用户名: 密码: 验证码:
直流侧串联型有源电力滤波器的建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于电力电子装置在电力系统、各工业部门以及家庭和民用事业中的广泛应用,其产生的谐波已成为电力系统中电力谐波的主要来源,面对电力谐波造成日益严重的危害,世界各国对谐波问题的研究给予了高度的重视,不仅制定了相应的谐波标准和规则,而且积极开展谐波治理方法的研究。有源电力滤波器(APF Active Power Filter)可以对这种已经存在的谐波污染进行治理,被认为是一种相当有效和有发展前途的谐波治理新方法。并联型有源电力滤波器和串联型有源电力滤波器是APF的两种主要电路结构,其中串联型APF对治理电压型谐波源具有明显的优势。本论文针对目前广泛使用的电容滤波的整流桥类电力电子装置引起的谐波污染,提出了一种能有效抑制这类谐波的新型直流侧串联型有源电力滤波器,并进行了深入的研究。研究内容主要包括:单相直流侧串联型APF的拓扑结构、工作原理、数学模型、适合该拓扑结构的控制方法及其该拓扑结构和控制方法在三相整流桥直流侧的应用。
     论文主要研究内容和完成的工作如下:
     针对单相整流桥负载谐波源的特点,提出一种利用双向电压变换器为主电路的单相直流侧串联型有源电力滤波器的基本拓扑结构,在深入分析该APF主电路工作原理的基础上,针对电压型谐波源负载的特点提出控制策略,推导其控制方式,并给出了电路中关键器件参数的确定方法。
     比较分析了直流侧DC-DC变换器、PFC和APF的电路结构之间的关系,着重研究了直流侧APF电路结构的设计思想和工作原理,并根据该电路工作的特点,利用DC-DC变换器建模的基本思想和步骤,采用状态平均模型法,建立了直流侧串联型APF的数学模型,并对其进行了静态分析和动态分析,求出了静态工作点,求出了系统不同输入输出之间的传递函数,为电路拓扑的进一步研究奠定了基础。针对所提出的直流侧串联型APF主电路拓扑,提出了一种不用检测谐波的基于功率平衡原理的滞环控制策略,推导了控制方程,设计了闭环系统的仿真模型,并进行了仿真研究。仿真结果表明,基于该控制方式的直流侧串联型APF控制效果好,无论在重载还是轻载情况下,都能快速的反应。
     在单相直流侧串联型APF的基础上,针对大量使用三相整流桥负载,将单相直流侧串联型APF推广到三相系统,通过增加一组双向选择开关实现对三相系统的解耦,解耦后为两个独立的单相系统,通过仿真研究验证了电路结构的正确性和控制方法的有效性,使之能适用于大功率整流电路的电力谐波治理领域。完成了从单相到三相的完整系列设计。
     研制并调试了一台实验样机,进行额定负载、动态电子负载等实验,实验结果与理论分析和仿真结果一致,由此验证了提出的直流侧串联型APF拓扑结构和基于功率平衡原理的滞环控制方式的正确性和有效性。
With the widely usage of power electronic equipments in the power system, industry department as well as the family and the civil enterprise, the harmonic from these electronics equipments has become the main harmonic source in the power system. As the damage caused by the harmonic is increasingly serious, all country over the world attached importance to the problem. They not only constituted corresponding harmonic standards and rules, but also carried out study of harmonic process. Active power filter (APF) is able to control the harmonic from the electronic equipment and is considered to be an effective and good future method for harmonic process. Shunt APF and series APF are two main circuit configurations. And the series APF has the obvious advantage to the voltage type harmonic source. A novel-style DC side series APF was proposed in this paper in response to the widely used power electronic equipments, just like the rectification bridge. The novel APF can eliminate the harmonic from these equipments. And the paper conducts an in-depth study on the new-style DC side APF.The content mostly includes the topology and the principle of the DC side series APF, mathematical model, and the best control method for the topology as well as the DC side application in the three phase rectification bridge.
     The main contents and works are as follows:
     A single-phase DC side series APF topology with Bidirectional voltage converter was proposed in the paper, the control strategy was proposed in response to the character of voltage type harmonic source load based on the deep study of the principle of the APF main circuit, the control strategy was derived, and the method for determining the parameter of key component in the circuit was proposed.
     The paper comparatively analyzed the relationship of circuit structure between the DC side DC-DC converter, PFC and APF, the design idea and principle of DC side APF circuit structure were studied.Acorrding to the characteristics of the double frequency work mode in the circuit, the mathematical model of DC side series APF was established with the state space average modeling. The static and dynamic state was also analyzed, the static working point and transfer function of different input and output were derived, and all these laid a foundation for the further study.
     According to the main circuit of the designed DC side Series APF, the hysteresis control strategy based on the power balance principle was proposed, the control circuit equation is derived and the closed-loop system simulation models was established. The simulation result shows that the DC side series APF based on the control strategy can have rapid response whether in light load or heavy load.
     With the large-scale usage of three-phase rectifier bridge load, based on the single-phase DC side series APF, the DC side three-phase series active power filter was proposed by adding a group of bidirectional switches to achieve the decoupling of the three-phase system. So the three-phase system can become two independent single-phase systems. The simulation result verified the correctness of the circuit structure and effectiveness of the control method, so we can apply it to the high-power rectifier circuit in the field of harmonic process. The whole three-phase system was designed.
     We developed a single-phase prototype and carried out the experiments, such as rated load experiment, dynamic load experiment. It gives the same result as the theoretical analysis and simulation. With the test results, we proved the accuracy and effectiveness of the topology and control method based on the power balance principle.
引文
[1] Sasaki H,Machida T. A New Method to Eliminate AC Harmonic Currents by Magnetic Flux Compensation Considerations on Basic Design[J]. IEEE Trans. Power App Syst., 1971, 90(5):2009-2019.
    [2] Gyugyi L, Strycula E C.. Active AC Power Filters[J]. Proc of IEEE/IAS Annual Meeting, 1976:529-535.
    [3] Akagi H, Kanazawa Y,a Nabae A. Generalized Theory of Instantaneous Reactive Power and Its Application[J]. IEEE & JIEE, Proceedings IPEC, Tokyo, 1983:1375-1386.
    [4] Torrey D.A., Al-Zamel A.M.A.M.,A Single-Phase Active Power Filter for Multiple Nonlinear Loads[J]. IEEE APEC, Feb. 1994, 2:901-908.
    [5]吴竞昌,孙树勤,宋文南等.电力系统谐波[M].北京:水利电力出版社,1988.
    [6]张一中,宁元中,宋永华等.电力谐波[M].成都.成都科技大学出版社,1992.
    [7]赵良炳,马维新,陈建业.现代电力电子学及其在电力系统中的应用(四)[J].电网技术,1995, 19(3):64-67.
    [8] Bird B M, Marsh JF, Mclellan P R.. Harmoinc Reduction in Multiple Converters by Triple-Frequency Current Injection [J]. Proc IEE,1996,116(10):1730-1734.
    [9]周明宝,瞿文龙.电力电子技术[M].北京:机械工业出版社,1997.
    [10]吴竞昌.供电系统谐波[M].北京:中国电力出版社,1998.
    [11]林海雪,孙树勤.电力网中的谐波[M].北京:中国电力出版社,1998.
    [12]王兆安,杨君,刘进军等.谐波抑制和无功补偿[M].北京.机械工业出版社, 1998.
    [13] Dallago E., Passoni M.. Single-Phase Active Power Filter with Only Line Current Sensing[J]. Electronics Letters, Jan.2000, 36(2):105-106.
    [14]叶斌,刘志刚.国际谐波标准对电力电子装置设计的影响[J].铁道学报, 2000, 22(3):102-106.
    [15]张立.现代电力电子技术基础[M].北京:高等教育出版社,2001.
    [16]邓占锋.三相四线制供电系统中谐波治理的研究[D].北京:清华大学,2003.
    [17]黄民聪.三相四线制并联型电能质量控制器的研究[D].北京:清华大学,2003.
    [18]张直平编著.城市电网谐波手册[M].北京:中国电力出版社,2001.
    [19] Xu W.. Applying Harmonic Standards to Time-Varying Harmonics[C]. PESGM, 2005, 3: 2407-2409.
    [20]姜齐荣,赵东元,陈建业.有源电力滤波器[M].北京.科学出版社, 2005.
    [21]罗世国,侯振程.有源电力滤波器的参数计算及其控制[J].重庆大学学报, 1994, 3:12-16.
    [22] Salmon J.C.. 3-Phase PWM Boost Rectifier Circuit Topologies Using 2-Level and 3-Level Asymmetrical Half-Bridges[C]. APEC’s 95, 1995:842-848.
    [23] Saetieo S., Devaraj R., Torrey D.A.. The Design and Implementation of a Three-Phase Active Power Filter Based on Sliding Mode Control[J]. IEEE Trans. Ind. Applicat., Sept.-Oct. 1995, 31(5):993-1000.
    [24] Pottker F., Barbi I.. Power Factor Correction of Non-Linear Loads Employing a Single Phase Active Power Filter:Control Strategy,Design Methodology and Experimentation[J]. IEEE PESC, June 1997:412-417.
    [25] Pottker F., Barbi I.. Power Factor Correction of Non-Linear Loads Employing a Single phase Active Power Filter Based on a Full-Bridge Current Source Inverter Controlled through the Sensor of The AC Mains Current[J]. IEEE PESC, July 1999, 1:387-392.
    [26] M. El-Habrouk, M. K. Darwish, Pmehta. Active Power Filters: A Review[J]. IEE Proc. Electron Power Applicat., Jan.2000, 147(7):403-414.
    [27] Teresa E., Pomilio J.A.. Shunt Active Power Filter Synthesizing Resistive Loads[J]. IEEE Trans. Power Electron., Mar. 2002, 17(2):273-278.
    [28] Sangsun Kim, Prasad N. Enjeti. A New Hybrid Power Filter (APF) Topology[J]. IEEE Transactions on Power Electronics, 2002, 17(1): 48-54.
    [29]姜齐荣,谢小荣,陈建业.电力系统并联补偿——结构、原理、控制与应用[M].北京:机械工业出版社,2004.
    [30] Mohamed M.A.A., Essam E.A.E., Ahmed M.I., et al. Practical Considerations Regarding Power Factor for Nonlinear Loads[J]. IEEE Trans. Power Del., Jan.2004, 19(1):337-341.
    [31]姚为正,王群,王兆安等.有源电力滤波器对不同类型谐波源的补偿特性[J].电工技术学报, 2000, 15(6):40-44.
    [32]李圣清,刘苗生,罗飞.有源电力滤波器对变流器谐波源补偿特性的研究[J].湖南大学学报, 2002, 29(3):75-80.
    [33]李承,邹云屏.有源电力滤波器抵制谐波机理分析[J].电力系统自动化, 2003,27 (20):31-34.
    [34]王群,姚为正,王兆安等.电压型谐波源与串联型有源电力滤波器[J].电力系统自动化, 2000,07:30-35.
    [35] Zhiguo Pan, Fang Z. Peng, Suilin Wang. Power Factor Correction Using a Series Active Filter[J]. IEEE Transactions on Power Electronics, 2005, 20(1): 148-153.
    [36]李承,邹云屏.串联型有源电力滤波器的单周控制方法[J].电力系统自动化, 2005,29 (15):49-52.
    [37]周雒维,张东,杜雄等.一种新型的串联型有源电力滤波器[J].中国电机工程学报,2005,25 (14):41-45.
    [38]余凤兵,梁冠安,钟龙翔,等.基于单周控制的基波磁通补偿串联混合型有源电力滤波器[J].中国电机工程学报, 2006,26(19):81-85.
    [39]姚为正,王群,刘建军等.串联型有源电力滤波器控制方式的研究[J].电工技术学报,1999, 14(6):47-51.
    [40]张秀娟,姜齐荣,韩英铎.一种新型的单相统一电能质量调节器[J].电力系统自动化,2004,28(26):76~80.
    [41]任永峰,李含善,胡洪涛,等.并联型电能质量控制器的建模仿真研究[J].系统仿真学报, 2007,19(20):4620-4623.
    [42] Noshirwan K. Medora, Alexander Kusko. Computer-Aided Design and Analysis of Power Harmonic Filters[J]. IEEE Trans. Ind. Applicat, Mar./Apr.2000, 36(2):604-613.
    [43] Chongming Qiao, Keyue M. Smedley. A General Three-Phase PFC Controller Part II. For Rectifiers with a Series-Connected Dual-Boost Topology[C]. IEEE Trans., Oct. 1999:512-519.
    [44]张占松,蔡宣三著.开关电源的原理与设计[M].北京.电子工业出版社, 1998.
    [45] Tsang Li Tai, Jian Shang Chen. UPS Inverter Design Using Discrete-time Sliding-mode Control Scheme[J]. IEEE Transactions on Industrial Electronics, 2002,49(1): 67-75.
    [46]严仰光.双向直流变换器[M].南京.江苏科学技术出版社,2004.
    [47] Dimitrie Alexa, Adriana S., Dan-Marius Dobrea. An Analysis of Three-Phase Rectifiers with Near-Sinusoidal Input Currents[J]. IEEE Trans. Power Electron, Jan. 2004, 51(4):884-891.
    [48] Wang Xiaoyu, Liu Jinjun, Yuan Chang, etal. A Comparative Study on Voltage-Source Control and Current-Source Control of Series Active Power Filter[C]. APEC, 2006,: 1570-1575.
    [49] Yonghua Cheng, Lataire P.. Advanced Control Principles of Voltage Source Inverters for Use in Power Distribution or/and Harmonics Compensation[C]. PEA, 2005: 1-8.
    [50]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波[M].北京:水利水电出版社,1994.
    [51]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998.
    [52] Gonzalez D., Balcells J., Lovera S., etal. Comparison Between Unity Power Factor and Instantaneous Power Theory Control Strategies Applied to a Three Phase Active Power Filter[J]. IEEE IECON, Aug.-Sept. 1998, 2:843-847.
    [53]蒋平,邓俊雄,曹莹.一种先进的电网谐波检测方法[J].电工技术学报, 2000, 15(6):70-74.
    [54] Hans Ertl, Johann W. Kolar. A Constant Output Current Three-Phase Diode Bridge Rectifier Employing a Novel“Electronic Smoothing Inductor”[J]. IEEE Trans., Apr.2005, 52(2):454-460.
    [55] Mazumdar J., Harley R., Lambert F.; Venayagamoorthy, G.K. Using a Neural Network to Distinguish Between the Contributions to Harmonic Pollution of Non-Linear Loads and the Rest of the Power System[C].2005:1719-1725.
    [56] Mazumdar, J., Harley R., Lambert F., Venayagamoorthy G.K. A Novel Method for Predicting Harmonic Current Injection from Non-Linear Loads Using Neural Networks[C]. IES.2005: 952-957.
    [57] Mazumdar J., Harley R.G., Lambert F. Identifying Harmonic Contributions from Non-Linear Loads using Neural Networks[C]. ISAPS, 2005: 117-122.
    [58] Durbaum T., Kubrich D., Schetters K.. Mains Harmonic Reduction Circuits Using Non Linear Inductances[C]. PEA, 2005: 1-10.
    [59]王小华,何怡刚.一种新的基于神经网络的高精度电力系统谐波分析算法[J].电网技术, 2005, 29(3):72-75.
    [60] Mazumdar J., Harley R.G., Lambert F. System and Method for Determining Harmonic Contributions from Non-Lnear Loads[C]. IEEE IAC, 2006,4: 2456– 2463.
    [61] Contreras M., Cardenas V., Calleja H.. A Review of Solutions for Harmonic Propagation Damping in Power Distribution Networks[C]. IPEC, 2006: 1-6.
    [62]何娜,武健,徐殿国.有源电力滤波器模糊软启动控制[J].电工技术学报,2006,22(3):115-120.
    [63]周柯,罗安,唐杰,等.有源电力滤波器电流跟踪控制的一种新方法[J].电力系统自动化,2006,30(1):60-63.
    [64] Quesada I., Lazaro A., Barrado A. Extension of the Harmonic Elimination Technique in the Presence of Non Linear Loads[C]. PESC, 2007: 43-46.
    [65] Alexander S. Albert, Karthikeyan J.. Sivavasanth, etal. A Applications of Artificial Neural Networks in Power Electronics[C]. CCIMA, 2007, 1: 267-271.
    [66] Zaki A.M., Mansour A.A., Mahgoub O.A., etal. A New Approach for Harmonics Current Extraction for Non-Linear Loads[C]. SICE,2007: 72-76.
    [67] Freijedo Francisco D., Doval-Gandoy Jesus, Lopez Oscar, etal. Novel Harmonic Identification Algorithm Based on Fourier Correlation and Moving Average Filtering[C]. PESGM, 2007: 1-6.
    [68]叶忠明,董伯藩,钱照明.有源电力滤波器的控制策略[J].浙江大学学报, 1998, 32(4):437-443.
    [69] Luowei Zhou, Smedley K.M.. Unified Constant-Frequency Integration Control of Active Power Filters[J]. IEEE APEC, Feb. 2000:413-419.
    [70] Keyue M. Smedly, Luowei Zhou, Chongming Qiao. Unified Constant-Frequency Integration Control of Active Power Filters-Steady-State and Dynamics.[J]. IEEE Trans., 2001:428-436.
    [71]唐欣,罗安,涂春鸣.一种有源电力滤波器电流控制方法[J].电力系统自动化, 2004,8 (13):31-34.
    [72] Khadkikar V., Agarwal P., Chandra A., et al . A Simple New Control Technique for Unified Power Quality Conditioner (UPQC)[C]. International Conference on Harmonics and Quality of Power, Sept. 2004:289-293.
    [73]王广柱.并联型有源电力滤波器电流控制的等效原理[J].中国电机工程学报, 2006,26(15):40-45.
    [74]范瑞祥,罗安,章兢,等.谐振注入式有源滤波器的输出滤波器研究[J].中国电机工程学报, 2006,26(5):95-100.
    [75]徐明,周林,王伟,等.单相有源电力滤波器的单周控制策略综述[J].电网技术, 2006,30(22):81-86.
    [76]乐健,姜齐荣,韩英铎.三相四线并联APF的电流滞环控制策略分析[J].电力系统自动化, 2006,30(17):70-75.
    [77]李琼林,刘会金,孙建军,等.大容量有源滤波器的拓扑结构分析[J].高电压技术,2006,32(2):70-74.
    [78]马永健,徐政,沈沉.有源电力滤波闭环控制算法研究[J].电工技术学报,2006,21(1):73-78.
    [79]范瑞祥,罗安,涂春鸣.并联混合型有源滤波器的分频控制方法研究[J].中国电机工程学报,2007,27(25):108-113.
    [80]陈兵,谢运祥. 30°~90°矢量模式单周控制三相三线制三电平APF[J].电力系统自动化,2007,31(21):76-81.
    [81]范小波,张代润,孙茜,等.三相三线有源电力滤波器滞环电流控制策略[J].电力系统自动化,2007,31(18):57-60.
    [82] Sachine Hirve, Kishore Chatterjee, B. G. Fernandes et al. PLL-Less Active Power Filter Based on One-Cycle Control for Compensating Unbalanced Loads in Three-Phase Four-Wire System[J]. IEEE Transactions on Power Delivery, 2007, 22(4): 2457-2465.
    [83]黄黎芬,姜建国.一种新型基于双闭环PID控制的SVC控制系统研究[J].系统仿真学报, 2007,19(8):1803-1806.
    [84]陆秀令,周腊吾,张松华,等.注入型有源电力滤波器控制策略的研究与仿真[J].系统仿真学报, 2007,19(19):4509-4512.
    [85]魏学良,戴珂,康勇,等.三相三线并联型有源电力滤波器并联控制[J].电力系统自动化,2007,31(1):70-74.
    [86]王广柱.有源电力滤波器谐波及无功电流检测的不必要性(一)[J].电工技术学报,2007,22(1):137-141.
    [87]王广柱.有源电力滤波器谐波及无功电流检测的不必要性(二)——仿真及实验[J].电工技术学报,2007,22(2):132-136.
    [88]蒋卫宏.不对称电网故障下PWM整流器的控制策略研究[J].系统仿真学报, 2007,19(15):3527-3530.
    [89]肖国春,刘进军,杨君等.高压直流输电用直流有源电力滤波器的研究[J].电工技术学报, 2001, 16(1):29-42.
    [90]李旷,肖国春,王兆安.稳定直流电源用串联型有源电力滤波器研究[J].电气传动自动化,2003,25(2):10-13.
    [91]马小亮,王丙元,赵付田等.并联有源电力滤波在加速器电源中的应用[J].电工技术学报,2002,17(3):54-58.
    [92]谢品芳,杜雄,周雒维.单周控制直流侧单相有源电力滤波器[J].电工技术学报, 2003, 18(4):51-55.
    [93]周雒维,杜雄,谢品芳等. DC侧APF与APF和PFC开关应力比较研究[J].中国电机工程学报, 2003, 23(8):28-31.
    [94]杜雄,周雒维,谢品芳.直流侧有源电力滤波器主电路参数与补偿性能的关系[J].中国电机工程学报, 2004, 24(11):39-42.
    [95]王萍,甘李华,张珂.直流有源电力滤波器的软开关研究[J].电力电子技术, 2006, 40(2):76-78.
    [96]周志敏,周继海,纪爱华.开关电源功率因数校正电路设计与应用[M].北京:人民邮电出版社,2004.
    [97]张位平等.开关变换器的建模与控制[M].北京:中国电力出版社,2006.
    [98]周嘉农,曾小平.DC-DC开关变换器的建模与分析的动态评述[J].华南理工大学学报,2000,8(28):111-116.
    [99] R. D.Middlebrook, Slobodan Cuk. A General Unified Approach to Modeling Switching Converter Power Stages[C]. The 7th Annual IEEE Power Electronics Specialists Conference,1976:18-34.
    [100] P. R. K. Chetty. Current Injected Equivalent Circuit Approach to Modeling Switching DC-DC Converter[J]. IEEE Transaction on Aerospace and Electronic System, 1982,18(3):350-352.
    [101] R. D. Middlebrook. Small-signal modeling of pulse-width modulated switched-mode power Converters[J]. Proceedings of the IEEE, 1988,76(4):433-354.
    [102] Tymerski, R.Vorperian, V.Lee, F. C. Y.Baumann W.T. Nonlinear modeling of the PWMswitch[J],IEEE Transactions on Power Electronics, 1989,4(2):225-233.
    [103] Vorperian,V. Simplified analysis of PWM converters using model of PWM switch Continuous conduction mode[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26:490-496.
    [104] Vorperian, V.Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode[C].IEEE Transactions on Aerospace and Electronic Systems, 1990, 26:497-505.
    [105] Martinez, L.Majo, J.Poveda, A.Garcia de Vicuna, L.Guinjoan, F.Sanchez, A. F.Marpinard, J. C.Valentin, M. Large-signal Modeling and Control in Bidirectional Switching Converters[C], 1991,IEEE International Symposium on Circuits and Systems ,June 1991,2:1061-1064.
    [106] Singer, S. Erickson, R.W. Canonical Modeling of Power Processing Circuits Based on the POPI Concept[J]. IEEE Transactions on Power Electronics, 1992,7:37-43.
    [107] Smedley, K.Cuk, S. Switching Flow-Graph Nonlinear Modeling Technique[J].IEEE Transactions on Power Electronics, 1994,9(4):405-413.
    [108] Guinjoan, F.Calvente, J.Poveda, A.Martinez, Large-signal Modeling and Simulation of Switching DC-DC Converters[J]. IEEE Transactions on Power Electronics,1997,12:485-494.
    [109]许海平.大功率双向DC-DC变换器拓扑结构及其分析理论研究[D].北京:中国科学院电工研究所,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700