用户名: 密码: 验证码:
基于压电作动器的齿轮传动系统振动主动控制及算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮系统的振动不但会产生噪声和导致传动系统的不稳定,而且会加速传动系统的疲劳损害,使其失效进而产生严重后果。齿轮作为机械传动中的通用基础件,降低其振动噪声对于减少齿轮箱故障、改善工作环境具有重要工程意义。目前齿轮系统的振动噪声控制主要采取被动方式,包括齿轮修形优化、调整转子质量或刚度来改变其动力特性等。为了抑制齿轮啮合误差引起的周期振动噪声,本文结合压电智能材料的应用,将主动控制技术应用在齿轮传动啮合振动主动控制中,基于主动控制轴横向振动的思想,采用主动控制结构,使主动控制力以更直接的方式来控制齿轮啮合点由于传动误差激励而引起的振动,进而达到控制齿轮传动系统振动噪声的目的。论文主要工作如下:
     1)为了分析齿轮系统在啮合力的作用下产生的动态响应,首先建立齿轮系统的动力学模型,应用集中质量法建立了由一对渐开线直齿圆柱齿轮组成的传动系统三自由度数学模型,在此模型基础上分析了激励频率和负载对齿轮传动系统动态响应的影响。利用压电堆作动器作为振动主动控制的执行器,提出了用于振动主动控制的齿轮箱主动结构方案。
     2)针对影响压电陶瓷作动器输出精度的滞回非线性问题,提出能够精确描述其滞回非线性特性的数学模型,分别采用Preisach模型和PI模型对压电作动器的滞回非线性进行建模,对压电堆的输出特性进行了仿真;在此基础上提出一种开环逆控制方法,应用PI逆模型作为控制器来补偿滞回非线性。仿真结果表明控制器的设计保证了系统的稳定,并有效抑制了压电作动器滞回非线性的影响。
     3)为了有效抑制齿轮传动系统由于啮合误差引起的周期振动,采用一种基于自适应滤波算法的振动主动控制方案。分别应用M文件型Level-2S函数和C-MEX S函数编写FxLMS自适应控制算法模块;通过算例验证了控制算法模块的正确性。在保证控制系统的稳定和快速收敛的前提下,深入讨论了用于周期性信号的振动主动控制FxLMS算法收敛条件,并对影响算法性能的内部因素进行了分析,同时分析了在次级通道辨识有误差和延迟的情况下算法的性能,为在实际应用中保证算法收敛并达到最佳控制效果提供重要理论依据。
     4)在ADAMS环境下建立了齿轮传动系统虚拟样机,将其作为被控对象子模块,添加到Simulink环境中建立的FxLMS控制系统中,建立起完整的齿轮传动振动主动控制联合仿真系统。联合仿真验证了所建模型以及控制算法的正确性。
     5)最后根据所提出的齿轮传动系统振动主动控制方法,构建了齿轮箱与压电堆作动器、传感器和控制器等必要的软、硬件构成的振动主动控制实验系统,进行了快速控制原型半实物实验:通过基于级联自适应陷波器技术提取齿轮啮合振动信号频率进而合成参考信号,利用归一化LMS自适应滤波器对包含压电堆作动器的次级通道进行离线辨识实验,得到次级通道的传递函数;最后将算法代码下载到dSPACE中作为控制器,与内置压电堆作动器的齿轮箱实验台组成快速控制原型进行实验验证。结果表明:由FxLMS算法控制的压电堆作动器对齿轮的啮合振动主动控制效果明显,在不同转速、不同负载情况下啮合振动有15dB-26dB的衰减。实验结果验证了本文提出的齿轮系统主动结构的正确性以及所建控制模块的有效性。
Gearing system is the most important component of rotating machinery and powertransmis-sion device. Due to manufacturing error, meshing impact and some otherinfluence, vibration of the gear pair will be generated in the engaging process. With theexpansion of the tooth surface, the tooth shape error, base pitch error and backlash will bealso increased, which deteriorates the gear transmission. The vibration of the gear systemcan not only produce noise, but also accelerate fatigue of the transmission system.Besides, gear box is the key part of a helicopter of transmission system, which cannotreduce accidents through the redundancy backup, gearbox fault, and it’s a direct threattowards a helicopter flight safety. Typical gearbox vibration contains several tonal signalsmixed with a broadband response. The tonal signals are basically the fundamental gearmesh frequency and their corresponding harmonics generated from the perturbation in thegear meshing process, in which the fundamental gear mesh frequency is the main cause ofthe annoyance problem. In order to suppress this part of the vibration and noise, an activegearbox vibration control structure is developed experimentally to suppress gearboxvibration due to transmission error excitation. At the same time, a filtered-x LMS controlalgorithm is proposed and implemented to generate the appropriate control signals.
     At first, a gear pair system model is built to assist in the design of the experimentalactive structure, to gain a better understanding of the nature of gear response due totransmission error excitation. Based on an active shaft transverse vibration controlconcept, an active internal gearbox structure, combined with the piezoelectric actuator, isdeveloped to suppress gear pair vibration due to transmission error excitation in a directway.
     Complex nonlinear hysteresis is present in virtually all piezoelectric actuators. Thesenonlinearities can excite unwanted dynamics which reduced system performance andeven lead to unstable system operation, especially in active vibration control applicationsowing to phase lag. The paper describes a compensator design method for invertiblecomplex hysteretic nonlinearities based on Prandtl-Ishlinskii hysteresis operator. Linearinequality constraints for the parameters guarantee the unique solvability of theidentification problem and the invertability of the identified model. The correspondingcompensator can be directly calculated and thus efficiently implemented from the modelby analytical transformation laws. This allows an efficient implementation of the compensator for real-time control. Finally,the compensator design method is used togenerate an inverse feed forward controller, results of simulation proved the method'savailability.
     Active vibration control use an active anti-force from secondary path to suppress orattenuate vibration and noises,one of the control algorithms is filtered-x least meansquare (FxLMS) adaptive algorithm. Based on structure of FxLMS algorithm, Level-2S-function is used to build a new FxLMS blocks in MATLAB/Simulink and apply it inoffline vibration active control system simulation. On the condition of convergence,performance analysis is given by adjusting the interior parameters to test the controlalgorithm block. Finally, the custom FxLMS block is downloaded to DSpace as controller,and used in hardware-in-the-loop simulation of active vibration control on a geartransmission system. Results verify the custom FxLMS block’s feasibility built byLevel-2S-function and control algorithm’s efficiency.
     A gearbox test-bed is also developed with a piezoelectric actuator inside for applyingcontrol forces to the shaft. Lastly, the custom FxLMS block is downloaded to DSpace ascontroller. Experiment results showe that the proposed FxLMS controller performs aneffective performance. Up to35dB of gearbox vibration has been attenuated at somefundamental gear mesh frequency.
引文
[1]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [2]刘仁生.齿轮的振动故障研究[J].中国安全科学学报,2005,15(2):13-15.
    [3]庞茂.汽车主减速器振动信号非线性特征研究[D].浙江大学,2006.
    [4]袁哲.齿轮振动可靠性与修形减振策略研究[D].东北大学,2010.
    [5] Bouillaut L, Sidahmed M. Cyclostationary Approach and Bilinear Approach: Comparison,Applications to Early Diagnosis for Helicopter Gearbox and Classification Method Based onHOCS [J]. Mechanical Systems and Signal Processing,2001,15(5):923-943.
    [6]李润方,林腾蛟.齿轮啮合内部动态激励数值分析[J].机械传动,2001,25(2):1-3.
    [7]刘仁生.齿轮的振动故障研究[J].中国安全科学学报,2005,15(2):13-15.
    [8] Bouillaut L, Sidahmed M. Cyclostationary Approach and Bilinear Approach: Comparison,Applications to Early Diagnosis for Helicopter Gearbox and Classification Method Based onHOCS [J]. Mechanical Systems and Signal Processing,2001,15(5):923-943.
    [9] S.V.Neriya, R.B.Bhat, T.S.Sanker. On the dynamic response of a helical geared system subjectedto a static translation error in the form of deterministic and filtered white noise inputs [J]. Journalof Vibration, Acoustics, Stress, and Reliability in Design,1988,110:501-506.
    [10]赵亮.车辆悬架系统中新减振元件设计和减振控制算法研究[D].湖南大学,2008.
    [11]刘学广.车内低频噪声多次级声源有源消声系统研究[D].吉林大学,2004.
    [12]孙国春.汽车动力总成振动主动控制关键技术研究[D].吉林大学,2007.
    [13]柴少彪.重型载货汽车行星齿轮轮边减速器动力学性能分析与研究[D].太原理工大学,2010.
    [14]“十一五”国家科技支撑计划重点项目“关键基础件和通用部件”课题申请指南.科技部,2006.
    [15]李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998.
    [16]王建军,李润方.齿轮系统的转子啮合型振动[J].机械科学与技术,1996,15(2):231-233.
    [17]王建军,李润方.齿轮系统参数振动问题研究综述[J].振动与冲击,1997,(4):69-73.
    [18]葛藤,宫镇,王仲章.齿轮及齿轮箱噪声、振动研究的现状[J].噪声与振动控制,1989,(1):26-30.
    [19]李小华.影响齿轮箱噪声的因素及其控制方法[J].机械管理开发,2004,(4):41-42.
    [20]王基,吴新跃,朱石坚.某型船用传动齿轮箱振动模态的实验与分析[J].海军工程大学学报,2007,19(2):55-58.
    [21]孟涛.齿轮与滚动轴承故障的振动分析与诊断[D].西北工业大学,2003.
    [22] H.Vinayak, R.Singh. Dynmic analysis of flexible gears for high power density transmissions [C].Proc. Inter Genang,1994:105-110.
    [23] Yong CHEN等. Studies on Noise and Vibration of Planetary Gear Drives for AutomaticTransmission of Transmission of Passenger Cars [C].日本机械论文集(C篇),2000,642~662.
    [24] Haruo Houjoh, Shigeki Matsumura. Tooth Surface Evaluation of a Helical Gear by UsingSynchronous Average of Vibration of a Gear Pair [C]. Proceedings of the InternationalConference on Mechanical Transmissions.2006, Sept.26~30, Chongqing.
    [25]毛炳秋,林莉.采用变位齿轮降低传动振动的理论分析与试验研究[J].机械设计与研究,2003,19(2):32-34.
    [26]陈威,迟宝山.工程机械齿轮传动系统噪声分析与控制[J].现代制造工程,2004,1:80-85.
    [27]沈允文,李树庭,蔺天存.齿轮系统减振设计的结构灵敏度分析[J].机械工程学报,1996,32(5):13-18.
    [28]薛延华,吴新跃.一种齿轮箱振动控制方法[J].海军工程大学学报,2001,13(1):99-103.
    [29]毛炳秋,林莉,曹挺杰.采用阻尼环降低齿轮传动振动噪声的研究[J].机械设计与研究,2005,21(1):47-49.
    [30]宋孔杰,李新德,闫鹏.齿轮传递系统振动功率流特性研究[J].应用力学学报,2003,20(4):93-96.
    [31]陈学森,董海军,刘晓宁.含时变啮合刚度的间隙非线性齿轮系统的混沌控制[J].机械科学与技术,2006,25(9):1036-1038.
    [32]郜志英,沈允文,董海军,刘晓宁.齿轮系统参数平面内的分岔结构[J].机械工程学报,2006,42(3):68-72.
    [33]高建平,方宗德,杨宏斌.具有时变刚度传动误差及间隙的齿轮系统动力学分析[J].航空学报,1999,20(05):440-444.
    [34]李明,胡海岩.完整约束下齿轮啮合转子系统的弯扭耦合振动稳态响应[J].振动工程学报,2003,16(1):75-79.
    [35]申永军,杨绍普,潘存治.参外联合激励下直齿轮副的非线性动力学[J].北京交通大学学报,2005,29(1):69-73.
    [36]王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51.
    [37]林京,屈梁生.信号时频熵及其在齿轮裂纹识别中的应用[J].机械传动,1998,22(2):37-391.
    [38]郑海波,陈心昭,李志远.基于双谱的齿轮故障特征提取与识别[J].振动工程学报,2002,15(3):354-3581.
    [39]孙振明,徐敏强,王日新.齿轮箱故障诊断中信号解调方法的研究[J].中国机械工程,2002,13(17):1462-14651.
    [40]轩建平,史铁林,廖广兰等.利用遗传编程提取齿轮多重故障分类特征[J].振动工程学报,2006,19(3):70-74.
    [41]韩捷,石来德.转子系统齿式联接不对中故障的运动学机理研究[J].振动工程学报,2004,17(4):416-420.
    [42]余红英,闫宏伟,潘宏侠.齿轮振动信号分解及其在故障诊断中的应用[J].振动、测试与诊断,2005,25(2):109-113.
    [43]于德介,程军圣,杨宇. Hilbert-Huang变换在齿轮故障诊断中的应用[J].机械工程学报,2005,41(6):68-72.
    [44]尹安东,赵韩,羊拯民.基于小波变换-模糊聚类的变速箱齿轮故障诊断[J].中国机械工程,2006,17(20):2121-2124.
    [45] G.T. Montague, A.F. Kascak, A. Palazzolo, D. Manchala, E. Thomas. Feed-Forward Control ofGear Mesh Vibration Using Piezoelectric Actuators [J]. NASA Technique Memorandum,106366,1994.
    [46] Rebbechi, C. Howard, C. Hansen. Active Control of Gearbox Vibration [C]. Proceedings of theActive Control of Sound and Vibration Conference. Fort Lauderdale,1999,295-304.
    [47] M.H. Chen, M.J. Brennan. Active Control of Gear Vibration Using Specially Configured Sensorsand Actuators [J]. Smart Materials and Structures,2000,9:342-350.
    [48] Y.H. Guan, W.S. Shepard Jr., T.C. Lim. Direct Hybrid Adaptive Control of Gear Pair Vibration [J].Journal of Dynamic Systems, Measurement and Control,2003,125:585-594.
    [49] Paul Leug. Process of silencing sound oscillation. U.S Patent2043416,1936.
    [50] Harry F. Olson. Electronic Control of Noise, Vibration, and Reverberation [J]. Journal of theAcoustical Society of America,1956,28(5):966-972.
    [51] Colin H. Hansen, Scott D. Snyder. Active Control of Noise and Vibration [M]. Taylor&Francis,1997.
    [52] Takahashi M D.Design of a simple active controller to suppress helicopter air resonance [C].Proc.44th Annual Forum of AHS,1988:305-316.
    [53] Lehmann G.Automatic vibration reduction at a four bladed hinge less model rotor--a tunneldemonstration [J]. Vertica,1990,14(1):69-86.
    [54] King S P. Active control of structural response [J]. Aeronautical Journal,1988,92(917):247-263.
    [55] Gangbing Song, Brij N.Agrawal. Vibration suppression of flexible spacecraft during activecontrol [J]. Acta Astronautica,2000,49(2):73-83.
    [56] Keith K. Denoyer, R. Scott Erwin, R. Rory Ninneman. Advanced smart structures fexperimentsfor precision spacecraft [J]. Acta Astronautica,2000,47:389-397.
    [57] Wu J C, Yang J N. Modified sliding mode control for wind-excited benchmark problem ASCEJournal of Engineering Mechanics,2004,130(4):499-504.
    [58] Kevin K F, Yang R. Predictive instantaneous optimal control of Inelastic structures during earthquakes [J]. Earthquake Engineering and Structural Dynamics,2003,32(14):2179-2.
    [59] Antonio D, Marco L. An energy-based control for an n-H-bridges multilevel active rectifier [J].IEEE Transactions on Industrial Electronics,2005,52(3):670-678.
    [60] Min K W, H wang J S. Probabilistic approach for active control Based on structural energy [J].Earth quake Engineering and Structural Dynamics,2003,32:2301-2318.
    [61] Lijima T,Akatsu Y, akahashi K等. Development of a hydraulic active suspension [J]. SAE paper931971,1993:2142-2153.
    [62] Hoogterp F B, Eiler M K, Mackie W J. Active suspension in the automotive industry and themilitary [J].SAE paper961037,1996:96-101.
    [63]邓国红.基于压电陶瓷的轿车顶棚振动主动控制技术研究[D].重庆大学,2010.
    [64]张旭辉.超磁致伸缩作动器优化及主动隔振控制研究[D].北京航空航天大学,2008.
    [65]梁天也.主动控制式发动机悬置研究[D].吉林大学,2008.
    [66]曹青松.新型主动隔振系统的理论与实验研究[D].华中科技大学,2007.
    [67]王传法,张阿舟,黄太平.应用变参数挤压油膜阻尼器的柔性转子振动控制[J].振动工程学报.1993,6(1):58-62.
    [68]周星德.柔性框架结构智能振动主动控制方法的研究[D].东南大学,2001.
    [69]李传兵.中心刚体—折叠式柔性附件组合结构振动主动控制[D].重庆大学,2001.
    [70]陆正刚,胡用生.高速车辆结构振动的独立模态空间控制[J].控制理论与应用.2007,24(9):879-885.
    [71]胡文林.应用极点配置方法的有源隔声结构[D].大连理工大学,2009.
    [72]于怀博.最优控制理论在倒立摆系统中的应用研究[D].华中科技大学,2007.
    [73]梅景瑞,孙洪杰,顾仲权.直升机结构振动鲁棒控制研究[J].振动、测试与诊断.2008(5).
    [74]周军.网络遥操作机器人系统模糊变结构控制研究[D].江苏科技大学,2011.
    [75]骆志明,顾家柳.转子系统鲁棒控制[J].应用科学学报.1999,17(1):99-102.
    [76]李文章,吴凌尧,郭雷.基于LMI的结构振动鲁棒控制[J].振动工程学报.2008,21(2):157-161.
    [77]支龙.汽车主动悬架智能控制策略研究[D].华中科技大学,2011.
    [78] D. R. Morgan. An analysis of multiple correlation cancellation loops with a filter in the auxiliarypath [J]. IEEE Trans. Acoust., Speech, Signal Processing,1980,28:454–467.
    [79] B. Widrow, D. Shur, S. Shaffer. On adaptive inverse control[C]. The15th. Asilomar Conferenceon circuits, system, and computer. Santa Clara, CA.1981,185–189.
    [80] Vipperman, J. S., R. A. Burdisso. Active Control of Broadband Structural Vibration Using theLMS Adaptive Algorithm [J]. Journal of Sound and Vibration,1993,166(2):283-299.
    [81] Jac-Eung Oh, S.-H. P., Jin-Seok Hong, Jun Shin. Active vibration control of flexible cantileverbeam using piezo actuator and Filtered-X LMS algorithm [J]. Journal of Mechanical Science andTechnology.1998,12(4):665-671.
    [82] Douglas, S. C. Fast implementations of the filtered-X LMS and LMS algorithms for multichannelactive noise control [J]. Speech and Audio Processing, IEEE Transactions.1999,7(4):454-465.
    [83] Hellgren, J. Analysis of feedback cancellation in hearing aids with Filtered-x LMS and the directmethod of closed loop identification [J]. Speech and Audio Processing, IEEE Transactions2002,10(2):119-131.
    [84] ELLIOTT S. Signal processing for active control [M]. London: Academic Press,2001.
    [85] Morgan, D. R. and J. Thi. A multitone pseudo cascade, filtered-X LMS adaptive notch filter [J].Signal Processing, IEEE Transactions.1993,41(2):946-956.
    [86]黎中伟,吕跃飞,吴亚锋等.自适应陷波器滤波X-LMS算法稳定性分析[J].西北工业大学学报,1995,13(2):270-275.
    [87]赵隽,胡兴群,张炎华.基于X-LMS自适应逆控制理论的船舶自动鸵研究[J].船舶工程,2003,25(4):59-62.
    [88]李嘉全,王永,梁青.基于次级通道前馈等效阻尼补偿的改进滤波x-LMS算法[J].振动与冲击,2009,25(4):113-116.
    [89]梁青,段小帅,陈绍青等.基于滤波x-LMS算法的磁悬浮隔振器控制研究[J].振动与冲击,2010,29(7):201-203.
    [90] KUO S M, TAHERNEZHADI M, HAO W. Convergence Analysis of Narrow-Band Active NoiseControl System [J]. Transactions on circuits and system-II: Analog and digital signal processing,1999,46(2):220-223.
    [91] QIU X J, HANSEN C H. A study of time-domain FXLMS algorithms with control outputconstraint [J]. Journal of the Acoustical Society of America.2001,109(6):2815-2822.
    [92] ARDEKANI T, ABDULLA W H. Theoretical convergence analysis of FxLMS algorithm [J].Signal Processing,2010,90:3046-3055.
    [93] DUAN J, LI M F, LIM T C, et al. Active Control of Vehicle Powertrain Noise Using aTwin-FxLMS Algorithm [J]. Journal of Dynamic Systems, Measurement and Control,2011,133(3):1-4.
    [94] HINAMOTO Y, SAKAI H. Analysis of the Filtered-x LMS Algorithm and a Related NewAlgorithm for Active control of Multitonal Noise [J]. IEEE Transactions on Audio, Speech, andLanguage Processing.2006,14(1):123-130.
    [95] Kwong R, Jhonson E. A variable step sizeLMS algorithm [J]. IEEE Transactions on SignalProcessing.1992,40(7):1633-1642.
    [96] HongCW. Improved stochastic gradient adaptive filter with gradient adaptive step size [J].Electronics Letters,1998.6,27(13):1300-1305.
    [97]陈光标.密集模态挠性结构的多变量实验辨识及自适应逆控制[D].合肥:中国科学技术大学,2006.
    [98] Bershad N J. Analysis of the normalized LMS algorithm with Gaussian imputs[J]. IEEETransactions on Acoustic, Speech, and Signal Processing.1986,34(14):793-806.
    [99]李以农,范振华等.基于模糊控制的齿轮传动系统振动主动控制与仿真[J].江苏大学学报,2011,32(3):281-286.
    [100]岳洪浩.精密柔性抛物壳智能结构系统及其主动控制研究[D].哈尔滨工业大学,2009.
    [101]张旭辉.超磁致伸缩作动器优化及主动隔振控制研究[D].北京航空航天大学,2008.
    [102] M J Brennan, J Garcia-Bonito, S J Elliott. Experimental investigation of different actuatortechnologies for active vibration control [J]. Smart Mater. Struct.1999,8:145–153.
    [103] G.T. Montague, A.F. Kascak, A. Palazzolo, D. Manchala, E. Thomas, Feed-Forward Control ofGear Mesh Vibration Using Piezoelectric Actuators, NASA Technique Memorandum,106366,1994.
    [104] B. Rebbechi, C. Howard, C. Hansen. Active Control of Gearbox Vibration. Proceedings of theActive Control of Sound and Vibration Conference. Fort Lauderdale,1999,295~304.
    [105] M.H. Chen, M.J. Brennan, Active Control of Gear Vibration Using Specially ConfiguredSensors and Actuators [J]. Smart Materials and Structures,2000,9:342~350.
    [106] Y.H. Guan, W.S. Shepard Jr., T.C. Lim, Direct Hybrid Adaptive Control of Gear Pair Vibration[J]. Journal of Dynamic Systems, Measurement and Control,2003,125:585~594.
    [107][日]田中哲郎等,压电陶瓷材料[D],北京:科学出版社,1982.
    [108] Mingfeng Li, Teik C Lim, Yuan H Guan, WSteve Shepard Jr. Actuator design and experimentalvalidation for active gearbox vibration control [J]. Smart Materials and Structures.2006,15(1):1-6.
    [109] Yunhe Yu, Nagi Naganathan, Rao Dukkipati. Preisach modeling of hysteresis for piezoceramicactuator system [J]. Mechanism and Machine Theory,2002,37:49-59.
    [110] K Kuhnen. Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: AModified Prandtl-Ishlinskii Approach [J]. Europen Journal of Control.2003,9(4):407-418.
    [111]王希花.基于压电陶瓷迟滞非线性建模及控制系统的研究[D].哈尔滨工程大学,2010.6.
    [112]林哲祺.压电结构的控制参数与构型优化设计[D].大连理工大学,2011.
    [113] Goldfarb M, Celanovic N. A lumped parameter electromechanical model for describing thenonlinear behavior of piezoelectric actuators[J]. ASME Journal of Dynamic System,Measurement and Control,1997,119(9):478-485.
    [114]周淼磊等.压电执行器非线性控制方法研究进展[J].压电与声光,2007,29(6):656-660.
    [115]李黎等,压电陶瓷执行器迟滞特性的广义非线性Preisach模型及其数值实现[J].光学精密工程.2007,15(5):706-712.
    [116] Jonq-Jer Tzen, Shyr-Long Jeng, Wei-Hua Chieng. Modeling of piezoelectric actuator forcompensation and controller design [J]. Precision Engineering,2003,27:70–86.
    [117] K.Kuhnen, H.Janocha. Inverse feedforward controller for complex hysteretic nonlinearities insmart-material systems [J]. Control and Intelligent Systems,2001,29:74–83.
    [118] B J G Vautier, S O R Moheimani. Charge driven piezoelectric structural vibration control: issuesand implementation [J]. Smart Materials and Structures,2005,14:575–586.
    [119] K Kuhnen. Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: AModified Prandtl-Ishlinskii Approach [J]. Europen Journal of Control,2003,9(4):407-418.
    [120] Wei Tech Ang, Pradeep K.Khosla, Cameron N. Riviere. Feedforward ControllerWith InverseRate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications [J].IEEE/ASME Transactions on mechatronics,2007,12(2):134-142.
    [121] Chau Jan, Chih-Lyang Hwang. Robust control design for a piezoelectric actuator system withdominant hysteresis [C]. Industrial Electronics Society,26th Annual Conference of the IEEE.2000,1515–1520.
    [122] K.Kuhnen, H. Janocha. Adaptive inverse control of piezoelectric actuators with hysteresisoperators [C]. Karlsruhe, Germany: European Control Conference Ecc'99,1999: F0291.
    [123] S.S.Ku, U.Pinsopon, S.Cetinkunt, S.Nakjima. Design, fabrication, and real-time neural networkof a three-degrees-of-freedom nanopositioner [J]. IEEE Trans.Mechatronics,2000,5(3):273–280.
    [124] C.-L.Hwang, C.Jan. A reinforcement discrete neuro adaptive control for unknown piezoelectricactuator systems with dominant hysteresis [J]. IEEE Trans. Neural Network,2003,14(1):66–78.
    [125]郑凯,阎绍泽,温诗铸,叶青.压电叠层作动器迟滞特性模型[J].清华大学学报,2003,43(5):628-631.
    [126]魏燕定.压电驱动器的非线性模型及其精密定位控制研究[J].中国机械工程,2004,15(7):565-568.
    [127] S. Majima, K.Kodama, T. Hasegawa. Modeling of shape memory alloy actuator and trackingcontrol system with the model [J]. IEEE Trans.Control System Technology,2001,9(1):54–59.
    [128] Saeid Bashash, Nader Jalili. Robust Multiple Frequency Trajectory Tracking Control ofPiezoelectrically Driven Micro/Nanopositioning Systems [J]. IEEE Transactions on controlsystems technology,2007,15(5):867-878.
    [129]李振伟.振动控制中作动器迟滞非线性补偿方法研究[D].上海交通大学,2011.2.
    [130] Eric R. Muir, Li Liu, Peretz P. Friedmann. Hysteresis characterization in piezoceramic stackactuators and its Influence on vibration and noise [C]. AIAA-2010-299451st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference18th. Orlando,Florida.2010:1-20.
    [131] Luis Vicente, Enrique Masgrau, Novel FxLMS Convergence Condition With DeterministicReference, IEEE TRANSACTIONS ON SIGNAL PROCESSING [J].2006,10(54):3768-3774.
    [132] C.H.汉森, S.D.斯奈德著,仪垂杰等译.噪声和振动主动控制[M].北京:科学出版社,2002.
    [133] WIDROW B, STEARNS S D.自适应信号处理(英文版)[M].北京:机械工业出版社,2008.
    [134] Muhammad Tahir Akhtar, Masahide Abe, etc. Online secondary path modeling in multichannelactive noise control systems using variable step size [J]. Signal processing,2008,88:2019-2029.
    [135]张晓宇,仪垂杰.次级通道在线辨识的神经网络方法[J].噪声与振动控制,2009,29(1):69-72.
    [136] Paulo A. C. Lopes, Moisés S. Piedade. The Behavior of the Modified FX-LMS Algorithm withSecondary Path Modeling Errors [J]. Signal Processing Letters,2004,2(11):148-151.
    [137] Stephen Elliott. Signal processing for active control [M]. London, U.K.: Academic Press,2001.
    [138]王雷.基于FxLMS算法的齿轮传动系统振动噪声主动控制研究[D].重庆大学.2012.6.
    [139]储昭碧,张崇巍,冯小英.基于自适应陷波滤波器的频率和幅值估计[J].自动化学报,2010,36(1):60-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700