用户名: 密码: 验证码:
80型轮式装载机动力系统工程特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮式装载机是铲土运输机械的一种,由于其使用操作便利快捷,机动灵活,使用和维修比较容易,在采矿业,基建工程,农业以及抢险救灾等场所都得到了广泛应用,是主要工程机械之一。在我国,轮式装载机已经成为出口量最大的工程机械。
     对轮式装载机动力系统的研究已不仅仅局限于发动机与传动系统之间性能的匹配,同时还应包括用于向变速系统,铲装作业系统,动力转向系统,制动系统及整机辅助装置提供动力的各子系统,由于这些子系统的存在才能保障整机完成各种生产作业。就现有轮式装载机的产品设计模式来看,主要注重的是整机动力性能,但轮式装载机在工作时载荷条件比较复杂多变,即使设计过程中就已经对整机性能进行了优化,但在实际使用过程中,如果采取的作业方式不当,也会减低作业效率,增加能耗。使用者在实际工作过程中,必须根据不同的作业环境采取相应的操作方式,以最佳的操作方式进行作业,提高作业效率的同时降低能耗。
     本论文提出的实际意义在于,在轮式装载机动力系统数学模型的基础上,对轮式装载机典型工作模式下动力系统工作特性进行研究,着重考察外部载荷变化时,动力系统工作特性的变化规律,为实现整机动力性与经济性的最优组合提供理论基础。
     本文根据80型轮式装载机动力系统结构特征,建立80型轮式装载机动力系统数学模型,通过对动力系统典型工作模式下的载荷情况进行分析,建立动力系统载荷模型。
     本文对80型轮式装载机一个“V”型铲装循环变速油泵出口压力,工作油泵出口压力,转向油泵出口压力进行测试,获得变速油泵出口压力,工作油泵出口压力和转向油泵出口压力变化特性,并将测试数据用于80型轮式装载机动力系统工作特性的研究,这种采用理论与试验相结合的分析手段,提高了分析结果的真实性和可信性,使整个分析过程更加接近真实工作状态。
     本文基于发动机性能MAP图,对80型轮式装载机起步过程动力系统工作特性进行研究。选择全油门和部分油门对轮式装载机直行起步过程动力系统工作特性进行分析,结果表明,全油门起步动力系统具有较好的动力性能,但同时具有相对较低的经济性。选择装载机空载和满载,对动力系统起步过程工作特性进行分析,结果表明,当动力系统载荷增加时,发动机能够自动调节动力和能量需求,以适应外部载荷的变化。选择1挡和2挡两个挡位对起步过程动力系统工作特性进行分析,结果表明,2挡起步动力系统具有较好的动力性,同时可以降低发动机功率在工作油泵和转向油泵上的消耗。对起步过程动力系统能量分配特征进行分析,结果表明,轮式装载机直行起步过程,液力变矩器泵轮功率占发动机功率比重较大,其它子系统功率占发动机功率比重较小,这种能量分配特征受起步过程挡位,发动机油门开度和载重量的影响不大。
     本文基于发动机性能MAP图,采用不同的换挡策略和挡位组合方式在行驶距离相同的情况下对80型轮式装载机动力系统高速行驶工作特性进行研究。结果表明,采用最佳动力性换挡策略动力系统的动力性能较好,采用最佳经济性换挡策略动力系统的经济性较好,而手动方式换挡动力性和经济性均欠佳。采用最佳动力性和最佳经济性这两种优化换挡策略时,1挡起步4挡行驶时动力系统的动力性和经济性优于2挡起步4挡行驶,而采用手动换挡策略时,2挡起步4挡行驶动力系统的各项性能均优于1挡起步4挡行驶。当前轮式装载机基本上还是采用手动方式进行挡位变换,因此,在高速行驶时采用2挡起步4挡行驶的挡位组合方式有较大优势。高速行驶过程,液力变矩器泵轮功率占发动机功率比重较大,其它子系统功率占发动机功率比重较小,可以看出,轮式装载机处于高速行驶工作模式时,发动机输出的能量主要用于传动系统需求。
     本文基于发动机性能MAP图,选择“KD”方式和非“KD”方式,发动机全油门开度和部分油门开度对80型轮式装载机一个“V”型铲装循环动力系统工作特性进行研究。结果表明,“KD”方式虽然比非“KD”方式多一次挡位变换所带来的换挡冲击,但是在牵引力,牵引效率,作业时间,燃油消耗方面,“KD”方式比非“KD”方式均具有较大优势。全油门作业时发动机转矩和功率,燃油消耗量,牵引力都比部分油门作业时要高,作业时间比部分油门时要短,可见全油门作业动力系统动力性较好,发动机有相对足够的动力和能量可以提供给动力系统。部分油门作业时牵引效率要高于全油门作业时相应值,由此可以看出部分油门作业时,发动机能量利用率较高,但由于动力性较差,导致转向,动臂升降和铲斗翻转时间变长,铲装动作不连续,装载机速度下降。一个“V”型铲装循环中,工作油泵和转向油泵的功率分流特性比较明显,在行驶段液力变矩器泵轮功率比重较大,在转向段,转向油泵功率比重增加,动臂举升和铲斗翻转时,工作油泵功率比重增加,可以看出,当相应子系统载荷增加时,发动机可以根据载荷变化情况对能量进行重新分配,以适应相应子系统的能量需求。
     论文研究表明,虽然一般车辆的研究理论也适合用于轮式装载机,但由于轮式装载机自身的工作特点,对其动力系统采用传统的研究方法具有一定局限性。论文所提出的针对典型工作模式和载荷特征对轮式装载机动力系统工作特性进行分析的方法,为未来轮式装载机动力系统的研究提供了新的方向。同时,论文所建立的轮式装载机动力系统数学模型,进一步拓展了轮式装载机动力系统模型的应用范围。
The wheel loader is the one among the earthmoving, it is one of the main construction machinery and widely used in the places such as the mining industry, infrastructure, agriculture and disaster relief and so on due to its fast and convenient to use and operate and flexible power-driven, easier to use and maintenance. The wheel loaders have become into the largest construction machinery exports in our country.
     For the powertrain of wheel loader, studies have not been confined the performance match between the engine and the drive system, but should also include the subsystems supplying power for the transmission system, the implement system, the power steering system, the braking system and the auxiliary unit of the whole vehicle. Due to the presence of these subsystems, it can be assured that the whole machine complete a variety of production operations. As the point of view of the existing product design model, the main focus is the whole dynamic performance. But due to complex and variable load conditions at work, the operating efficiency of the wheel loader will be reduced and the consumed energy will be increased during the practical use under the non-appropriate operating type even if the whole vehicle performance has been optimized during the design procedure. The user must adopt corresponding operating type to work with an optimum operating mode according to various operating environments during the practical operation, reducing energy consumption while raising operating efficiency.
     This paper aims at the performance characteristics study of the wheel loader powertrain at typical modes based on the mathematical model of it, and obtains a changing law of the performance characteristics when emphasizing on the different external loads, providing a theoretical basis for the optimal combination of the dynamic and economy of the whole vehicle. This is the main significance.
     In this paper, mathematical models for the power system of 80-type wheel loader have been developed according to its structure characteristics and the load models developed by analyzing the load conditions at its typical operating modes.
     In this paper, tests have been performed for the transmission, implement, steering oil pump outlet pressures of a "V" loading cycle of the 80-type wheel loader, obtaining the changing characteristics of them and applying the measured data to the characteristics research of it. This means which uses a combination of theoretical and experimental analysis has improved the authenticity and credibility of the analysis result, making the whole analyzing process much closer the actual working condition.
     Based on the MAP of engine performance, we have studied the performance characteristics of the 80-type wheel loader powertrain during starting. For the full throttle and part throttle of engine, we have analyzed the performance characteristics of the powertrain during the straight start process, the result showed that the powertrain has a better power performance when the former selected, but a relatively lower economy. For the performance characteristics of powertrain during starting at the no-load and full load state, the results showed that when the powertrain load increased, the engine can automatically adjust the power and energy needs to adapt to changes of the external loads. For the powertrain performance characteristics of gear 1 and 2 during starting, the former has a better dynamics as well reducing the power consumption of the engine in the implement and steering oil pump. For the powertrain energy allocation characteristics during starting, the result showed the hydraulic torque converter pump has a greater torque power ratio in the engine power, and the other subsystems have a less proportion. This allocation is little affected by the gears, throttle opening and loadings during starting.
     Based on engine performance MAP, high-speed driving performance characteristics of the 80-type wheel loader powertrain has been studied using different combinations of gear shift strategy and gears under the same driving distance. The result showed that the powertrain had a better power performance and an better economy when adopting optimum dynamic gear shift strategy and optimum economical gear shift strategy respectively, however the dynamic and the economy are not good when manual gear shift. When adopting the optimum dynamic and economy gear shift strategy, the dynamic and economy of the powertrain during starting at gear 1 and driving at gear 4 has a advantage over the one during starting at gear 2 and driving at gear 4. While adopting manual gear shift strategy, the result is on the contrary. At the present wheel loaders still almost adopt manual way to shift gear, so gear combination of gear 2 starting and gear 4 driving has a greater advantage at high-speed driving. In the process of high-speed driving, hydraulic torque converter has a greater power ratio in the engine power, and the other subsystems have a less ratio. From this, we can get the engine output energy is mainly used in the drive system needs when the wheel loader is at high-speed operating and driving.
     Based on engine performance MAP, selecting the "KD" and non-"KD" mode, the engine at full throttle and part throttle opening, "V"-type loading cycle powertrain characteristics of 80-type wheel loader has been studied. The results show that, although "KD" mode due to a more one gear shift brings a larger gear shifting impact than non-"KD", but in the traction force, efficiency, operating time and fuel consumption, "KD" way has a better advantage over non-"KD "way. When operating at full throttle the engine torque and power, fuel consumptions, traction forces are all higher than the one operating at part throttle. From this above, we know that the powertrain has a better dynamic operating at full-throttle and the engine has a relatively sufficient power and energy to supply the power system. When operating at part throttle, the traction efficiency is higher the one at full throttle. From this, it can be known that operating at part throttle, the engine energy has a higher utilization but a poor dynamic, as a result the time of steering, movable arm to lift and bucket to trip-over become long and the shovel loading not continuous, the loader speed decreases. A loading cycle of "V" the power split-flow characteristics of the operating oil pump and steering oil pump is more obvious, during driving the torque converter has a greater power ratio, during steering the power ratio of steering oil pump increases. When the movable arm is lifting and bucket flipping, the operating oil pump power increases. From this, it can bee known that when the loads of corresponding subsystems are increased, the engine can reallocate energies according to its loading to meet the energy needs of corresponding subsystems.
     The results shows that although the theory of general vehicles is also suitable for wheel loaders, but due to their own work characteristics, use of conventional research methods for their powertrain will has certain limitations. The proposed method in the paper against the of powertrain operating characteristics of wheel loaders with typical operating modes and loadings supplied a new direction for the research on the powertrain of the future wheel loaders. At the same time, the developed powertrain mathematical models for wheel loader further expend the scope of application of the powertrain model.
引文
[1]王国彪.发动机与液力变矩器共同工作点的优化算法[J].工程机械,1998(3):29-31.
    [2]焦生杰.工程机械液力传动匹配的计算机辅助计算[J].西安公路交通大学学报,2001,21(9):89-91.
    [3]陈淑清.ZL80装载机发动机与液力变矩器的匹配优化设计[D].长春:吉林大学,2008.
    [4]冯茂林.液力变矩器与发动机匹配的计算机分析软件[J].建筑机械,2007(3):65-68.
    [5]郑立臣,冯茂林,宋连天,丁予展.发动机与液力变矩器匹配的自动识别与优化模型.机械科学与技术[J].1999,18(6):909-911.
    [6]李春芾,陈慧岩,陶刚,李艳琴.发动机与液力变矩器匹配工作点算法研究[J].农业机械学报,2009,40(3):12-15.
    [7]孙跃东,周萍,尹冰声.工程车辆液力变矩器与发动机匹配的研究[J].上海理工大学学报,2003,25(3):289-296.
    [8]常绿.装载机发动机与液力变矩器功率匹配优化[J]-农业机械学报,2010,41(7):25-28.
    [9]高久好,陈国兵,姚立波,曾锐.基于Matlab图形界面的发动机与液力变矩器匹配计算[J].中国工程机械学报,2008,6(2):206-209.
    [10]桂勇,骆清国,孔令伟,龚正波.基于液力变矩器与发动机匹配工作性能的液力变矩器结构参数优化[J].2009,23(1):45-49.
    [11]常绿,王国强,唐新星等.装载机发动机与液力变矩器功率匹配优化[J].农业机械学报,2006,37(11):28-31.
    [12]陈宁,赵丁选,龚捷,肖英奎.工程车辆自动变速档位决策的遗传径向基神经网络方法[J].吉林大学学报(工学版),2005,35(3):258-262.
    [13]洪涛,沈雪春.基于实时操作系统的装载机自动变速控制软件结构[C].中国工程机械学会2003年年会论文集,2003.
    [14]朱振宇,许纯新.工程车辆混沌神经网络只能自动变速控制系统仿真研究[C].中 国工程机械学会2003年年会论文集,2003.
    [15]朱振宇,许纯新,智国平,胡彦超.工程车辆自动变速智能控制系统开发与试验研究[J].机械工程学报,2004,40(10):97-101.
    [16]韩顺杰,赵丁选.多类分类SVM在工程车辆自动变速档位决策中的应用[J].农业机械学报,2007,38(2):10-12.
    [17]翟涌,杜晓明,陈慧岩,刘海鸥.ZL50装载机自动变速操纵系统控制策略的研究[J].北京理工大学学报,2004,24(2):113-116.
    [18]朱振宇,许纯新,张鹏,智国平.基于混沌算法的工程车辆自动变速神经网络控制[J].农业机械学报,2002,35(1):1-3.
    [19]赵克利,马乐,刘迹远.工程车辆智能换档规律的仿真[J].中国公路学报,2006,19(5):123-125.
    [20]杜晓明,刘溧,陈慧岩.ZL50型装载机自动变速电控系统的试验研究[J].工程机械,2002(10):26-28.
    [21]丁春凤,赵丁选,唐新星,叶丹.工程车辆四参数自动变速系统的试验[J].农业机械学报,2006,37(1):16-18.
    [22]戴群亮,赵丁选.基于BP神经网络优化算法的工程车辆档位判断的训练及仿真[J].机械工程学报,2002,38(11)
    [23]何忠波,陈慧岩,陶刚,董玉梁.自动变速车辆档位决策方法综述[J].车辆与动力技术,2002(2):54-59.
    [24]张毅,俞小莉等.装载机散热系统过热现象的研究[J].浙江大学学报,2006,40(7):1183-1186.
    [25]张毅,俞小莉,谭建勋等.装载机液压系统过热问题的研究[J].工程机械,2005(6):46-49.
    [26]张毅,俞小莉,陆国栋等.安装参数影响散热器模块性能的风洞研究[J].汽车工程,2006,28(5):455-459.
    [27]张毅,俞小莉,陆国栋等.间距对散热器模块匹配性能影响的试验研究[J].内燃机工程,2006,27(5):46-49.
    [28]张毅,俞小莉等.装载机散热器模块进出口位置匹配试验[J].农业机械学报,2007,38(1):41-44.
    [29]陆国栋,俞小莉等.间距对轮式装载机冷却组性能影响的风洞试验[J].浙江大学 学报(工学版),2007,41(4):574-576.
    [30]陆国栋,俞小莉等.轮式装载机冷却组优化匹配的风洞试验[J].农业机械学报,2006,37(3):17-26.
    [31]王飞.装载机管片式散热器流动与传热特性数值分析[J].吉林大学学报(工学版),2009,39(增刊1):196-199.
    [32]王剑鹏.50型轮式装载机液压系统的热平衡[J].吉林大学学报(工学版),2009,39(3):652-656.
    [33]王剑鹏.50型轮式装载机液压系统热平衡分析与验证[J].工程机械,2008,39(9):54-57.
    [34]王剑鹏.50型轮式装载机工作装置液压系统的试验与仿真[J].机床与液压,2009,37(10):234-235.
    [35]SARATA S, WEERAMHAENG Y, TSUBOUCHI T. Path Generation to Scooping Position for Wheel Loader[C]..Proceedings of the 2005 IEEE International Conference on Robotics and Automation,2005:1809-1814.
    [36]KOYACHI N, SARATA S. Unmanned Loading Operation By Autonomous Wheel Loader[C].ICROS-SICE International Joint Conference 2009,2009:2221-2225.
    [37]SHIROMA N, ISHIKAWA S. Nonlinear Straight Path Tracking Control for an Articulated Steering Type Vehicle[C]. ICROS-SICE International Joint Conference 2009,2009:2206-2221.
    [38]MARZOUK M, MOSELHI O. Optimizing Earthmoving Operations Usiing Object-Oriented Simulation[C]. Proceedings of the 2000 Winter Simulation Conference,2000:1926-1932.
    [39]MARZOUK M, MOSELHI O. Selecting Earthmoving Equipment FleetsUsing Genetic Algorithms[C]. Proceedings of the 2002 Winter Simulatioil Conference, 200:1789-1796.
    [40]GUPTA P, ALLEYNE A. Centralized and Decentralized Powertrain Controllers for an Earthmoving Vehicle[C].2005 American Control Conference,2005:1613-1618.
    [41]SINGH S, CANNON H. Multi-Resolution Planning for Earthmoving[C]. Proceedings of the 1998 IEEE International Conference on Robotics & Automation,1998:121-126.
    [42]SARATA S. Model-based Task Planning for Loading Operation in Mining[C]. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems,200:439-445.
    [43]YOSSAWEE W, TSUBOUCHI T. Path Generation for Articulated Steering Type Vehicle Using Symmetrical Clothoid[C]. Industrial Technology,2002.IEEE ICIT'02.2002 IEEE International Conference on,2002:187-192.
    [44]ELEZABY A.A, ABDELAZIZ M. Operator Model for Construction Equipment[C]. Mechtronic and Embedded Systems and Applications,2008. MESA 2008.IEEE/ASME International Conference on,2008:582-585.
    [45]CARTER D, ALLEYNE A. Load Modeling and Emulation for an Earthmoving Vehicle Powertrain[C]. Proceedings of the American Control Conference,2003.
    [46]SARATA S, OSUMI H. Trajectory Arrangement based on Resistance Force and Shape of Pile at Scooping Motion[C]. Proceedings of the 2004 IEEE International Conference on Robotics & Automation,2004:3488-3493.
    [47]CARTER D E, ANDREW G. Earthmoving Vehicle Powertrain Controller Design and Evaluation[C]. Proceeding of the 2004 American Control Conference,2004: 4455-4460.
    [48]胡宏伟.湿式自动离合器结合过程特性的研究[D].杭州,浙江大学,2008.
    [49]Cummins M11系列柴油发动机技术资料.美国Cummins公司.
    [50]F.&S.-370型液力变矩器技术资料.德国ZF公司.
    [51]曾庆强,秦四成,赵腾云,王雪莲.装载机铲斗铲掘过程受力分析[J].工程机械,2011,42(1):18-21.
    [52]80型轮式装载机技术资料.吉林长春.
    [53]RENO FILLA. Operator and Machine Models for Dynamic Simulation of Construction Machinery[D]. LINKOPING:LINKOPINGS UNIVERSITET,2005.
    [54]RENO FILLA, ALLAN ERICSSON, JAN-OVE PALMBERG. Dynamic Simulation of Construction Machinery:Towards an Operator Model. IFPE 2005 Technical Conference,2005[C]:429-438.
    [55]RENO FILLA. An Event-driven Operator Model for Dynamic Simulation of Construction Machinery. The Ninth Scandinavian International Conference on Fluid Power, Linkoping, Sweden, June 1-3,2005[C].
    [56]F FRANZONI, M MILANI, L MONTORSI A. CFD Multidimensional Approach to Hydraulic Components Design[C]//SAE 2007-01-4196.
    [57]QING HUI YUAN, SORIN C BENGEA, DAMRONGRIT PIYABONGKARN. Dynamic Control of a Distributed Embedded Electro-Hydraulic System[C]//SAE 2007-01-1626.
    [58]AHMED ADEL ELEZABY. Operator Model for Construction Mechtronic and Embedded Systems and Applications, MESA 2008[C]. IEEE/ASME International Conference on.
    [59]秦四成.国内装载机技术进步的思考[J].工程机械,2010,41(5):48-50.
    [60]李开亮.节能减排对工程机械的影响[J].工程机械文摘,2010,6:22-26.
    [61]孙兆宏.关于工程装载机的作业性应用研究[J].农业装备与车辆工程,2010,232(11):55-59.
    [62]SAMEER M PRABHU, JEFF WENDLANDT, JOHN GLASS, TOM EGEL. Multi-Domain Modeling and Simulation of an Electro-Hydraulic Implement System[C]//SAE 2006-01-3490.
    [63]RENO FILLA, JAN-OVE PALMBERG. Using Dynamic Simulation in the Development of Construction Machinery[C]. The Eighth Scandinavian International Conference on Fluid Power, Tampere, Finland. May7-9,2003,1(5):651-667.
    [64]CHEN JIN SHI, LIU XIN HUI, ZHANG CUI, DONG QUAN, ZHAO FENG. Dynamic Simulation and Experimental Study of Slewing System on 80T Crane [C].2011 Third International Conference on Measuring Technology and Mechatronics Automation.
    [65]WONHO KANG, CHANG-SEOB SIM, JI-YEOL KIM. Modeling of a Hydraulic Power Steering System and Its Application to Steering Damper Development[C]//SAE 2005-01-1263.
    [66]王得胜,周爱平.矿用装载机装载阻力的计算方法研究[J].河南理工大学学报(自然科学版),2003,26(3):295-301.
    [67]周灵.详解MATLAB工程科学计算与典型应用[M].北京:电子工业出版社, 2010.
    [68]刘卫国.MATLAB程序设计教程[M].北京:中国水利水电出版社,2010.
    [69]杨国平.现代工程机械技术[M].北京:机械工业出版社,2006.
    [70]TIMOTHY C SCOTT, JASON UPHOLD. Thermal Modeling of Power Steering System Performance[C]//SAE 2008-01-1432.
    [71]SINGH S.State of the Art in Automation of Earthmoving[J].Journal of Aerospace Engineering,1997,10:179-188.
    [72]ZHANG R. ALLEYNE A G et al.Performance Limitations of a Class of Two-Stage Electro-Hydraulic Flow Valves[J].International Journal of Fluid Power, 2002,3(1):47-53.
    [73]KALIAFETIS P, COSTOPOULOS T.Modeling and Simulation of An Axial Piston Variable Displacement Pump with Pressure Control [J]. Mechanism and Machine Theory,1995,30(4):599-612.
    [74]陈海虹.液力变矩器在工程机械上的应用和发展[J].贵州工业大学学报,2001,8:84~87.
    [75]朱经昌.液力变矩器的设计与计算[M].北京:国防工业出版社,1991.
    [76]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [77]AKERS A, LIN S. J.The Effect of Some Operating Conditions on the Performance of a Two-Stage Controller-Pump Combination[J].Journal of Dynamic Systems, Measurement,and Control,1990,112:755-761.
    [78]MANRING N D, JOHNSON R E.Modeling and Designing a Variable-Displacement Open-Loop Pump[J].Journal of Dynamic Systems, Measurement, and Control, 1996,118:267-271.
    [79]MANRING N D.The Torque on the Input Shaft of an Axial-Piston Swashplate Type Hydrostatic Pump[J]. Journal of Dynamic Systems, Measurement, and Control, 1998,120:57-62.
    [80]罗邦杰.工程机械液力传动[M].北京:机械工业出版社,1991.
    [81]SHI X, Lever P J A,et al.Fuzzy Behavior Integration and Action Fusion for Robotic Excavation[l].Trans, on Industrial Electronics,1996,43(3):395-402.
    [82]SINGH S.The State of the Art in Automation in Earthmoving[J] Journal of Aerospace Engineering,1997,10(4):179-188.
    [83]BULLOCK D,OPPENHEIM I.Object Oriented Programming in Robotics Research for Excavation[J]Journal of Computing in Civil Engineering,1992,370-385.
    [84]BRADLEY D, SEWARD D, et al.Artificial Intelligence in the Control and Operation of Construction Plant-the Autonomous Excavator[J]. Automation and Construction,1993,2(3):217-228.
    [85]胡彦超.工程车辆动力传动系统的建模与仿真[D].长春:吉林大学,2005.
    [86]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1993.
    [87]CANNON H.Extended Earthmoving with an Autonomous Excavator[D]. Carnegie Mellon University:Robotics Institute,1999.
    [88]BERNOLD L. Motion and Path Control for Robotic Excavation[J]. Journal of Aerospace Engineering,1993, (1):1-18.
    [89]BROOKS R A. A Robust Layered Control System For A Mobile Robot[J]. Journal of Robotics and Automation,1986, (1)::14-23.
    [90]黄林彬.自动变速箱系统[M].福建:福建科学技术出版社,2001.
    [91]张光裕,许纯新.工程机械底盘设计[M].北京:机械工业出版社,1987.
    [92]GAT E, DESAI R, et al. Behavior Control for Robotic Exploration of Planetary Surfaces[J]. Transactions on Robotics and Automation 1994,10(4)::490-503.
    [93]W AT AN ABE M, ONOGUCHI K, et al. Architecture of Behavior-based Mobile Robot in Dynamic Environment[C]. Proceedings of IEEE Conference on Robotics and Automation,1992.
    [94]SINGH S. Synthesis of Tactical Pluns,for Robotic Excavation[D]. Camegie Mellon University:Robotics Institute,1995.
    [95]SINGH S. State of the Art in Automation of Earthmoving[J]. Journal of Aerospace Engineering,1997,10(4):179-188.
    [96]于影.轮系的分析与设计[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [97]葛安林等.动态三参数最佳换档规律的研究[J].汽车工程,1992,14(4):239-247.
    [98]ZHANG R. Multivariable Control of Nonlinear Systems with Application to an Electro-Hydraulic Powertrain[D]. Urbana-Champaign University of Illinois: Mechanical and Industrial Engineering,2002.
    [99]ZHANG R, ALLEYNE A G, et al. Modeling and H2/H-infinity MIMO Control of an Earthmoving Vehicle Powertrain[J]. Journal of Dynamic Systems,Measurement and Control,2002,124(4):625-636.
    [100]Haug. Computer_Aided Kinematics and Dynamics of Mechanical Systems[J]. Allyn and Bacon,1989.
    [101]Kenjiro Fujita, et al. Transient Characteristics of Torque Converter_Its Effect on Acceleration Performance of Auto_Trans Equipped Vehicle[J]. SAE900554.
    [102]Andrew W Phillips. Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies[J]. SAE900619.
    [103]Young Heub Kim.A. Study on the Transient Characteristics of Automatic Transmission with Detailed Dynamic Modeling[J]. SAE941014.
    [104]周守仁.自动变速箱[M].北京:中国铁道出版社,1984.
    [105]刘修骥.车辆传动系统分析[M].北京:国防工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700