用户名: 密码: 验证码:
松嫩平原榆树疏林生态系统退化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态系统退化(ecosystem degradation)问题已经成为影响人类社会可持续发展和进步的重要因素。目前,人类社会赖以生存的生态系统,有60%正处于不断退化的状态中,地球上近2/3的自然资源已经消耗殆尽,生态系统的退化已经严重威胁到人类的生活。近几十年来,各国学者把研究的焦点集中在退化生态系统(degraded ecosystem)的上,试图从退化生态系统的种类组成、群落结构、生物多样性和生产力,土壤和微环境恶化,以及生物间相互关系等角度,揭示生态系统退化过程、机制及其原因。但由于生态系统结构和功能存在复杂性、多样性等特点,以致在生态系统退化机制和理论研究等方面依然存在争论。从结构相对简单的、对外界干扰响应敏感的生态系统入手,研究生态系统对外界干扰响应过程,分析生态系统退化的机制和原因,探讨退化生态系统恢复理论与方法,不仅在方法上更易于操作,而且更容易充分理解生态系统各组分之间对外界干扰的响应规律与机制。
     榆树疏林(Ulmus woodland)生态系统的结构相对简单、功能多样。榆树疏林是相对脆弱的生态系统,为深入生态系统退化与恢复理论的研究提供了重要的研究对象。研究不同干扰下榆树疏林生态系统的生产力、群落结构和生物多样性,以及土壤理化特征的变化规律,不仅可以揭示榆树疏林退化的主要原因,明确榆树疏林退化的过程和机制,而且能够为退化榆树疏林的恢复和重建提供理论支持,也可以为丰富退化生态系统的理论提供科学依据。
     本论文以不同人为干扰(农耕与放牧)下的榆树疏林生态系统为研究对象,分别从生态系统水平和优势种个体水平,研究榆树疏林生态系统对不同人为干扰的响应规律,并获得了以下重要成果:
     (1)研究了近30年(1983-2011)间未受干扰的榆树疏林生态系统和人为干扰下榆树疏林生态系统的群落结构、物种组成、生物多样性等问题。结果表明:近30年的气候变化已经使榆树疏林的物种数量降低,但统计分析差异不显著;而放牧和农耕干扰,不仅使疏林植物物种数量降低50%以上,也降低了植物物种多样性、均匀度和地上生物量。通过Bray-Curtis排序分析所有榆树疏林取样类型和环境因子之间的关系,发现所有取样样方都可划分为3种类群,1983-2011年未受干扰榆树疏林划分为第I类,农耕干扰为第II类,放牧干扰为第III类。因此,榆树疏林植被特征变化的原因不是气候因子,而是放牧和农耕干扰,而放牧和农耕干扰对榆树疏林的具体影响有待进一步研究。如果对榆树疏林进行合理的农耕和放牧,或完全排除人类干扰进行围封,对榆树疏林生态系统的恢复和重建将具有重要作用。
     (2)在控制条件下,研究了榆树幼苗对土壤营养、含水量和刈割的响应。实验结果表明:榆树幼苗株高的生长主要受到土壤营养条件的限制,而生物量的积累则与土壤含水量密切相关。榆树幼苗的光合能力和光合产物主要受到土壤含水量的制约,而影响榆树幼苗生长和存活的首要因素是土壤含水量,根据本文研究结果,榆树幼苗的水分生态阈限下限为3%的土壤含水量。刈割模拟放牧,直接作用于幼苗地上部分,影响幼苗的株高和生物量,但刈割处理没有显著影响幼苗的生长和存活率(P>0.05),但刈割和土壤营养之间存在显著的交互作用(P <0.05),尤其是土壤水分不受限制时,刈割对幼苗生长的负面影响可以通过提高土壤营养水平来削弱。本实验证明,决定榆树幼苗生长和存活的首要因素为土壤含水量,最低生长和存活的土壤含水量阈限为3%。而且土壤营养和土壤水分对榆树幼苗生长的作用不同,土壤营养水平决定榆树幼苗株高的生长,而土壤水分水平决定榆树生物量的积累。这样从理论上阐明了干旱贫瘠沙地环境是导致了榆树株高偏低的主要原因之一。因此建议加强土壤水分和营养管理是榆树疏林恢复和重建的必要措施。
     (3)本研究从生长速率角度,探讨了榆树疏林建群种榆树幼苗生长模式对土壤水分和营养的响应规律。结果表明:榆树幼苗生物量生长速率和株高生长速率对土壤营养水平呈现出分级生长趋势,低营养条件下幼苗随土壤水分含量的升高而升高,生长速率低速上升,而当土壤营养升高后,幼苗生长速率随土壤水分升高而迅速上升;幼苗生物量和株高生长速率随土壤营养升高呈现单峰曲线的生长模式,并且受到土壤水分的限制,当土壤水分为3%时,幼苗的生长速率基本为0;进一步分析榆树幼苗光合能力,结果显示,提高土壤营养和水分能够使榆树幼苗光合速率迅速提高,最终提高幼苗生物量和株高生长速率。但当土壤营养过高时,榆树幼苗生物量、株高和茎粗的生长都受到了抑制,其具体原因有待进一步研究。该结果在一定程度上解释了长期生长在固定/半固定沙丘环境下的榆树,能够适应贫瘠的土壤环境的原因。而榆树株高生长与土壤营养密切相关,一定程度上解释了农耕条件下榆树普遍高大的原因。因此,培育榆树幼苗的最佳土壤营养和水分条件为N3W4处理组,但由于W4土壤含水量为10%,综合考虑在不同土壤含水量条件下榆树幼苗的生长效果,以及成本等问题,可以将榆树幼苗最适培育条件设置为土壤含水量8%,土壤营养沙壤土比例为1:1。
     (4)连续3年(2006-2008)研究了松嫩平原榆树疏林生态系统的建群种榆树、植被群落和土壤对不同农耕和放牧干扰的响应规律,结果表明:农耕和放牧干扰对引起榆树疏林生态系统退化的过程和机制不同。农耕干扰破坏了榆树疏林的林下植被结构,促进了一、二年生草本植物的快速繁殖,加快系统内部物质周转率与营养循环,从而在一定程度上有利于建群种榆树的生长,表现为农耕样地中榆树高度(4.78±0.45m)、胸径(18.98±1.08cm)和单株生物量(278.5±13.28)较大。但由于农耕对林下植被结构的破坏,使系统结构逐渐简单化,物种多样性降低,加之对榆树的采伐,导致农耕干扰下疏林生态系统生产力下降,尤其在非耕作期,疏林地表植被覆盖度降低,土壤裸露,使疏林稳定性下降,最终提高榆树疏林生态系统发生退化的可能性。而放牧干扰能够直接作用于榆树疏林生态系统建群种榆树和其它植被进行:榆树高度下降(1.86±0.17m)、胸径减小(6.97±0.60cm)、单株生物量降低(51.9±5.9kg/stem),植被生产力降低,破坏疏林植被组成、以及生态系统的物质和营养循环,使系统结构简单化、物种多样性下降,最终降低榆树疏林抵御外界干扰的能力。放牧降低疏林内的土壤含水量较,土壤氮、磷和有机质含量,使得榆树疏林逐渐演变成为功能衰退、脆弱的退化生态系统。本研究揭示了放牧和农耕干扰是榆树疏林退化的原因,而且两者的作用机制不同:放牧通过对榆树和疏林植被的直接采食,破坏原有系统结构和营养物质循环,降低了土壤的营养状况,并形成恶性循环,而最终导致生态系统退化;农耕干扰则是通过机械作用破坏林下植被,降低建群种榆树的密度,但由于农耕促进了一、二年生植物的生长,而加速了系统的营养物质循环,从而在一定程度上降低了农耕的负面作用,因而一定程度上减缓了榆树疏林的退化过程。
     总之,通过野外定位与受控实验,本研究发现,松嫩平原榆树疏林生态系统退化的原因主要为放牧和农耕干扰;而且,放牧和农耕的作用机制不同:农耕通过机械作用破坏榆树疏林的林下植被,促进了一、二生植物的生长,加速物质周转与营养循环,因此,在一定程度上有利于榆树个体的生长。榆树幼苗的实验结果也表明,土壤营养状态的改善有利于榆树株高的生长,这可能是农耕区榆树长势良好的原因,但因榆树密度过低,榆树疏林容易受到破坏,并最终成为退化生态系统;放牧动物对榆树疏林林下植被的采食,降低植被生产力和物质周转总量,减少土壤营养输入,使林下植被的生长进一步受到抑制,加速了系统的退化过程。而放牧动物对榆树和榆树幼苗的直接啃食,使建群种榆树的生长和自我更新受到抑制,并且较低的土壤含水量和营养水平都不利于榆树的生长。因此,放牧干扰是引起松嫩平原榆树疏林生态系统退化的最主要因素。
Ecosystem degradation had been a great issue concerning sustainabledevelopment of human society. According to "Millennium Ecosystem Assessment"report, more than60%ecosystem has been degraded or being degrading, and nearly2/3nature recourses almost had been exhausted. Ecosystem degradation is threateningnormal human life. In recent decades, ecologists focused on the restoration ofdegraded ecosystem, they tried to interpret the reasons caused ecosystem degradation,mechanisms and processes of ecosystem degradation. Ecosystem species composition,community structure, biodiversity and productivity of degraded ecosystems had beenall studied in recent decades. However, the complexity ecosystem structure anddiversity of ecosystem function increase the difficulty to clarify the ecosystemdegradation processes and mechanisms, and also increased the argument amongecologists. Therefore, if we could study a ecosystem which is simple in structure andsensitive to external disturbances, that will not only be very helpful in defining theecosystem degradation processes, and also could help us understood the relationshipbetween ecosystem units.
     Elm woodland(Ulmus pumla woodland), which is simple in structure anddiverse in function, is kind of fragile ecosystem. It is an exact target approaching theneeds above to the study of mechanism and process of ecosystem degradation. In thispaper, we carried out a study about the changes of constructive species, communitystructure, biodiversity, productivity and soil characters of elm woodland underdifferent disturbances. This study could explain the reason caused degradation of elmwoodland, the processes and mechanisms of elm woodland degradation, and also giveinstructions to further restoration work of elm woodland and restoration theory ofdegraded ecosystem.
     We compared the difference in community structure, species composition andbiodiversity between undisturbed elm woodlands and the human disturbed ones in thelast nearly30years (1983-2011). The results showed that climate change in the30years reduced the number of species, but there was no significant difference. Speciescomposition decreased more than50%in the grazing and agricultural cultivation elmwoodlands, and there was decrease in the species diversity, evenness andaboveground biomass. Results of Bray-Curtis ordination analysis with the interactionbetween sampling types and environmental factors of elm woodlands showed that allthe sampling quadrats can be divided into3groups. The first group is the undisturbedelm woodlands in the period of1983-2011. The woodland disturbed by agriculturalcultivation is the second group and the third group is that disturbed by grazing. So, climate change, rather than grazing or agricultural cultivation, was the reason for thechange in vegetation feature of elm woodlands. There is still need for further study onthe detailed influence of grazing and agricultural cultivation on elm woodlands.Rational utilization of elm woodlands for agricultural cultivation or grazing, orenclosing without human disturbance, may play an important role in restoration andreconstruction of elm woodlands.
     In controlled condition, we studied response of elm seedlings to soil nutrient,water content and clipping. Results showed that height of seedlings was mainlylimited by soil nutrient conditions, while accumulation of biomass was stronglycorrelated with soil water content. The photosynthesis ability and the product of elmseedlings were mainly constrained by soil water content, which was the primaryfactor to influence growth and survival of elm seedlings. Results of this paper showedthat3%of soil water content was the lower limit of water of seedlings. Clipping,simulating grazing, had direct impacts on aboveground parts of seedlings, influencingtheir height and biomass, but had no significant effects on growth and survival ofseedlings. However, clipping and soil nutrient had significant interactive effects,especially when soil water was not limited. The negative effect of clipping onseedling growth could be by improving soil nutrient conditions. This study showedthat soil water content was the determinant factor for growth and survival of elmseedlings, and3%of water was the lowest water limit. Soil nutrient and water haddifferent effects on elm seedlings. Soil nutrient availability determined height of elmseedlings while soil water controlled accumulation of biomass. This demonstrated themain reason for the low height of elm woodlands in dry and infertile sand. So, weproposed that there was necessary to strengthen management of soil water andnutrient for restoration and reconstruction of elm woodlands.
     Our experiments mainly studied how the growth rate of elm seedlings respondedto soil humidity and nutrient availability in the community assembly of elm woodland.The results showed that the growth rate of seedling biomass and seedling heightgradually increased with the increase of soil humidity, when these seedlings grew inlow nutrient environments, while sharply increased with the increased soil humidity,when these seedlings grew in high nutrient environments. The response pattern ofbiomass and height to soil nutrient was unimodal curve, and the growth rate waslimited by soil humidity. When soil humidity was3%, the growth rate of seedling wasalmost0. The increase of soil humidity and soil nutrient improved the rapid increaseof the photosynthesis rate of seedlings, and resulted in the increase of growth rate ofseedling biomass and seedling height. However, too high nutrient availability was alimitation to the accumulation of seedling biomass and the growth of plant height andstem. To some extent, seedling growing in fixed/semi-fixed sand dunes has adapted toinfertile soil environments. The severe response of plant height to soil nutrient might be the explanation to the common hugeness of plant individuals under the cultivationconditions. Thus, the optimum soil nutrient and humidity for the growth of elmseedlings was N3W4in our experiments. In natural conditions,8%soil humidity andthe mixture of1:1sand and loam could be treated as the appropriate environments forelm growth.
     We studied the response pattern of vegetation structure and communitycomposition to soil conditions in the consecutive three years (2006-2008). The resultsindicated the different degraded mechanisms of elm woodland ecosystems resultedfrom cultivation and grazing disturbance were different. Cultivation damaged theunderstory vegetation structure, improved the rapid propagation of annual/perennialgrasses, and increased the rate of matter turnover and nutrient cycles inside theecosystems. So this is beneficial for the growth of constructive species, elm, withincreased height (4.78±0.45m), DBH (18.98±1.08cm), and individual biomass(278.5±13.28kg/stem). However, the damage to understory vegetation by cultivationgradually resulted in the singleness of ecosystem structure and the decrease ofbiodiversity. The further harvest cutting for elms significantly reduced theproductivity of elm woodland ecosystem, especially in the non-cultivation term. Thedecreased vegetation cover and bared soil reduced the stability of elm woodlandecosystem, and increased the possibility of the degradation. Compared withcultivation, the direct grazing damage to constructive species and other vegetation inelm woodland led to the opposite effects on height (1.86±0.17m), DBH (6.97±0.60cm), and individual biomass (51.9±5.9kg/stem). In addition, low soil humidity andlow concentration of nitrogen and phosphorus in grazing treatments gradually reducedthe ecosystem function.
     Our studied discovered the different degradation cause of elm woodland underthe disturbance of grazing and cultivation. In general, cultivation and grazing are themain driving forces for the degradation of elm woodland ecosystem, depending ontheir different affecting mechanisms. Cultivation improved the growth ofannual/perennial plants and increased matter turnover and nutrient cycle. Therefore,cultivation is beneficial for the individual growth of elms to some extent. Andincrease soil nutrient content is favorable for elm seedlings’ growth. Grazingdisturbance resulted in damaged understory vegetation in elm woodlands, reducedecosystem productivity matter turnover, decreased soil nutrient inputs and limitedplant growth. The vicious spiral accelerated the processes of ecosystem degradation inelm woodlands. Moreover, grazing obviously limits the growth of constructivespecies and seedling regeneration, reduced soil moisture and nutrient, and greatlyaffected the growth of U. pumila. Therefore, grazing disturbance is the main factorresulting in the degradation of elm woodlands in the Songnen Plains.
引文
[1] Tansley A G. The use and abuse of vegetational concepts and terms.[J]. Ecology,1935,16(3):284-307.
    [2] Putman R J, Wratten S D, Principles of ecology[M]. Berkeley and Los Angeles,California: University of California Press,1984.
    [3] Mackenzie A, Ball A S, Virdee S R, Instant notes in ecology[M]. London, UK: BIOSScientific Publishers Limited,1998.
    [4]章家恩,徐琪.现代生态学研究的几大热点问题透视[J].地理科学进展,1997,16(3):29-37.
    [5]章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):109-113.
    [6]常杰,葛滢,生态学[M].浙江:浙江大学出版社,2001.
    [7] Holling C S. Resilience and stability of ecological systems[J]. Annual Review of Ecologyand Systematics,1973,4:1-23.
    [8] Wu J, Loucks O L. From balance of nature to hierarchical patch dynamics: A paradigmshift in ecology[J]. The Quarterly Review of Biology,1995,70(4):439-466.
    [9] Holling C S, Resilience of ecosystems: Local surprise and global change[M]. In Clark WC, Munn R E, eds. Sustainable development of the biosphere. Cambridge UniversityPress: Cambridge, London.1986, pp.292-317.
    [10]任海,彭少麟,陆宏芳.退化生态系统恢复与恢复生态学[J].生态学报,2004,24(8):1760-1768.
    [11]柳新伟,周厚诚,李萍,等.生态系统稳定性定义剖析[J].生态学报,2004,24(11):2635-2640.
    [12] Murandian R. Ecological thresholds: A survey[J]. Ecological Economics,2001,28:7-24.
    [13]王昱生,杨殿臣,张广增,等.生态学原理[M].吉林:吉林科学技术出版社,1994.
    [14]林长存,祝廷成,杨允菲,等.浅谈科学发展观与草地生态建设[J].中国草地学报,2005,27(1):64-67.
    [15] May R M. Stability and complexity in model ecosystems[M]. Princeton, New Jersey:Princeton University Press,1973.
    [16] Pimm S L. The complexity and stability of ecosystem[J]. Nature,1984,307(26):321-326.
    [17] Bennett A, Radford J, Bush T. Know your ecological thresholds[M]. In Thinking bush,Native Vegetation R&D Program,2003, Land&Water Australia: Canberra, Australia. pp.1-3.
    [18]任继周.草地农业系统持续发展的原则理解[J].草业学报,1997,6(4):1-5.
    [19] Daily G C. Restoring value to the world's degraded lands[J]. Science,1995,269:350-354.
    [20] Ren H, Shen W J, Lu H F, et al. Degraded ecosystems in china: Status, causes, andrestoration efforts[J]. Landscape and Ecological Engineering,2007,3(1):1-13.
    [21]刘国华,傅伯杰,陈利顶,等.中国生态退化的主要类型,特征及分布[J].生态学报,2000,20(1):13-19.
    [22]喻理飞,朱守谦,叶镜中,等.人为干扰与喀斯特森林群落退化及评价研究[J].应用生态学报,2002,13(5):529-532.
    [23]孙楠,李卫忠,吉文丽,等.退化生态系统恢复与重建的探讨[J].西北农林科技大学学报(自然科学版),2002,30(5):136-138.
    [24] Sala O E, Chapin F S, Armesto J J, et al. Global biodiversity scenarios for the year2100[J]. Science,2000,287(5459):1770-1774.
    [25] Ewel J J. Restoration is the ultimate test of ecological theory[M]. In Jordan W R, GilpinM E, Aber J D, eds. Restoration ecology: A synthetic approach to ecological research.Cambridge University Press: Cambridge.1987, pp.31-33.
    [26] Brown S. Restoration of tropical forest ecosystems[J]. Restoration Ecology,1999,7(1):98-98.
    [27] McIver J, Starr L. Restoration of degraded lands in the interior columbia river basin:Passive vs. Active approaches[J]. Forest Ecology and Management,2001,153(1):15-28.
    [28] McDonald T. Averting tipping points: Role of restoration management[J]. EcologicalManagement&Restoration,2007,8(1):2.
    [29] Boels D, Davies D, Johnston A. Soil degradation, in Proceedings of the Land UseSeminar on Soil Degradation[C]. Balkema, Rotterdam: Wageningen, Netherlands,1982,pp.280.
    [30] Chisholm M, Kivell P, Inner city waste land: An assessment of government and marketfailure in land development[M]. Institute of economic affairs,1987.
    [31] Mysz A T, Maurice C G, Beltran R F, et al. A targeting approach for ecosystemprotection[J]. Environmental Science&Policy,2000,3(6):347-356.
    [32]彭少麟,陆宏芳.恢复生态学焦点问题[J].生态学报,2003,23(7):1249-1257.
    [33] Abensperg-Traun M, Wrbka T, Bieringer G, et al. Ecological restoration in the slipstreamof agricultural policy in the old and new world[J]. Agriculture, ecosystems&environment,2004,103(3):601-611.
    [34] Kauffman M J, Varley N, Smith D W, et al. Landscape heterogeneity shapes predation ina newly restored predatoríprey system[J]. Ecology Letters,2007,10(8):690-700.
    [35]袁春明,郎南军,孟广涛,等.长江上游云南松林水土保持生态效益的研究[J].水土保持学报,2002,16(2):87-90.
    [36] Covington W W, DeBano L F, Huntsberger T G. Soil nitrogen changes associated withslash pile burning in pinyon-juniper woodlands[J]. Forest Science,1991,37(1):347-355.
    [37] Owens M, Wallace R, Archer S. Landscape and microsite influences on shrub recruitmentin a disturbed semi-arid quercus-juniperus woodland[J]. Oikos,1995,74(3):493-502.
    [38]于建权,庄凯勋.半干旱风沙区疏林草草牧场防护林的生物效益[J].东北林业大学学报,2000,28(6):20-23.
    [39] Dulamsuren C, Hauck M, Nyambayar S, et al. Performance of siberian elm (Ulmuspumila) on steppe slopes of the northern mongolian mountain taiga: Drought stress andherbivory in mature trees.[J]. Environmental and Experimental Botany,2009,66(1):18-24.
    [40] Dulamsuren C, Hauck M, Nyambayar S, et al. Establishment of Ulmus pumila seedlingson steppe slopes of the northern mongolian mountain taiga[J]. Acta Oecologica,2009,35(5):563-572.
    [41] Liu L, Wang D, Gao Y, et al. Growth and survival responses of elm (Ulmus pumila)seedlings to water use, nutrient availability and clipping intensity[J]. Journal of Food,Agriculture&Environment,2012,10(3&4):1308-1314.
    [42] Zhu T, Grassland of china. In Coupland R T, eds. Natural grassland-Eastern hemisphere,Ecosystems of the world. Elseriver Science Press: Amsterdan.1993, p.61-82.
    [43]李建东,吴榜华,盛连喜.吉林植被[M].长春,吉林:吉林省科学技术出版社,2001,136.
    [44]刘利,王赫,林长存,等.松嫩草原榆树疏林对不同干扰的响应[J].生态学报,2012,32(1):74-80.
    [45]杨利民,韩梅,王丽君.榆树疏林对维持草地生态区域生物多样性意义的初探[J].吉林农业大学学报,1996,18:46-49.
    [46]左小安,赵学勇,张铜会,等.科尔沁沙地榆树疏林草地物种多样性及乔木种群空间格局[J].干旱区资源与环境,2005,19:63-68.
    [47] Yang C W, Zhang M L, Liu J, et al. Effects of buffer capacity on growth, photosynthesis,and solute accumulation of a glycophyte (wheat) and a halophyte (chloris virgata)[J].Photosynthetica,2009,47(1):55-60.
    [48] Dulamsuren C, Hauck M, Mühlenberg M. Ground vegetation in the mongolian taigaforest-steppe ecotone does not offer evidence for the human origin of grasslands.[J].Applied Vegetation Science,2005,8:149-154.
    [49] Chapman G P. Desertified grasslands: Their biology and management[C]. LinneanSociety symposium series, London, Academic Press,1992, pp.8-12.
    [50]陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:中国科学技术出版社,1995, pp.5-87.
    [51]赵晓英,孙成权.恢复生态学及其发展[J].地球科学进展,1998,13(5):474-480.
    [52]梁存柱,祝廷成,王德利,等.21世纪初我国草地生态学研究展望[J].应用生态学报,2002,13(6):743-746.
    [53] Jackson E A. Opcl migration controls between five attractors of the chua system[J].International Journal of Bifurcation and Chaos,1995,5(4):1255-1260.
    [54] Haber W. Grundzüge einer kologischen theorie der landnutzung[J]. Innere Kolonisation,1972,21:293-298.
    [55] UNEP. Status of desertification and implementation of the united nations plan of action tocombat desertification[M]. Nairobi,1992.
    [56] Toulmin C, Combatting desertification: Setting the agenda for a global convention[M].International Institute for Environment and Development,1993.
    [57] Lal R, Soil quality and soil erosion[M]. New York: CRC press,1998.
    [58] Houston D B, Dochinger L S. Effects of ambient air pollution on cone, seed, and pollencharacteristics in eastern white and red pines.[J]. Environmental Pollution (1970),1977,12(1):1-5.
    [59] Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth'secosystems[J]. Science,1997,277(5325):494-499.
    [60]刘祥.长白山火山历史上最大火山爆发火山碎屑物层序与分布[J].吉林大学学报:地球科学版,2006,36(3):313-318.
    [61]李平原,刘秀铭,刘植,等.火山活动对全球气候变化的影响[J].亚热带资源与环境学报,2012,7(1):83-88.
    [62] Sousa W P. Experimental investigations of disturbance and ecological succession in arocky intertidal algal community[J]. Ecological Monographs,1979,49(3):227-254
    [63] Tilman D. Plant strategies and the dynamics and structure of plant communities[M].Princeton University Press,1988.
    [64]周道玮.无树草甸草原火周期研究方法的探讨[J].生态学报,1995,15(1):61-65.
    [65] Skole D L, Chomentowski W, Salas W, et al. Physical and human dimensions ofdeforestation in amazonia[J]. BioScience,1994,314-322.
    [66] Skol D, Tucker C. Tropical deforestation and habitat fragmentation in the amazon:Satellite data from1978to1988[J]. Science,1993,260:1905-1910.
    [67] Sisk T D, Launer A E, Switky K R, et al. Identifying extinction threats: Global analyses ofthe distribution of biodiversity and the expansion of the human enterprise[J]. BioScience,1994,592-604.
    [68] Costa F P, Rehman T. Exploring the link between farmers' objectives and the phenomenonof pasture degradation in the beef production systems of central brazil[J]. AgriculturalSystems,1999,61(2):135-146.
    [69] Agrawal A K, Goyal A K. Effect of grazing on net primary production and system transferfunction in a western himalayan grassland community[J]. Tropical Grasslands,1987,21(4):154-158.
    [70]李永庚.浑善达克沙地榆树的生理生态适应对策[M].中国科学院植物研究所博士后研究工作报告, pp.200.
    [71]李永庚,蒋高明,高雷明,等.人为干扰对浑善达克沙地榆树疏林的影响[J].植物生态学报,2003,27(6):829-834.
    [72]李钢铁,姚云峰,邹受益,等.科尔沁沙地榆树疏林草原植被研究[J].干旱区资源与环境,2004,18(6):132-138.
    [73]李钢铁,姚云峰,周受益,等.科尔沁沙地榆树疏林草原及其封育更新研究[J].干旱区资源与环境,2004,18(4):152-157.
    [74] Grimm V, Wissel C. Babel, or the ecological stability discussions: An inventory andanalysis of terminology and a guide for avoiding confusion[J]. Oecologia,1997,109(3):323-334.
    [75]王国宏.再论生物多样性与生态系统的稳定性[J].生物多样性,2002,10(1):126-134.
    [76] MacArthur R. Fluctuations of animal populations and a measure of communitystability[J]. Ecology,1955,36(3):533-536.
    [77] Elton C S, The ecology of invasions by animals and plants[M]. Chicago: University ofChicago Press,2000.
    [78] King A W, Pimm S L. Complexity, diversity, and stability: A reconciliation of theoreticaland empirical results[J]. American Naturalist,1983,22(2):229-239.
    [79] Tilman D. Biodiversity: Population versus ecosystem stability[J]. Ecology,1996,77(2):350-363.
    [80] May R M. What is the chance that a large complex system will be stable[J]. Nature,1972,237:413-414.
    [81] Doak D F, Bigger D, Harding E, et al. The statistical inevitability of stability-diversityrelationships in community ecology[J]. The American Naturalist,1998,151(3):264-276.
    [82] Loreau M. Biodiversity and ecosystem functioning: A mechanistic model[J]. Proceedingsof the National Academy of Sciences,1998,95(10):5632-5636.
    [83] Cohen J E, Newman C M. When will a large complex system be stable?[J]. Journal oftheoretical Biology,1985,113(1):153-156.
    [84] Tilman D, Downing J A. Biodiversity and stability in grasslands[J]. Nature,1996,367:363-365.
    [85] Mitchell R J, Auld M H D, Le Duc M G, et al. Ecosystem stability and resilience: Areview of their relevance for the conservation management of lowland heaths[J].Perspectives in Plant Ecology, Evolution and Systematics,2000,3(2):142-160.
    [86] Hunter M L J. Wildfire, foresty, and forestry: Principles of manageing forests forbiodiversity[M]. In Printice-Hall E C, eds. New Jersey,1990.
    [87] Tilman D, Downing J A, Wedin D A. Does diversity beget stability?[J]. Nature,1994,371:114.
    [88]陈灵芝,钱迎倩.生物多样性保护现状及其对策.钱迎倩,马克平主编,生物多样性研究的原理与方法,中国科学技术出版社,北京,1994, pp.35.
    [89] Naeem S, Thompson L J, Lawler S P, et al. Declining biodiversity can alter theperformance of ecosystems[J]. Nature,1994,368:734-737.
    [90] Tilman D. Community invasibility, recruitment limitation, and grassland biodiversity[J].Ecology,1997,78(1):81-92.
    [91] Kareiva P. Diversity begets productivity[J]. Nature,1994,368(6473):686-687.
    [92] Kareiva P. Diversity and sustainability on the prairie[J]. Nature,1996,379(6567):673-674.
    [93] MacGillivray C, Grime J, The Integrated Screening Programme Team. Testing predictionsof the resistance and resilience of vegetation subjected to extreme events[J]. FunctionalEcology,1995,9(4):640-649.
    [94] Tilman D, May R M, Lehman C L, et al. Habitat destruction and the extinction debt[J].Nature,1994,371:65-66.
    [95] Pimm S L, Russell G J, Gittleman J L. The future of biodiversity[J]. Science,1995,269:347-350.
    [96]杨利民,周广生,王国宏,等.人类活动对榆树疏林土壤环境和植物多样性的影响[J].应用生态学报,2003,14(3):321-325.
    [97]杨利民,周广胜,李建东.松嫩平原草地群落物种多样性与生产力关系的研究[J].植物生态学报,2002,26(5):589-593.
    [98] Pfisterer A B, Schmid B. Diversity-dependent production can decrease the stability ofecosystem functioning[J]. Nature,2002,416(6876):84-86.
    [99] Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivity experimentsin european grasslands[J]. Science,1999,286(5442):1123-1127.
    [100] Montes N, Bertaudière-Montes V, Badri W, et al. Biomass and nutrient content of asemi-arid mountain ecosystem: The juniperus thurifera L. Woodland of azzaden valley(morocco)[J]. Forest Ecology and Management,2002,166(1):35-43.
    [101] Davis G W, Richardson D M. Mediterranean-type ecosystems: The function ofbiodiversity[M]. Berlin: Springer-Verlag,1995.
    [102] Davis W J. Focal species offer management tool[J]. Science,1996,271(5254):1362-1363
    [103] Prins H H T, Jeugd H P V d. Herbivore population crashes and woodland structure in eastafrica[J]. Journal of Ecology,1993,81:305-314.
    [104] Gitay H, Wilson J B, Lee W G. Species redundancy: A redundant concept?[J]. Journal ofEcology,1996,84(1):121-124.
    [105] Power M E, Tilman D, Estes J A, et al. Challenges in the quest for keystones[J].BioScience,1996,46(8):609-620.
    [106] Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity ingrassland ecosystems[J]. Nature,1996,379(6567):718-720.
    [107]赵平,彭少麟.种,种的多样性及退化生态系统功能的恢复和维持研究[J].应用生态学报,2001,12(1):132-136.
    [108]洪利兴,王泳.我国南方马尾松林生态系统的退化特征和改造对策研究[J].浙江林业科技,2000,20(2):1-9.
    [109] Franzluebbers A. Soil organic matter stratification ratio as an indicator of soil quality[J].Soil and Tillage Research,2002,66(2):95-106.
    [110] Kolstr m M, Lindner M, Vilén T, et al. Reviewing the science and implementation ofclimate change adaptation measures in european forestry[J]. Forests,2011,2(4):961-982.
    [111]许再富,刘宏茂.热带雨林退化生态系统生物多样性消失与修复探讨[J].云南植物研究,1996,18(4):433-438.
    [112]周德成,罗格平,韩其飞,等.天山北坡不同海拔梯度山地草原生态系统地上净初级生产力对气候变化及放牧的响应[J].生态学报,2012,32(001):81-92.
    [113] Shavelson R J, McDonnell L, Oakes J. Steps in designing an indicator system[J].Practical Assessment, Research&Evaluation,1991,2(12):21-28.
    [114] Allen S, Buechner J, Griffin J, et al., Design of a health indicator system: A "how-to"manual for state medicaid programs[M]. Evaluation Studies Workgroup, Division ofHealth Care Quality, Financing and Purchasing Rhode Island Department of HumanServices.2000, pp.79.
    [115]章家恩,徐琪.退化生态系统的诊断特征及其评价指标体系[J].长江流域资源与环境,1999,8(2):215-220.
    [116]徐学荣,俞明,蔡艺,等.福建生态省建设的评价指标体系初探[J].农业系统科学与综合研究,2003,19(2):89-92.
    [117]杨树华.高原湖泊流域生态系统评价指标体系研究[J].云南大学学报:自然科学版,1999,21(002):149-152.
    [118]王乐,李晓英,阎培洁,等.黄土丘陵沟壑区小流域生态系统健康评价指标体系构建[J].四川农业大学学报,2012,30(1):50-55.
    [119]戴全厚,刘国彬,田均良,等.侵蚀环境小流域生态经济系统健康定量评价[J].生态学报,2006,26(7):2219-2228.
    [120]徐明德,李静,彭静,等.基于rs和gis的生态系统健康评价[J].生态环境学报,2010,19(8):1809-1814.
    [121] McCune B, Grace J B, Urban D L. Analysis of ecological communities[M]. MjMSoftware Design Gleneden Beach, Oregon,2002.
    [122] Ruiz-Jaén M C, Aide T M. Vegetation structure, species diversity, and ecosystemprocesses as measures of restoration success[J]. Forest Ecology and Management,2005,218(1):159-173.
    [123] Ulanowicz R E. An hypothesis on the development of natural communities[J]. Journal oftheoretical Biology,1980,85(2):223-245.
    [124] Ulanowicz R E. A phenomenological perspective of ecological development[M]. InPoston T M, Purdy R, eds. Aquatic toxicology and environmental fate. American Societyfor Testing and Materials, Philadelphia, USA,1986.
    [125] Ulanowicz R E. Ecology, the ascendent perspective[M]. New York, Columbia UniversityPress,1997, pp.201.
    [126] Ulanowicz R E. Ascendancy: A measure of ecosystem performance[M]. In Jorgensen S E,Muller F, eds. Handbook of ecosystem theories and management. Lewis Publishers, BocaRaton,2000, pp.303-315.
    [127] Patr cio J, Ulanowicz R, Pardal M, et al. Ascendency as an ecological indicator: A casestudy of estuarine pulse eutrophication[J]. Estuarine, Coastal and Shelf Science,2004,60(1):23-35.
    [128]彭少麟.恢复生态学与热带雨林的恢复[J].世界科技研究与发展,1997,19(3):58-61.
    [129]余作岳,植物学,彭少麟,等.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科技出版社,1996.
    [130] Jordan W R, Gilpin M E, Aber J D. Restoration ecology: A synthetic approach toecological research[M]. Cambridge, UK: Cambridge University Press,1987, pp.347.
    [131] Falk D A, Palmer M A, Zedler J B. Foundations of restoration ecology[M]. Washington,D.C.: Island Press,2006.
    [132] Falk D A, Holsinger K E. Genetics and conservation of rare plants[M]. New York: OxfordUniversity Press,1991.
    [133] Parham W E, Durana P J, Hess A. Improving degraded lands: Promising experiences fromsouth china[M]. Bishop Museum Press,1993.
    [134]彭少麟.恢复生态学与退化生态系统的恢复[J].中国科学院院刊,2000,15(3):188-192.
    [135] Dobson A P, Bradshaw A, Baker A J M. Hopes for the future: Restoration ecology andconservation biology[J]. Science,1997,277(5325):515-522.
    [136] Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: Partial restoration ofhind limb function[J]. Science,1996,273(5274):510-513.
    [137]唐廷贵,张万钧.论中国海岸带大米草生态工程效益与生态入侵D[J].中国工程科学,2003,5(3):15-20.
    [138]王蔚,张凯,汝少国.米草生物入侵现状及防治技术研究进展[J].海洋科学,2003,27(7):38-42.
    [139]刘苑秋.亚热带红壤区生态退化及生态恢复研究综述[J].南京林业大学学报:自然科学版,2000,24:53-58.
    [140]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [141]李明辉.景观生态学与退化生态系统恢复[J].生态学报,2003,23(8):1622-1628.
    [142]赵平.退化生态系统植被恢复的生理生态学研究进展[J].应用生态学报,2003,14(11):2031-2036.
    [143] Hobbs R J, Harris J A. Restoration ecology: Repairing the earth's ecosystems in the newmillennium[J]. Restoration Ecology,2001,9(2):239-246.
    [144] Hobbs R J, Norton D A. Towards a conceptual framework for restoration ecology[J].Restoration Ecology,1996,4(2):93-110.
    [145] Bradshaw A D. Restoration: An acid test for ecology[M]. In Jordan W R, Gilpin M E,Aber J D, eds. Restoration ecology, asynthetic approach to ecological research.Cambridge University Press: Cambridge,1987, pp.23-33.
    [146] Harper J. Self-effacing art: Restoration as imitation of nature[M]. In Jordan W R, GilpinM E, Aber J D, eds. Restoration ecology: A synthetic approach to ecological research.Cambridge University Press: Cambridge,1987, pp.35-45.
    [147] Jackson L L, Lopoukhine N, Hillyard D. Ecological restoration: A definition andcomments[J]. Restoration Ecology,1995,3(2):71-75.
    [148] Rackham O, Sassa K. Trees and woodland in a cultural landscape: The history of woodsin england[J]. Forestry Sciences,1998,54:139-148.
    [149] Jackson S T, Webb R S, Anderson K H, et al. Vegetation and environment in eastern northamerica during the last glacial maximum.[J]. Quaternary Science Reviews,2000,19(6):489-508.
    [150]刘建,朱选伟,于飞海,等.浑善达克沙地榆树疏林生态系统的空间异质性[J].环境科学,2003,24(4):29-34.
    [151]李建东,杨允菲.松嫩平原榆树疏林植物组分的结构型[J].草地学报,2003,11(4):278-282.
    [152]黄伟华,卫智军,占布拉,等.科尔沁沙地榆树疏林灌丛草地灌木可食部位生物量估测模型[J].内蒙古草业,2007,19(1):43-45.
    [153]李海平,朱美云,段立清,等.科尔沁沙地榆树疏林草地的调查及评价[J].内蒙古科技与经济,2009,9:72-73.
    [154]杨文斌,杨美仙.榆树和柠条的水分生理生态特性研究[J].内蒙古林业科技,1998(2):32-34.
    [155]孙明高,张吉国,刘惠忠.白榆优良无性系早期选择的研究[J].山东农业大学学报(自然科学版),1999,30(2):113-120.
    [156]顾万春,王维胜,李斌,等.生态梯度轴(ega)用于林木生态遗传的研究pca方法估算egapcr[J].生态学报,1992,12(4):332-340.
    [157] Armstrong J V, Sell P D. A revision of the british elms (Ulmus L., ulmaceae): Thehistorical background.[J]. Botanical Journal of the Linnean Society,1996,120:39-50.
    [158] Solla A, Martin J, Corral P, et al. Seasonal changes in wood formation of Ulmus pumilaand U. Minor and its relation with dutch elm disease[J]. New Phytologist,2005,166(3):1025-1034.
    [159]李红丽,董智.浑善达克沙地榆树根系分布特征及生物量研究[J].干旱区资源与环境,2002,16(004):99-105.
    [160] Jiang C D, Jiang G M, Wang X, et al. Increased photosynthetic activities andthermostability of photosystem ii with leaf development of elm seedlings (Ulmus pumila)probed by the fast fluorescence rise ojip[J]. Environmental and Experimental Botany,2006,58(1):261-268.
    [161] Jin H M, Sun O J, Luo Z K, et al. Dynamics of soil respiration in sparse Ulmus pumilawoodland under semi-arid climate[J]. Ecological research,2009,24(4):731-739.
    [162]王亚秋.榆树个体生态场行为的研究[D].东北师范大学,2005.
    [163] McIlvain E H, Armstrong C G. Siberian elm: A tough new invader of grasslands[J].Weeds,1965:278-279.
    [164] Gundlach A. Invasive species guidebook for department of defense installations in thechesapeake bay watershed: Identification, control, and restoration. Wildlife HabitatCouncil Silver Spring, Maryland Prepared for the Department of Defense LegacyResource Management Program,2007.
    [165] Wang D, Ba L. Ecology of meadow steppe in northeast china[J]. The Rangland Journal,2008,30:247-254.
    [166]陈静生,郭蓄民.内蒙古自治区小腾格里砂地自然景观[J].地理学报,1960,27(1):23-34.
    [167]彭羽,蒋高明,李永庚,等.浑善达克沙地榆树疏林自然保护区核心区设计的初步研究.[J].植物生态学报,2005,29(5):775-780.
    [168]杨允菲,白云鹏,李建东.科尔沁沙地刺榆局域成林机制[J].生态学杂志,2011,30(11):2389-2393.
    [169] Fu L, Yiqun X, Whittemore A. Ulmaceae[J]. Flora,2004,5:1-19.
    [170] Thuiller W. Biodiversity: Climate change and the ecologist[J]. Nature,2007,448(7153):550-552.
    [171] Society T R. Biodiversity-climate interactions: Adaptation nitigation and humanlivelihoods (report of an international meeting,2007)[M]. The Clyvedon Press Ltd:Cardiff, UK,2008, pp.9-60.
    [172] Knapp A K, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling, and plantspecies diversity in a mesic grassland[J]. Science,2002,298(5601):2202-2205.
    [173] Yao Z, Yang F, Liu X, et al. Quantitative assessment of impacts of climate andeconomic-technical factors on grain yield in jilin province from1980to2008[J]. ChineseGeographical Science,2011,21(5):543-553.
    [174] Mitchell K. Quantitative analysis by the point-centered quarter method[D]. Onlinedocument, Department of Mathematics and Computer Science, Hobart and William SmithColleges. New York.2007, pp.2-4.
    [175] Belsky A J, Blumenthal D M. Effects of livestock grazing on stand dynamics and soils inupland forests of the interior west.[J]. Conservation Biology,1997,11(2):315-327.
    [176] Berendse F. Implications of increased litter production for plant biodiversity[J]. Trends inEcology&Evolution,1999,14(1):4-5.
    [177] Wang L, Wang D, Bai Y, et al. Spatially complex neighboring relationships amonggrassland plant species as an effective mechanism of defense against herbivory[J].Oecologia,2010,164(1):193-200.
    [178] Sun Y, Li X, He Y, et al. Impact factors on distribution and characteristics of natural plantcommunity in reclamation zones of changjiang river estuary[J]. Chinese GeographicalScience,2012,22(2):154-166.
    [179]侯扶江,杨中艺.放牧对草地的作用[J].生态学报,2006,26(1):244-264.
    [180] Bormann F H, Likens G E. Pattern and process in a forested ecosystem[M]. New York:Springer-Verlag,1979.
    [181] Johnson C E. Soil nitrogen status8years after whole-tree clear-cutting[J]. CanadianJournal of Forest Research,1995,25(8):1346-1355.
    [182] Hester A J, Mitchell F J G, Kirby K J. Effects of season and intensity of sheep grazing ontree regeneration in a british upland woodland.[J]. Forest Ecology and Management,1996,88(1-2):99-106.
    [183] Runion G B, Entry J A, Prior S A, et al. Tissue chemistry and carbon allocation inseedlings of Pinus palustris subjected to elevated atmospheric co2and water stress[J].Tree Physiology,1999,19(4-5):329-335.
    [184] Galmés J, Abadía A, Medrano H, et al. Photosynthesis and photoprotection responses towater stress in the wild-extinct plant Lysimachia minoricensis [J]. Environmental andExperimental Botany,2007,60(3):308-317.
    [185] Birk E M, Vitousek P M. Nitrogen availability and nitrogen use efficiency in loblolly pinestands.[J]. Ecology,1986,67(1):69-79.
    [186] Jose S, Merritt S, Ramsey C L. Growth, nutrition, photosynthesis and transpirationresponses of longleaf pine seedlings to light, water and nitrogen.[J]. Forest Ecology andManagement,2003,180(1-3):335-344.
    [187] Archer S. Have southern texas savannas been converted to woodlands in recenthistory?[J]. The American Naturalist,1989,134(4):545-561.
    [188] Harrington G N. Effects of soil moisture on shrub seedling survival in semi-aridgrassland.[J]. Ecology,1991,72(3):1138-1149.
    [189] Fenner M. Seedlings[J]. New Phytologist,1987,106(1):35-47.
    [190] Braithwaite T W, Mayhead G J. The effect of simulated browsing on the growth of sessileoak (Quercus petraea (matt.) lieblein).[J]. Arboricultural Journal,1996,20:59-46.
    [191] Luoga E J, Witkowski E T F, Balkwill K. Harvested and standing wood stocks inprotected and communal miombo woodlands of eastern tanzania.[J]. Forest Ecology andManagement,2002,164(1):15-30.
    [192] Luoga E J, Witkowski E T F, Balkwill K. Regeneration by coppicing (resprouting) ofmiombo (african savanna) trees in relation to land use.[J]. Forest Ecology andManagement,2004,189(1):23-35.
    [193] Freedman B, Hill N, Svoboda J, et al. Seed banks and seedling occurrence in a high arcticoasis at alexandra fjord, ellesmere island,canada.[J]. Canadian Journal of Botany,1982,60(10):2112-2118.
    [194] Sawadogo L, Nyg rd R, Pallo F. Effects of livestock and prescribed fire on coppicegrowth after selective cutting of sudanian savannah in burkina faso.[J]. Annals of ForestScience,2002,59:185-195.
    [195] Shi L, Zhang Z J, Zhang C Y, et al. Effects of sand burial on survival, growth, gasexchange and biomass allocation of Ulmus pumila seedlings in the hunshandak sandland,china.[J]. Annals of Botany,2004,94(4):553-560.
    [196] Spiro R G. Analysis of sugars found in glycoprotein[M]. In Neufeld E F, Ginsburg V, eds.Methods in enzymology, VIII, complex carbohydrates, Academic Press: New York,1966,pp.3-26.
    [197] Kolb T E, Steiner K C, McCormick L H, et al. Growth response of northern red-oak andyellow-poplar seedlings to light, soil moisture and nutrients in relation to ecologicalstrategy.[J]. Forest Ecology and Management,1990,38(1-2):65-78.
    [198] Sack L, Grubb P J. The combined impacts of deep shade and drought on the growth andbiomass allocation of shade-tolerant woody seedlings[J]. Oecologia,2002,131(2):175-185.
    [199] Xiao S, Chen S Y, Zhao L Q, et al. Density effects on plant height growth and inequalityin sunflower populations[J]. Journal of Integrative Plant Biology,2006,48(5):513-519.
    [200] Dyer M I, Turner C L, Seastedt T R. Herbivory and its consequences[J]. EcologicalApplications,1993,3(1):10-16.
    [201] Cromer R N, Jarvis P G. Growth and biomass partitioning in eucalyptus grandis seedlingsin response to nitrogen supply.[J]. Australian Journal of Plant Physiology,1990,17(5):503-515.
    [202] Kleiner K W, Abrams M D, Schultz J C. The impact of water and nutrient deficiencies onthe growth, gas exchange and water relations of red oak and chestnut oak.[J]. TreePhysiology,1992,11(3):271-287.
    [203] Chapman D, Lemaire G. Morphogenetic and structural determinants of plant regrowthafter defoliation[C]. International Grassland Congress: Grassland for our world, SIRPublishing: Wellington,1993, pp.95-104.
    [204] Chen Y, Lee G, Lee P, et al. Model analysis of grazing effect on above-ground biomassand above-ground net primary production of a mongolian grassland ecosystem[J]. Journalof Hydrology,2007,333(1):155-164.
    [205] Inouye R S, Allison T D, Johnson N C. Old field succession on a minnesota sand plain:Effects of deer and other factors on invasion by trees.[J]. Bulletin of the Torrey BotanicalClub,1994,121(3):266-276.
    [206] Christiansen S, Svejcar T. Grazing effects on shoot and root dynamics and above-andbelow-ground non-structural carbohydrate in caucasian bluestem[J]. Grass and ForageScience,1988,43(2):111-119.
    [207] Chaerle L, Hagenbeek D, Bruyne E D, et al. Thermal and chlorophyll-fluorescenceimaging distinguish plant-pathogen interactions at an early stage.[J]. Plant and CellPhysiology,2004,45(7):887-896.
    [208]沈燕,谢应忠.干旱对紫花苜蓿叶绿素含量和水分饱和亏缺的影像[J].宁夏农学院学报,2004,25(2):25-28.
    [209] Shangguan Z P, Zheng S X, Zhang L M, et al. Effect of nitrogen fertilization on leafchlorophyll fluorescence in fieldgrown winter wheat under rainfed conditions.[J].Agricultural Sciences in China,2005,4(1):15-20.
    [210]孙谷畴,赵平,曾小平,等.大气CO2浓度升高对香蕉光合作用及光合碳循环过程中叶氮分配的影响.[J].应用生态学报,2001,12(3):429-434.
    [211] Pelah D, Wang W, Altman A, et al. Differential accumulation of water stress‐relatedproteins, sucrose synthase and soluble sugars in populus species that differ in their waterstress response[J]. Physiologia Plantarum,1997,99(1):153-159.
    [212] Bian H W, Wang J H, Lin W Q, et al. Accumulation of soluble sugars, heat-stable proteinsand dehydrins in cryopreservation of protocorm-like bodies of dendrobium candidum bythe air-drying method[J]. Journal of Plant Physiology,2002,159(10):1139-1145.
    [213] Bucher H P, M chler F, N sberger J. Storage and remobilization of carbohydrates inmeadow fescue (Festuca pratensis huds.)[J]. Journal of Plant Physiology,1987,130(2):101-109.
    [214] Zhixin X. Relationship between herbage regrowth and dynamics of carbohydratestorage[J]. Acta Prataculturae Sinica,1993,2(4):13-18.
    [215] Cipriotti P A, Flombaum P, Sala O E, et al. Does drought control emergence and survivalof grass seedlings in semi-arid rangelands? An example with a patagonian species.[J].Journal of Arid Environments,2008,72(3):162-174.
    [216] Kaya M D, Okcu G, Atak M, et al. Seed treatments to overcome salt and drought stressduring germination in sunflower (Helianthus annuus l.)[J]. European Journal ofAgronomy,2006,24(4):291-295.
    [217] Brockway D G, Lewis C E. Influence of deer, cattle grazing and timber harvest on plantspecies diversity in a longleaf pine bluestem ecosystem.[J]. Forest Ecology andManagement,2003,175(1-3):49-69.
    [218] Geber M A. Interplay of morphology and development on size inequality: A polygonumgreenhouse study.[J]. Ecological Monographs,1989,59(3):267-288.
    [219] Drexhage M, Colin F. Effects of browsing on shoots and roots of naturally regeneratedsessile oak seedlings.[J]. Annals of Forest Science,2003,60(2):173-178.
    [220] South D B. Rationale for growing southern pine seedlings at low seedbed densities[J].New Forests,1993,7(1):63-92.
    [221]姜景民,胡世才,夏锡风.湿地松育苗密度的研究[J].林业科学研究,1995,8(2):199-204.
    [222]夏尚光,张金池,梁淑英.水分胁迫下3种榆树幼苗生理变化与抗旱性的关系[J].南京林业大学学报:自然科学版,2008,32(3):131-134.
    [223]梁万君,董晓刚,付晓霞,等.吉林省西部榆树疏林生长与更新现状和恢复技术研究[J].吉林林业科技,2010,39(4):16-19.
    [224] Ren H, Peng S L. Restoration and rebuilding of degraded ecosystem[J]. Youth Geography,1998,3(3):7-11.
    [225]余健,房莉,单奇华,等.植被退化对土壤性质的影响及防治对策[J].安徽农业科学,2007,35(17):5228-5229.
    [226] Walker B H, Ludwig D, Holling C S, et al. Stability of semi-arid savanna grazingsystems[J]. Journal of Ecology,1981,69(2):473-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700