    [116]杨洛鹏,沈胜强,克劳根特斯.供热机组-海水淡化联产系统的经济性分析[J].动力工程.2006.6:447-451.
    [117]邱庆刚,刘丽娜.喷嘴结构对流场性能影响的研究[J].石油化工高等学校学报.2011.2:68-72.
    [118]魏巍,沈胜强,杨洛鹏,刘晓华,刘佳.顺流流程多效蒸馏海水淡化系统的热力学分析[J].热科学与技术.2008.6:109-114.
    [119]马学虎,兰忠,郝婷婷,王四芳.万吨级低温多效蒸发海水淡化能量及经济性能模拟分析[J].化工进展.2009年28卷,279-281.
    [120]杨洛鹏,沈胜强,克劳根特斯.吸收式热泵多效蒸发海水淡化热力性能研究[J].太阳能学报.2007.6:612-616
    [121]邢玉雷.真空水平管内蒸汽凝结换热实验研究[D].大连:大连理工大学能源与动力学院,2008.
    [122]谢峰,李炎,康权,吕庆春,阮国岭.低温多效蒸馏海水淡化装置降膜喷淋实验台研制[J].中国给水排水.2010.12:88-91.
    [123]于开录,吕庆春,谢峰,阮国岭.改性铝合金在蒸馏法海水淡化装置的初步应用研究[J].舰船科学技术.2008.12:213-217.
    [124]孙健,李伟,王红莉,陶建华.海水淡化厂外排浓盐水输移扩散数值模拟预测[J].中国给水排水.2010.2:53-56.
    [125]齐春华,范明明,谢峰,吕庆春,阮国岭,赵军.海水淡化闪蒸罐的闪蒸特性数值模拟及优化设计[J].中国给水排水.2009.6:87-91.
    [126]熊日华,王世昌.海水淡化中的替代型能源[J].化工进展.2003.11:1139-1142.
    [127]赵河立,初喜章,阮国岭.核能在海水淡化中的应用[J].海洋技术.2002.12:17-21.
    [128]丁涛,王世昌.基于温差函数的低温多效蒸发海水淡化过程热力学分析[J].化工学报.2008.5:77-83.
    [129]邓润亚,解利昕,林湖,刘杰.热压缩多效蒸馏海水淡化系统能量分析[J].水处理技术.2008.8:17-21.
    [130]王立国,王世昌,朱爱梅,熊日华,丁涛.塑料换热器在海水淡化中的应用[J].化工进展.2004年23卷,1359-1361.
    [131]王辰烨.低温多效蒸馏海水淡化装置的特性分析[D].北京:华北电力大学,2006.
    [132]柴晓军.电厂低温多效海水淡化系统分析[D].北京:华北电力大学,2009.
    [133]周少祥,胡三高.海水淡化过程的统一性性能评价指标[J].水处理技术.2001.4:74-79.
    [134]周少祥,马燕南.热电联产低温多效蒸馏海水淡化系统的节能分析[J].热能与动力工程.1997.5:164-166.
    [135]郭丽江.热电联产海水淡化系统节能降耗分析[D].北京:华北电力大学,2005.
    [136]牛韬.小型热电联产海水淡化系统的技术经济分析[D].北京:华北电力大学,2004.
    [137]Hisham T. El-Dessouky, Hisham M. Ettouney and Faisal Mandani. Performance of parallel feed multiple effect evaporation system for seawater desalination [J]. Applied Thermal Engineering 20 (2000) 1679-1706.
    [138]M. A. Darwish, Hassan K. Abdulrahim. Feed water arrangements in a multi-effect desalting system [J]. Desalination 228 (2008) 30-54.
    [139]R. Chacartegui, D. Sanchez, N. di Gregorio, F. J. Jimenez-Espadafor, A. Munoz, T. Sanchez. Feasibility analysis of a MED desalination plant in a combined cycle based cogeneration facility [J]. Applied Thermal Engineering,29 (2009) 412-417.
    [140]F. N. Alasfour, M. A. Darwish, A.0. Bin Amer. Thermal analysis of ME-TVC+MEE desalination systems [J].Desalination 174 (2005) 39-61.
    [141]A. S. Nafey, H. E. S. Fath, A.A. Mabrouk. Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE-MVC) desalination process [J]. Desalination 230 (2008) 1-15.
    [142]R. K. Kamali, A. Abbassi, S. A. Sadough Vanini, M. Saffar Avval. Thermodynamic design and parametric study of MED-TVC [J]. Desalination 222 (2008) 596-604.
    [143]R. K. Kamali, A. Abbassi, S. A. Sadough Vanini. A simulation model and parametric study of MED-TVC process [J]. Desalination 235 (2009) 340-351.
    [144]Mohammad Ameri, Saeed Seif Mohammadi, Mehdi Hosseini, Maryam Seifi. Effect of design parameters on multi-effect desalination system specifications [J]. Desalination 245 (2009) 266-283.
    [145]O Miyatake, K Murakami, Y Kawata and Fujii. Fundamental experiments with flash evaporation [C]. Heat Transfer Japan,10 (1973) 89-100.
    [146]谭浩强等.Visual Basic程序设计教程[M].北京:清华大学出版社,2000.
    [147]H. Glade. Scaling in multiple-effect distillers:new approach to study mechanism and control, In:Proc [C]. IDA Conf., Bahamas,2003.
    [148]T. B. Scheffler, A. J. Leao. Fabrication of polymer film heat transfer elements for energy efficient multi-effect distillation [J]. Desalination,222(2008)696-710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700