用户名: 密码: 验证码:
银杏果粗加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱壳是银杏果粗加工中最复杂、最关键的加工环节。目前,银杏果脱壳机械化和自动化仍处于起步阶段,为了研发出脱壳率高、破仁率低的银杏果脱壳机,以提高银杏果加工的生产效率,增加银杏果仁的商品价值。本论文在研究了银杏果物理力学特性和银杏果热风干燥特性的基础上,提出了银杏果脱壳工艺路线;设计了一台滚筒-栅条式银杏果脱壳机,并进行了脱壳和清选性能试验;利用响应面分析法分析了热风温度、热风速度、装载量对干燥品质的综合影响,滚筒转速、滚筒直径、栅条间隙对脱壳率、破仁率的影响,以及喂入量、风速、出风口倾角对损失率和清洁率的影响;采用函数期望寻优法对脱壳机的结构参数进行了优化。取得的主要研究结论如下:
     (1)银杏果热干燥过程主要集中在恒速和降速干燥两个阶段,升速不明显。在试验范围内,热风温度、装载量对失水速率影响均显著而热风风速影响不显著,热风温度对失水速率影响最大,热风风速影响最小。经拟合发现银杏果热风干燥过程符合Page模型。
     (2)通过对银杏果传热系数的计算可知:银杏果热风干燥条件下的扩散系数大约在(0.492~2.158)×10~(-6)m~2/s范围内,扩散系数随着气体温度的升高及风速的增加而增加。银杏果热风薄层干燥的活化能在(21.816~33.811) kJ/mol,这与其组织结构、形状、大小及组成等因素有关。
     (3)通过本项目研究发现:热风温度、装载量和风速对银杏果热风干燥平均能耗、平均干燥速率、蛋白质保存率以及感官评分等评价指标有极显著影响,而且不同干燥因素对不同干燥评价指标的影响程度也不同。利用多目标非线性优化分析及函数期望寻优法对干燥工艺进行优化,得到银杏果热风干燥最佳工艺参数组合,即热风温度为68℃、热风速度为1.15m/s及装载量为15.58kg/m~2。此时平均能耗为11.86kW.h/kg、平均干燥速率为9.77%/h、蛋白质保存率为90.30%、感官评分为8.57分。
     (4)对银杏果压缩力学试验研究可知:含水率、施压方向对破碎力、变形量及能耗有极显著影响(P<0.10)。破碎力、变形量及能耗与银杏果含水率之间存在二次非线性的函数关系。经过正交试验多重比较分析可知:银杏施压方向、施压速率、银杏含水率与银杏果综合评分均为显著相关,要使银杏压缩脱壳质量最佳时,最优水平组合为银杏施压方向为Y向、挤压速率为55mm/min、含水率23.72%。
     (5)采用滚筒-栅条式对银杏果进行脱壳试验可知在:试验范围内,银杏果脱壳率和破仁率随着转子转速和滚筒直径的增加而逐渐增大,随着栅条间隙的增大而减小。对脱壳率的影响强度依次是:转子转速>滚筒直径>栅条间隙。对破仁率的影响强度依次是:滚筒直径>转子转速>栅条间隙。通过多目标优化法脱壳装置最优组合:转子速度为180r/min、滚筒直径为182mm、栅条间隙为10.5mm,此时,银杏脱壳率为92.80%,破仁率为8.10%。能够满足银杏果脱壳工艺的要求。
     (6)通过本项目试验结果表明,建立了喂入量A、风速B、出风口倾角C对损失率Y_1和清洁率Y_2的二次多项式回归模型。损失率Y_1的二次多项式回归模型:Y_1=5.69+0.60A+6.99B-0.95C+1.00AB-0.63AC-0.32BC-0.30A~2+4.79B~2-1.23C~2。并由各影响因素的贡献率可知:在试验范围内各结构参数对损失率的影响强度次序为:风速>出风口的倾角>喂入量。清洁率Y_2的二次多项式回归模型:Y_2=95.32-0.40A+3.54B-0.77C-1.20AB-0.20AC+0.37BC-0.55A~2-1.63B~2-0.25C~2。并由各影响因素的贡献率可知:在试验范围内各结构参数对清洁率的影响强度次序为:风速>喂入量>出风口的倾角。
     (7)采用多目标函数优化得出银杏果最佳组合条件为:喂入量为270kg/h、风速为9.3m/s、出风口倾角为17°,此时可得:损失率为1.68%、清洁率为95.68%。能够满足银杏果脱壳后清选工艺的要求。
As the mechanization and the automation of ginkgo shelling are still under itsinfancy, the comprehensive use of ginkgo is at the low level now. In order to improvethe production efficiency of ginkgo’s processing, increase the value of the kernels, weneed to excogitate a new ginkgo sheller which has the high husking and the low level ofdamage. Based on the study of ginkgo’s physical characteristics and the theories of thehulling, the article puts forward a process route for ginkgo shelling. It can deeplyresearch on ginkgo air drying properties and the optimization of the process parameterswith the help of the self-made hot-air-drying equipment. And the synthetic effects of thehot–air temperature, hot-air velocity and loading capacity on the average drying energyconsumption and the average drying rate is analysed.
     The cylinder-barrier type Ginkgo shelling machine and cleaning machine weredesigned, and the shelling and cleaning performance tests were carried out.
     The response surface analysis was used to analyse the comprehensive influence ofthe hot-air temperature, air velocity and loading capacity on the drying quality, theinfluence of the rolling-speed, rolling diameter and size of screen mesh grid on thehulling rate and the breaking rate, and the influence of the feeding amount、wind speedand outlet angle on the quality of the cleaning effect.
     The function optimization method was used to optimize the structure parameters ofthe shelling machine and the cleaning machine. Here are the main conclusions:
     (1)Ginkgo hot-drying process mainly depends on the two sections: the constant-speed drying part and the falling-speed drying part while it is not obvious in theraising-speed part. In this experiment, hot-air temperature and the loading capacitymade a great effect on the drying process while the speed of hot-air made littledifference. The hot-air temperature affected the water-losing rate most while the hot-airspeed did the least. The experiment proves that the ginkgo hot-air-drying process fit onthe Page model.
     (2)Through calculating the heat transfer coefficient of ginkgo, we can know thatthe effective diffusion coefficient is related with the organized structure, the varietiesand the shape (geometric size) of ginkgo. Ginkgo’s effective diffusion coefficient issome (0.492~2.158)×10~(-6)m~2/s under the hot-air and it will increase along with theincreasing of the gas temperature and the wind speed. Ginkgo’s activation energy of thin-layer hot air drying is some (21.816~33.811) kJ/mol, which is related to itsconstruction, shape, size and so on.
     (3) Through studying, it is found that the hot-air temperature、air velocity andloading capacity make a great effect on the average energy consumption, the averagedrying rate and sensory ratings,and the influences of different factors on the averagedrying rate of drying, average drying energy consumption are different. We canoptimoize the drying process with the help of multi-objective nonlinear optimizationanalysis and function optimization method to get the best process parameterscombination: the hot-air temperature is68℃, hot-air speed is1.15m/s and the loadingcapacity is15.58kg/m~2. Under these conditions, the average energy consumption is11.86kW.h/kg, the average drying speed rate is9.77%/h, protein retention rate is90.30%and the sensory score is8.57.
     (4) Through the compression experiment of ginkgo, it can be known that waterratio and pressure direction make a great difference on the breaking force, deflectionsand energy consumption(P<0.10). And there is a second order nonlinear functionalrelationship between the brake power、deflections、energy consumption and the waterratio. Through a comprehensive scoring method and the orthogonal experiment, weknow: The Ginkgo’s pressure direction, pressure rate, moisture content make a greatdifference on gingko’s compression comprehensive score. To get the best shellingquality, the optimal shelling parameters are pressure direction of Y, pressure rate of55mm/min, moisture content rate of23.72%.
     (5) Through the roller-grid shelling experiment, It is obtained that: gingko’shelling rate and the broken kernels rate increase along with the increase of the rotorspeed and diameter of roller, but go down along with the increase of sieve net clearance.The order of the factors is found: speed, drum diameter, screen space. The gingkokernel’s breaking rate increase along with the increase of the rotor speed and rollerdiameter, but decrease with the increase of screen space. The order of the factors isfound: rolller diameter, speed, screen space. Through the multi-objective optimizationmethod, the best process parameters shelling device are found: the rotor speed is180r/min, the roller diameter is182mm, screen space is10.5mm, Under theseconditions, the gingko’s shelling rate is92.80%and the broken kernels rate is8.10%. Itmeets the requirements of shelling technology of Ginkgo fruit.
     (6)Through the experiment results of the project, the quadratic polynomialregression model about the feed quantity、wind speed、air outlet inclination rate and the shell content in kernel、 the kernel content in shell were established. The quadraticpolynomial regression model of is Y_1=5.69+0.60A+6.99B-0.95C+1.00AB-0.63A-0.32BC-0.30A~2+4.79B~2-1.23C~2. From the contribution ratio of every factor, we know:within the scope of experiment, the order of the factors which influence the loss rate inshell is: wind speed, feed quantity, air outlet inclination. the order of the factors whichinfluence the shell content in kernel is: wind speed, air outlet inclination, feed quantity.The quadratic polynomial regression model of the cleaning percentage is Y_2=95.32-0.40A+3.54B-0.77C-1.20AB-0.20AC+0.37BC-0.55A~2-1.63B~2-0.25C~2. From thecontribution ratio of every factor, we know: within the scope of experiment, the order ofthe factors which influence the cleaning percentage in shell is: wind speed, feed quantity,air outlet inclination.
     (7)By applying membership comprehensive score, we got optimal combinationsof maximum comprehensive points: feed quantity is270kg/h, wind speed is9.3m/s, airoutlet inclination is17°. Under these conditions,the loss rate is1.68%, the cleaningpercentage is95.68%. It meets the requirements of cleaning technology after shelling ofGinkgo fruit.
引文
[1]门秀元.银杏丰产栽培技术[M].济南:山东科技出版社,1998:2-20.
    [2]徐群英.银杏的营养特点及银杏食品[J].食品研究与开发,2001,22(1):34-36.
    [3]王莉,周春华.银杏种核的采收、采后处理和贮藏保鲜技术[J].江苏农业科学,2002,20(5):27-31.
    [4]周良墉, YXB-1型银杏剥壳机的开发[J].现代农机,2009,(1):45.
    [5]袁巧霞,陈红,刘清生.辊板式银杏脱壳装置的试验研究[J].农业机械学报,2004,35(3):182-183.
    [6]冯彤,于新,庞杰等.银杏种子贮藏期硬化生理研究[J].西南农业大学学报,1998,20(3):212-215.
    [7]冯彤.于新.张百超等.白果贮前漂白处理的保鲜效应及生理机制研究[J].食品科学,1999,20(3):58-61.
    [8] Feng Tong. YuXin. Effects of heat shock treatmention floating percentage o f Ginkgo seedduring storage[J].西南农业学报,1999,19(3):93-96.
    [9]于新.冯彤.张百超等.银杏采后Penicilliumspp.病害生理研究[J].西南农业学报,2001,21(4):90-94.
    [10]冯彤,于新,张百超等.白果贮前漂白处理的保鲜效应及生理机制研究[J].食品科学,1999,20(3):58-61.
    [11]朱立学,罗锡文,刘少达.轧辊-轧板式银杏脱壳机的优化设计与试验[J].农业工程学报,2008,24(8):139-142.
    [12]李建东,尚书旗,李西振.我国花生脱壳机械研究应用现状及进展[J].花生学报.2006,35(4):23-27.
    [13] A. Kili kan, and M. Güner.Physical properties and mechanical behavior of olive fruits(Olea europaea L.) under compression loading[J].Journal of Food Engineering.2008,87(2):222-228.
    [14] M.Güner, E. Dursun and ì. G. Dursun.Mechanical Behaviour of Hazelnut underCompression Loading[J]. Biosystems EngineeringVolume,2003,85(4):485-491.
    [15] S. Pliestic,N. Dobricevic, D. Filipovic and Z. Gospodaric. Physical Properties of Filbert Nutand Kernel[J].Biosystems Engineering.Volume.2006,93(2):173-178.
    [16] C.Aydin. Physical properties of almond nut and kernel[J]. Journal of Food Engineering.2003,60(3):315-320.
    [17] M.Paksoy and C.Aydin. Some physical properties of edible squash (Cucurbita pepo L.)seeds[J]. Journal of Food Engineering.2004,65(2):225-231.
    [18] C.Aydin.Some engineering properties of peanut and kernel[J]. Journal of Food Engineering.2007,79(3):810-816.
    [19] Kubilay Vursavu, Faruk zgüven. Mechanical behaviour of apricot pit under compressionloading[J]. Journal of Food Engineering.2004,65(2):255-261.
    [20] Faruk zgüven and Kubilay Vursavu.Some physical, mechanical and aerodynamicproperties of pine (Pinus pinea) nuts[J]. Journal of Food Engineering. Journal of FoodEngineering.2005,68(2):191-196.
    [21] Gamal ElMasry, S. Radwan, M. ElAmir and R. ElGamal. Investigating the effect ofmoisture content on some properties of peanut by aid of digital image analysis.Food andBioproducts Processing.2009,87(4):273-281.
    [22] Nazari Galedar M, Mohtasebi S S, Tabatabaeefar A, et al. Mechanical behavior of pistachionut and its kernel under compression loading[J]. Journal of Food Engineering.2009,95(3):499-504.
    [23] Sirisomboon P, Kitchaiya P, Pholpho T, et al. Physical and mechanical properties of Jatrophacurcas L. fruits, nuts and kernels[J]. Biosystems Engineering.2007,97(2):201-207.
    [24] Pradhan R C, Naik S N, Bhatnagar N, et al. Moisture-dependent physical properties ofjatropha fruit[J]. Industrial Crops and Products.2009,29(23):341-347.
    [25] Karaj S, Müller J. Determination of physical, mechanical and chemical properties of seedsand kernels of Jatropha curcas L.[J]. Industrial Crops and Products.2010,32(2):129-138.
    [26]杨志良,周玉林,王灵忠.松籽几何、力学特性及崩壳方式的研究[J].燕山大学学报,1991,1:24-29.
    [27]栾玉振,袁月明.松籽壳体工程特性参数的测试与强度对破壳的影响规律[J].吉林农业大学学报.1993,15(1):80-84.
    [28]杨志良,周玉林.松籽几何,力学特性及崩壳方式的研究[J].东北重型机械学院学报.1991,15(1):24-29.
    [29]栾玉振,袁月明.松籽壳体工程特性参数的测试与静力有限元计算[J].农业机械学报.1994,25(2):50-55.
    [30]吴子岳.核桃剥壳的力学分析[J].南京农业大学学报,1995,18(3):116-123.
    [31]吴斌芳,周国柱,张建钢,胡松林.绵核桃机械剥壳取仁参数选择及试验分析[J].湖北工学院学报.1997.12(4):56-59.
    [32]史建新,赵海军,辛动军.基于有限元分析的核桃脱壳技术研究[J].农业工程学报.2005,21(3):185-188.
    [33]何义川,史建新.核桃壳力学特性分析与试验[J].新疆农业大学学报,2009,32(6):70-75.
    [34]周祖锷,郭其泰.杏核物理特性的试验研究.北京农业工程大学学报.1995,1(51):31-34.
    [35]刘军.南疆杏核挤压破壳截面的探讨[J].新疆大学学报(自然科学版).2005,22(4):439-444.
    [36]刘军.新疆杏核破壳最佳截面的探讨[J].工程力学.2006,23(3):168-172.
    [37]刘军,陈宏伟.新疆杏核挤压破壳中破坏载荷与其压缩变形量关系的探讨[J].包装与食品机械.2004,(3):19-21.
    [38] Xie Lijuan, Zong Li, Li Xiaoyu. Experimental study on mechanical properties of lotusseed[J].农业工程学报.2005,21(7):11-14.
    [39]谢丽娟,宗力.莲子受力有限元分析[J].农业机械学报.2006,37(6):94-97.
    [40]吴传宇,陈琼英,张德晖.挤压式莲子机械脱壳机理试验研究[D]福建农林大学学报(自然科学版)2009,38(4):436-438.
    [41]王灵军,全燕鸣,邓文君.银杏脱壳的有限元受力分析[J].农业工程学报.2003,19(4):58-61.
    [42]王新忠,王敏.银杏种核力学特性试验[J].农业机械学报.2008,39(8):84-88.
    [43]杨雪银.基于有限元方法的板栗破壳机理的研究[D].华中农业大学.2005,6:1-10.
    [44]杨雪银,齐延兴.影响板栗破壳力大小的因素[J].食品与生物技术学报.2007,26(3):56-60.
    [45]张荣荣,李小昱,王为等.基于有限元方法的板栗破壳力学特性分析[J].农业工程学报.2008,24(9):84-88.
    [46]刘红力,张永丽,高连兴等.花生脱壳力学特性试验[J].沈阳农业大学学报.2006,37(6):900-902.
    [47]程献丽,高连兴,刘明国等.花生冲击脱壳的力学特性试验[J].沈阳农业大学学报.2009,40(1):111-113.
    [48]张黎骅,张文,秦文,李明霞.花生脱壳力学特性的试验研究[J].食品科学.2010,31(13):52-55.
    [49]刘明国,杜鑫,张文,张剑侠,高连兴.花生疲劳脱壳试验研究[J].沈阳农业大学学报,2010,06,41(3):317-320.
    [50]那雪姣,刘明国,张文,李飞,杜鑫,高连兴.机械脱壳时花生仁损伤特征及规律[J].农业工程学报.2010.26(5):117-121.
    [51]曹玉华,李长友,张增学等.蓖麻蒴果脱壳的力学分析[J].食品科学.2008,29(8):137-139.
    [52]曹玉华,李长友,卿艳梅,孔德兵.蓖麻蒴果力学特性的有限元分析[J].江苏大学学报.2010,31(4):383-387.
    [53] R.K.Gupta, S.K.Das. Performance of centrifugal dehulling system for sunflower seeds[J].Journal of Food Engineering.1999,42(4):191-198.
    [54] Rajiv Sharma, D.S. Sogi, D.C. Saxena. Dehulling performance and textural characteristicsof unshelled and shelled sunflower (Helianthus annuus L.) seeds[J]. Journal of FoodEngineering.2009,92(1):1-7.
    [55] T.O. Omobuwajo, H.C. Ikegwuoha, O.A. Koya, M.T. Ige. Design, construction and testingof a dehuller for African breadfruit(Treculia africana) seeds[J]. Journal of FoodEngineering.1999,42(3):173-176.
    [56] Bundit Jarimopas, Suttiporn Niamhom, Anupun Terdwongworakul. Development andtesting of a husking machine for dry betel nut (Areca Catechu Linn.)[J].BiosystemsEngineering.2009,102(1):83-89.
    [57] R.C. Pradhan, S.N. Naik, N. Bhatnagar, V.K. Vijay. Design, development and testing ofhand-operated decorticator for Jatropha fruit[J].Applied Energy,2010,87(3):762-768.
    [58]张嘉玉,王延耀,连政国,张岩.橡胶滚筒橡胶直板脱壳装置[J].农业机械学报.1996,27(2):66-69.
    [59]王延耀,张岩,尚书旗,张锡斋.气爆式花生脱壳性能的试验研究[J].农业工程学报,1998,14(1):222-227.
    [60]徐绍娟,汪钦,王映龙.人力花生脱壳机的设计[J].安徽农业科学.2007,35(36):12134-12136.
    [61]乔园园,史建新,董远德.影响核桃壳仁脱离的主要因素[J].农机化研究.2008,04:43-45.
    [62]李建东,梁宝忠,郝新明,李洋等.钢齿双辊筒式花生脱壳装置的试验研究[J].农业技术与设备,2008,06:33-35.
    [63]李心平,马福丽,高连兴.花生脱壳装置的结构技术剖析[J].农机化研究.2010,03:18-20.
    [64]袁巧霞,陈红,刘清生.干燥和冷冻处理对银杏核脱壳效果的影响[J].华中农业大学学报.2002,21(1):88-90.
    [65]袁巧霞,陈红,刘清生.辊板式银杏脱壳装置的试验研究[J].农业机械学报.2004,35(3):181-183.
    [66]朱立学,罗锡文,刘少达.轧辊-轧板式银杏脱壳机的优化设计与试验[J].农业工程学报.2008,24(8):139-142.
    [67]朱立学,张日红,韦鸿钰,刘少达.碾搓式银杏脱壳机的设计与试验[J].食品与机械.2008,24(4):86-88.
    [68]黄武强,吴韶棠,陈永嘉,方壮锐,苏永坚,朱立学.手动银杏脱壳机的设计与试验[J].仲恺农业工程学院学报.2009,22(1):24-27.
    [69]郭瑞琴,刘竹丽.新型食用杏核脱壳装置[J].机械设计与研究.2004,20(4):83-85.
    [70]郑传祥.锥栗脱壳去衣技术及设备的开发[J].农业工程学报.2003,19(1):165-167.
    [71]杨芙莲,梁萍,朱妞.利用微波能使板栗脱壳去衣的新工艺新方法研究[J].食品科技.2006,09:80-83.
    [72]杨双晓,乔正卫,张洪磊,薛惠岚.板栗的灼烧脱壳技术研究[J].农机化研究.2007,09:158-161.
    [73]张荣荣,李小昱,王为.基于揉搓方法的板栗破壳性能的试验研究[J].农业工程学报,2007,23(5):177-179.
    [74]郑传桥.莲子脱壳机设计与试验[J].农业机械学报.2003,34(5):106-108.
    [75]赵小广,黄东杰,宗力,周海美.干壳莲子剥壳机及刀具参数研究[J].农机化研究.2007,9:153-157.
    [76]吴传宇,陈琼英,张德晖.挤压式莲子机械脱壳机理试验研究[J].福建农林大学学报(自然科学版).2009,38(4):436-438.
    [77]王飞,陈义厚.莲子穿心脱壳机的设计与研究[J].机械研究与应用.2006,19(5):79-80.
    [78]杨友平,刘守祥.6CB-5.4型莲籽穿芯脱壳机控制系统的设计[J].农机化研究.2009.12:82-85.
    [79]樊涛,吴兆迁,曲振兴,牛晓华,王德柱,刘洋.辣木籽脱壳机的设计与试验[J].林业机械与木工设备.2009,37(4):20-21.
    [80]刘平,肖诗明,巩发永,史碧波.新型碾搓式葵花籽脱壳机[J].食品与机械.2010,26(3):100-116.
    [81]宋率展.特色农产品芡实脱壳工艺及设备研究[D].合肥工业大学.2006:1-30.
    [82] I.G. Farran, R.H. Macmillan, Grain-Chaff separation in a vertical air stream[J]. Journal ofAgricultural Engineering Research.1978,28(2):115-129.
    [83] A.J. Hamilton, M.J. Butson, Approaches to the problem of combine grain loss on slopingground: II. An alternative to sieve separation[J]. Journal of Agricultural EngineeringResearch.1979,24(3):293-299.
    [84] Shinichi Yuu, Hiroyasu Nishikawa, Toshihiko Umekage. Numerical simulation of air andparticle motions in group-B particle turbulent fluidized bed[J]. PowderTechnology.2001,l18(1-2):32-44.
    [85] Petre I. Miu, Heinz-Dieter Kutzbach, Modeling and simulation of grain threshing andseparation in threshing units[J]. Computers and Electronics in Agriculture.2008,60(1):105-109.
    [86]成芳,王俊.风筛式清选装置主要参数的试验研究[J].农业工程学报,1998,(14)12:217-221.
    [87]成芳,王俊.风筛式清选装置筛上流场的试验研究[J].农业工程学报,1999,15(1):55-58.
    [88]成芳,风筛式清粮室内物料清选过程的可视化研究[J].浙江农业大学学报,1999,25(2):215-216.
    [89]潘志刚,陈杰,王莘,吴明.沙棘籽仁壳分离加工工艺研究[J].吉林农业大学学报.1999,21(2):70-72.
    [90]辛动军,史建新.6HP-150型核桃破壳机的改进设计[J].新疆农机化.2001,04:31-32
    [91]张晓桂.新型分离清选装置的试验研究[J].农业机械学报.2002,33(3):47-49.
    [92]刘守祥,杨友平,张善彪,黄和祥.莲籽壳仁分离清选机的研究[J].食品与机械.2003,06:26-27.
    [93]黄和祥,刘守祥,杨友平,张善标.莲籽壳仁分离与清选机械设计初探[J].包装与食品机械.2004,22(4):17-19.
    [94]李耀明.水稻梳脱混合物复脱分离、清选特性的研究[D].南京农业大学.2004.1-12.
    [95]李耀明,唐忠,李洪昌.风筛式清选装置筛面气流场试验[J].农业机械学报,2009,40(12):80-83.
    [96]陆林.基于ADAMS的油菜收割机清选装置仿真与试验研究[D].江苏大学.2005.1-15.
    [97]刘刚. ADAMS技术在花椒籽剥壳机设计中的应用[D].西北农林科技大学.2007.2-13.
    [98]倪长安,张利娟,刘师多,师清翔,高春艳,耿令新.无导向片旋风分离清选系统的试验分析[J].农业工程学报.2008,24(8):135-138.
    [99]刘畅,宋振伟.白瓜籽剥壳分离设备的开发与应用[J].农业机械,2009,16:103-104.
    [100]徐立章,李耀明,李洪昌,赵湛.纵轴流脱粒分离-清选试验台设计[J].农业机械学报,2009,40(12):76-79.
    [101]李洪昌,李耀明,徐立章等.风筛式清选装置气流场的数值模拟与分析[J].江苏大学学报,2010,31(4):378-382.
    [102]吴英思,杜文亮,刘飞,王军兰,陈伟.荞麦剥壳机分离装置的改进试验[J].农业工程学.2010,26(5):127-131.
    [103]崔春芳,童忠良.干燥新技术及应用[M].化学工业出版社.2009.10:3-12.
    [104] Md Azharul Karim, M.N.A. Hawlader. Mathematical modelling and experimentalinvestigation of tropical fruits drying[J]. International Journal of Heat and MassTransfer.2005,48(23-24):4914-4925.
    [105] A.E. Drouzas, H. Schubert, Microwave application invacuum drying of fruits[J]. Journal ofFood Engineering.1996,28(2):203-209.
    [106] Sujata Jena, H. Das. Modelling for vacuum drying characteristics of coconut presscake [J].Journal of Food Engineering,2007,79(1):92-99.
    [107] J. Wang, Y.S.Xi. Drying characteristics and drying quality of carrot using a two-stagemicrowave process [J]. Journal of Food Engineering,2005,68(4):505-511.
    [108]胡庆国.毛豆热风与真空微波联合干燥过程研究[D].江南大学.2006:59-72.
    [109] Calzeta Resio A N, Aguere R J,Sualez C. Drying characteristics of amaranth grain[J].Journal of Food Engineeirng.2004,65(2):197-203.
    [110]肖红伟,张世湘,白竣文,等.杏子的气体射流冲击干燥特性[J].农业工程学报,2010,26(7):318-323.
    [111] Md Azharul Karim, M.N.A. Hawlader. Drying characteristics of banana: theoreticalmodelling and experimental validation[J]. Journal of Food Engineering,2005,70(1):35-45.
    [112]魏巍,李维新,何志刚,等.绿茶微波真空干燥特性及动力学模型[J].农业工程学报,2010,26(10):367-371.
    [113]赵思明,熊善柏,张仁军,孙自轮.人造米热风干燥数学模型的建立及其应用[J].农业工程学报,1997,13(1):211-215.
    [114]肖旭霖.脱水藕片热风干燥模型研究[J].农业工程学报增刊,1997,(28):55-59.
    [115]杨俊红,焦士龙,郭锦棠等.菜豆种子薄层干燥物料内部水分扩散系数的确定[J].工程热物理学报2001,2:121-214.
    [116] Ruiz-Diaz G, Martlnez-Monzo J, Chiralt A. Modelling of dehydration-rehydration of orangeslices in combined microwave/air drying[J].Inovative Food scicene&EngineeringTechnologies.2003,4(2):203-209.
    [117] Turhan Koyuncu, lkay Tosun, Yunus P nar. Drying characteristics and heat energyrequirement of cornelian cherry fruits (Cornus mas L.)[J]. Journal of Food Engineering.2007,78(2):735-739.
    [118] A. Iguaz, M.B. San Martín, J.I. Maté, etal. Modelling effective moisture difusivity of roughrice (Lido cultivar) at low drying temperatures [J]. Journal of Food Engineering.2003,59(2-3):253-258.
    [119]夏少武.活化能及其计算[M].高等教育出版社.1993:35-55.
    [120]张喜梅,吴雪辉,李昌宝.油茶籽的热风干燥特性及数学描述[J].华南理工大学学报(自然科学版).2010,38(8):116-120.
    [121]吴海华,韩清华,杨炳南,赵东林.枸杞热风微波真空组合干燥试验[J].农业机械学报增刊.2010.09:178-202.
    [122]张建军,王海霞,马永昌,郑严.辣椒热风干燥特性的研究[J].农业工程学报,2008,24(3):298-301.
    [123]刘珂,朱文学.牡丹压花热风干燥特性及动力学模型研究[J].农机化研究,2010,(11):188-192.
    [124]诸爱士,夏凯.瓠瓜薄层热风干燥动力学研究[J].农业工程学报,2011,27(1):365-369.
    [125] Babalis S J, papanicolaou E, Kyriakis N,Belessiotis VG. Evaluatlon of thin-layer dryingmodels for describing drying kinetics of fig(sFicsu cairca)[J].Journal of Food Engineeirng.2006,75(2):205-214.
    [126]张黎骅,张文,吕珍珍,等.响应面法优化酒糟微波间歇干燥工艺[J].农业工程学报,2011,27(3):369-374.
    [127]张丽英.饲料分析及饲料质量检测技术[M].中国农业大学出版社.2005,07:49-56.
    [128]明道绪.高级生物统计[M].中国农业出版社.2006,6:270-285.
    [129]朱德泉,曹成茂,丁正耀等.山核桃坚果热风干燥特性及其工艺参数优化[J].农业工程学报,2011,27(7):364-369.
    [130]易军鹏,朱文学,马海乐,王易芬.牡丹籽油超声波辅助提取工艺的响应面法优化[J].农业机械学报,2009,40(6):103-110.
    [131] Funda Kahraman.The use of Response surface methodology for prediction and analysis ofsurface roughness of AISI4140steel[J].Materials and technology,2009,43(5):267-270.
    [132]张军伟,傅大放,彭奇均,邓琳.响应面法优化酸水解稻秆制木糖的工艺参数[J].农业工程学报,2009,25(11):253-257.
    [133] Bikram Singh, Pushpinder Kaur, Gopichand. Biology and chemistry of Ginkgo biloba[J].Fitoterapia,2008,79(6):401-418.
    [134]张宏梅,王耀华,陆明,储俊伟.正交回归法在机械优化设计中的应用[J].解放军理工大学学报(自然科学版),2002,3(4):50-53.
    [135] M. Nazari Galedar,S.S. Mohtasebi A. Tabatabaeefar,A. Jafari,H. Fadaei Mechanicalbehavior of pistachio nut and its kernel under compression loading[J]. Journal of FoodEngineering,2009,95(3):499-504.
    [136]蔡兴旺.旋转回归设计在农机试验中的应用[J].农业工程学报,1998,14(2):54-58.
    [137]李宝筏.农业机械学[M].中国农业出版社.2008.06;195-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700