用户名: 密码: 验证码:
大兴安岭南部科右中旗碱性流纹岩的岩石成因及成矿意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大兴安岭南部科右中旗地区的碱性流纹岩为研究对象,利用锆石LA-ICP-MS U-Pb同位素测年确定了碱性流纹岩的形成时代;利用碱性流纹岩地球化学分析、锆石的Hf同位素示踪作用和能谱分析、电子探针分析,讨论了碱性流纹岩的成因、岩浆作用过程和形成的构造背景;通过碱性流纹岩石英斑晶中的熔体包裹体和流体包裹体的物理化学特征研究,揭示成矿的作用过程。
     形成于大兴安岭南部白音高老组的碱性流纹岩与碱性花斑岩以富含钠闪石为特征,分别命名为钠闪石流纹岩和钠闪石花斑岩,两者是同源、同期次岩浆活动的产物,后者呈次火山岩相产出。钠闪石流纹岩中的组成矿物具有明显的定向特征,流动构造、球粒结构、雪球构造发育,钠闪石花斑岩呈斑状结构、交生文象结构,两者都是由石英、碱性长石、钠闪石、霓石和富稀土、稀有元素的矿石矿物所组成。
     碱性流纹岩的结构特征、其石英斑晶中富集流体包裹体和岩石中含有大量的钠闪石、氟碳铈矿、烧绿石等富挥发组份的矿物显示,岩浆演化过程中有卤水和气相挥发分的参与,特别是富F挥发分参与下的岩浆分异作用使碱性流纹岩的岩浆演化形成两个连续的作用阶段:岩浆阶段和残余岩浆阶段,碱性流纹岩先后经历了钠长石结晶作用过程和钠闪石结晶作用过程。钠闪石结晶作用过程使熔体充分结晶,大量的熔体分配系数很低的不相容元素在残余岩浆体系中高度富集,在最后去气成岩的过程中进入副矿物,形成赋存稀土和稀有元素的矿石矿物。
     钠闪石流纹岩中的岩浆锆石LA-ICP-MS U-Pb定年结果表明,其206Pb/238U年龄介于134~149之间,其加权平均年龄为141Ma,表明钠闪石流纹岩形成于早白垩世早期。锆石εHf(t)=+9.07~+12.08,二阶段Hf模式年龄介于415~616Ma之间。岩石地球化学资料表明,碱性流纹岩以富硅、碱、铁质和贫钙、镁质为特征,在地球化学上,具有典型的A型流纹岩特征。该类岩石不仅具有高的稀土元素总量(REE=306×10-6~1395×10-6)、显著的Ce正异常(Ce/Ce*=6.52~18.63)和显著的Eu负异常(Eu/Eu*=0.0067~0.0236),而且表现出高场强元素(如Zr、Hf、Nb、Ta)的显著富集、大离子亲石元素(如Ba、Sr)的强烈亏损和很高的Ga/Al比值(104×Ga/Al=4.88~6.53)。上述资料表明,钠闪石流纹岩的原始岩浆应是古俯冲蚀变洋壳部分熔融的产物,并形成于蒙古-鄂霍茨克缝合带闭合后的岩石圈伸展构造环境。
     碱性流纹岩具有很高的轻稀土和Nb、Y等稀有元素品位,钠闪石流纹岩岩石和钠闪石花斑岩岩体就是矿体。矿石矿物有钛铁矿、铌钛铁矿、磁铁矿、褐铁矿、锆石、钍锆石、铌钇锆石、氟碳铈矿、烧绿石、独居石、褐帘石和其它富钇铌矿物。矿石粒径微小,呈他形不规则的晶体结构,孤立状或聚晶状产出,在碱性流纹岩中呈浸染状分布,形成填隙结构、包含结构、交代结构。碱性流纹岩中La、Ce、Nd主要是以离子化合物的形式赋存在独居石、氟碳铈矿、褐帘石中,少量以杂质元素类质同象方式在锆石中;Nb在烧绿石中以离子化合物形式赋存在矿物晶格中,以杂质元素类质同象置换的形式存在铌钛铁矿和钇铌锆石中,在褐帘石中也有少量元素混入。Th、U等元素主要是以杂质元素类质同象在锆石、褐帘石等矿物中,Y元素在铌钇锆石中以杂质元素赋存。
     碱性流纹岩石英斑晶中原生包裹体有熔融包裹体、气液相流体包裹体、气液相含子晶矿物流体包裹体3类,并显示碱性流纹岩中的流体为中-高盐度、中-高密度流体。其中,钠闪石花斑岩中流体包裹体均一温度范围为215.9~>500℃,钠闪石流纹岩中为168.9~336.7℃。岩石中各种类型的流体包裹体的最小捕获压力集中于7.72~32MPa,相应的最小捕获深度约为0.8~3.2km。激光拉曼光谱分析在熔体包裹体中发现有菱锰矿、方解石类的碱性矿物以及稀土类矿物拉曼谱峰,在流体包裹体中发现有碳酸根离子谱峰,这表明碱性流纹岩的岩浆成分具有显著的富碱性的物质特性,并赋存有很高的稀有稀土元素成分;碱性流纹岩的残余岩浆中的流体组分是富挥发组分的中-高盐度、中-高密度的碱性流体,并富集碱性金属元素和稀土元素离子。
     因此,碱性流纹岩是深源浅成的岩浆-残余岩浆作用下的稀土矿床。岩浆源岩为碱性流纹岩成矿提供了物质条件,火山岩基底岩层的背斜褶皱和多期次断裂发育的地质构造条件为稀土矿床的形成提供了重要的成矿环境。矿石特征和熔体包裹体-流体包裹体的物理化学条件表明,碱性流纹岩从岩浆结晶开始直到晚期的成岩阶段,都具有成矿作用。在岩浆阶段主要形成岩浆锆石、独居石、钛铁矿等成矿矿物;残余岩浆阶段是成矿的主要阶段,稀有稀土元素大多以阳离子形式存在,形成氟碳铈矿、褐帘石、烧绿石等。
This thesis studies the formation time of the alkali-rhyolites of Keyouzhongqi in thesouthern Da Hinggan Mts., and their petrogenesis, tectonic setting and mineralization,based on LA-ICP-MS zircon U-Pb chronology, major and trace elements, electron probemicro analysis and the physical chemistry experimental data of melt inclusion and fluidinclusion in the quartz of alkali-rhyolites.
     The alkali-rhyolites of Baiyingaolao Formation in southern Da Hinggan Mts., wascomposed of riebeckite rhyolites and riebeckite granophyres which has the same magmasource and the same period with riebeckite rhyolites, and both of them have a similarvolcanic lithofacies. Riebeckite rhyolites shows a very characteristic by flow structure,spherulitic texture and snowball structure and all minerals in the riebeckite rhyolites wereobviously directionally arranged. Riebeckite granophyres shows porphyroid texture andgranophyric intergrowths texture. Both were composed of quartz, alkali-feldspar,riebeckite, aegirite and other minerals with rare earth elements and rare elements.
     Zircons from the riebeckite rhyolite are euhedral-subhedral in shape, and displaytypical oscillatory zoning on CL images, suggesting their magmatic origin. LA-ICP-MSzircon U-Pb dating results indicate that206Pb/238U ages of24analytical spots range from134Ma to149Ma, yielding a weighted mean age of141±1Ma, implying that the riebeckiterhyolite formed in the early Early Cretaceous. Their εHf(t) values range from+9.07to+12.08, and their Hf two-stage model ages(TMD2) vary from415Ma to616Ma. Thealkali-rhyolites have SiO2=74.3%~76.4%, FeO=3.96%~5.94%,(Na2O+K2O)=7.07%~8.51%, CaO=0.12%-0.84%, and MgO=0.03%~0.09%, chemically similar to typical A-type rhyolite. Additionally, the riebeckite rhyolites have high total REE contents(307×10-6~1395×10-6) and Ga/Al ratios (104×Ga/Al=4.88~6.41), strong positive Ceanomalies (Ce/Ce*=6.52~18.6), strong negative Eu anomalies (Eu/Eu*=0.007~0.009),and display enrichment in HFSEs (e.g., Zr, Hf, Nb, Ta) and strong depletion in LILEs (e.g.,Ba, Sr). Taken together, it can be concluded that the riebeckite rhyolites could be derivedfrom partial melting of a fossil altered oceanic crust during an extensional setting after theclosure of the Mongol-Okhotsk Ocean.
     It can be proved that there were lots of brine and volatiles involved in the magmaticevolution process of alkali-rhyolites by the present of lithophysa structure, spherulitictexture, snowball sturcure, vesicular structure, enrichment of fluid inclusions in quartzsand the characteristics of riched in riebeckites, bastnaesites, pyrochlorites in the alkali-rhyolites. Especially The magmatic differentiation processes with the full participation ofthe volatiles enriched F made alkali-rhyolite magma undergo two phases of magmatismsuccessively: magma phase and residual magma phase, and corespondingly, alkali-rhyolitehave gone through the crystalization of riebeckite after albite. Residual magma wouldenrich in incompatible elements with lower partition coefficient because the melt werewell-crystallized, and these incompatible elements entered into accessory minerals duringdegassing diagenesis and formed minerals enriched in rare earth and rare elements.
     The rocks of riebeckite rhyolites and riebeckite granophyres themselves are the orebody of rare rare earth deposit, and total contents of REE, Y, Nb et al. show that thesesamples have a high ore grade. Ore minerals are composed of ilmenite, niobium ilmenite,magnetite, limonite, zircon, thorium zircon, niobium and yttrium zircon, bastnaesite,pyrochlore, monazite, allanite and other minerals enriched in niobium and yttrium, and areformed by microcrystal xenomorphic granular in the shape of isolated form or synneusischaracterized by interstitial structure, poikilitic texture and metasomatic texturedisseminated in alkali-rhyolites.
     Most La, Ce, Nd in monazite, bastnaesite and allanite exist in the form of ioniccompounds, while few in zircon are in the form of somorphism. Nb occurrence inpyrochlore and niobium ilmenite, niobium and yttrium zircon respective by ioniccompounds and somorphism, and the little sneak into allanite. Th, U occurrence in zircon and allanite by somorphism, and Y occurrence in niobium and yttrium zircon bysomorphism.
     Abundance inclusions in quartzs of alkali-rhyolites can be classified into three types:melt inclusions, gas-liquid fluid inclusions and daughter minerals of salt crystal bearinggas-liquid fluid inclusions, indicating the fluid inclusions was middle-high salinity andmiddle-high density. The fluid inclusion homogenization temperature ranges from168.9to336.7℃in riebeckite rhyolites and215.9to great than500℃in riebeckite granophyres,and the trapping pressures and trapping depths of all inclusions respectively concentrateon7.72to32MPa and0.8to3.2km. The magma of alkali-rhyolites enriched in alkalis andrare-earth and rare elements based on electron probe micro-analysis. And its componentsin residual magma was volatile component with middle-high salinity and middle-highdensity fluid, enriched in ions of alkali-metal elements and rare earth elements.
     Mineralization of alkali-rhyolites is related with gas-liquid activity, its’ genetic typebelongs to the polygenetic superposition of rare earth element and rare element ore depositwith the action of magmatism-residual magmatism that originated in deep-sourced andformed hypergene zone. The magma souce provided ore-forming materials condition foralkali-rhyolites, and the anticlinal fold and the complicated faulting system in basementstrata provided a ore-forming environment.
     The ore character and physical and chemical characteristics of fluid melt inclusionsreveal that ore minerals are crystallized throughout all the time of magma stage andmagmatic-hydrothermal transitional processes. These ore minerals such as magmaticzircons, monazites and ilmenites were crystallized in magma stage. Residual magmaticstage is the main crystallization period, and in this period, rare and rare earth elementsmainly exist in bastnaesites, allanites,pyrochlores et al. in the form of cation.
引文
[1] A. A.马拉库舍夫(莫耀支、盛志浩译),熔离作用在岩浆成因中的意义[J].地质地球化学,1980,11:34-41.
    [2]曹生儒.对内蒙古古板块构造轮廓的新认识[J].中国区域地质,1993(3):211-215.
    [3]陈晋阳,郑海飞,曾贻善.流体包裹体的喇曼光谱分析进展[J].矿物岩石地球化学通报,2002,21(2):133-138.
    [4]陈骏,陆建军,陈卫锋,王汝成,马东升,朱金初,张文兰,季峻峰.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,2008,14(4):459-473.
    [5]陈志广,张连昌,周新华,刘庆,万博,吴华英.二连盆地北缘中生代火山岩Ar-Ar年代学和地球化学特征[A].全国岩石学与地球动力学暨地球动力学研讨会[C].2007(11):260-262.
    [6]程天赦,杨文静,王登红.内蒙古锡林浩特毛凳牧场大石寨组细碧-角斑岩系地球化学特征、锆石U-Pb年龄及地质意义[J].现代地质,2013,27(3):525-535.
    [7]范蔚茗,郭锋,高晓峰,李超文.东北地区中生代火成岩Sr-Nd同位素区划及其大地构造意义[J].地球化学,2008,37(4):361-372.
    [8]冯守忠.内蒙古巴尔哲碱性花岗岩稀有稀土矿床地质特征及成因探讨[J].火山地质与矿产,2000,21(2):137-149.
    [9]高晓峰,郭峰,李超文.南兴安岭晚中生代火山岩的岩石成因[J].中山大学学报(自然科学版),2009,48(6):121-126.
    [10]葛文春,林强,孙德有,吴福元.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,15(3):396-407.
    [11]葛文春,李献华,林强,孙德有,吴福元,尹成孝.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36(2):176-183.
    [12]葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,21(3):749-760.
    [13]苟军,孙德有,赵忠华,等.满洲里南部白音高老组流纹岩锆石U-Pb定年及岩石成因[J].岩石学报,2010,26(1):333-344.
    [14]顾连兴. A型花岗岩的特征、成因及成矿[J].地质科技情报,1990,9(1):25-31.
    [15]郭峰,范蔚茗,王岳军,林舸.大兴安岭南段晚中生代又峰式火山作用[J].岩石学报,2001,017(1):161-168.
    [16]郭冶.内蒙古吐列毛都地区中生代构造特征[D].吉林大学硕士论文.2010:1-51.
    [17]洪大卫,王式洸,韩宝福,靳满元.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学,1995,25(4):418-426.
    [18]洪大卫,王式洸,谢锡林.兴蒙造山带ε(Nd, t)值花岗岩的成因和大陆地壳的生长[J].地学前缘,2000,7(2):441-456.
    [19]洪文兴,何松裕,黄舜华,王瑛,侯鸿泉,朱祥坤.稀土氟碳酸岩矿物拉曼光谱研究[J].光谱学与光谱分析,1999,19(4):546-549.
    [20]黄小娥,徐志华.江西雅山花岗岩岩体与交代作用及其与稀有金属的成矿关系[J].江西有色金属,2005,19(4):1-4.
    [21]吉林省地质局区域地质调查大队.1:20万吐列毛杜公社幅区域地质调查报告(R),1978.
    [22]吉林大学地质调查研究院.1:5万宝日根、巴仁哲里木、坤都冷幅区域地质调查报告(R).2013,245-255.
    [23]蒋国源,权恒.大兴安岭、海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质矿产研究所所刊,1988,3:23-100.
    [24]金玲,杨伟红,杨德明,和钟铧,马瑞,王建国.内蒙古科右中旗地区梅勒图组安山岩年代学特征及其地质意义[J].世界地质,2014,33(1):49-57.
    [25]金鑫,葛文春,薛云飞,等.松辽盆地林深3井火山岩的锆石U-Pb年龄与Hf同位素组成.世界地质[J].2011,30(1):8-17.
    [26]李长民.锆石成因矿物学与锆石微区定年综述[J].地质调查与研究,2009.33(3):161-174.
    [27]李德忍,电子探针分析在地学中的应用[J].矿物岩石地球化学通报,1992,(3):173-175.
    [28]李福春,朱金初,金章东,李晓峰.钠长石花岗岩中雪球结构形成机理的研究.岩石矿物学杂志,2000,19(1):27-35.
    [29]李培忠,虞福基,刘德平,于津生.黑龙江碾子山晶洞碱性花岗岩氢同位素组成与岩浆去气作用[J].地球化学,1992a,1:70-76
    [30]李培忠.巴尔哲与碾子山成矿与非成矿晶洞碱性花岗岩的地质地球化学差异[J].矿物岩石地球化学通报,1992b,1:32-33.
    [31]李培忠,于津生.黑龙江碾子山晶洞碱性花岗岩岩体年龄及其意义[J].地球化学,1993,4:389-398.
    [32]李思田,杨世恭.中国东北部晚中生代裂陷作用和东北亚断陷盆地系[J].中国科学, B辑,1987,21(2):185-195.
    [33]林德松.与碱性花岗岩有关的稀有稀土矿床[J].矿产与地质,1994,8(44):401-405.
    [34]林德松.稀有金属碱性交代岩[J].地质地球化学,1981,4:21-28.
    [35]林强,葛文春,孙德有,吴福元,元钟宽,闵庚德,陈明植,李文远,权致纯,尹成孝.东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33(2):129-139.
    [36]林强,葛文春,吴福元,孙德有,曹林.大兴安岭中生代花岗岩类的地球化学[J].岩石学报,2004,20(3):403-412.
    [37]林强,葛文春,曹林等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,23(3):208-215.
    [38]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999:1-290.
    [39]刘世伟.大兴安岭地区中生代火山岩岩石地层的划分与对比问题[J],地质与资源,2009,18(4):241-244.
    [40]刘永江,张兴洲,金巍,迟效国,王成文,马志红.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943-951.
    [41]刘伟,潘小菲,谢烈文,李禾.大兴安岭南段林西地区花岗岩类的源岩:地壳生的时代和方式[J].岩石学报,2007,23(2):441-460.
    [42]卢焕章.流体不混溶和流体包裹体[J],岩石学报,2011,27(5):1253-1261.
    [43]卢良兆,许文良.岩石学[M].北京:地质出版社,2011:81-82.
    [44]路远发. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464.
    [45]吕志成,段国正,郝立波,李殿超,潘军,董文华.大兴安岭中段二叠系大石寨组细碧岩的岩石学地球化学特征及其成因探讨[J].岩石学报,2002,18(2):212-222.
    [46]苗来成,范蔚茗,张福勤,刘敦一,简平,施光海,陶华,石玉若.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报,2003,48(22):2315-2323.
    [47]马寅生,崔盛芹,曾庆利,吴满路.燕山地区燕山期的挤压与伸展作用[J].地质通报,2002,21(4-5):218-223.
    [48]孟恩,许文良,杨德彬,邱昆峰,李长华,祝洪涛.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其他地质意义[J].岩石学报,2011,27(4):1209-1226.
    [49]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1993:1-725.
    [50]内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,2008:1-344.
    [51]牛贺才,单强,陈小明,张海洋.攀西裂谷带轻稀土矿床与地幔过程的关系[J].中国科学(D辑),2002,32(增刊):33-40.
    [52]牛贺才,单强,罗勇.巴尔哲超大型稀有稀土矿床富晶体的流体包裹体初步研究[J].岩石学报,2008,24:2149-2154.
    [53]邵济安,藏绍先,牟保磊.造山带的伸展构造与软流圈隆起-以兴蒙造山带为例[J].科学通报,1994,39(6):533-537.
    [54]邵济安,张履桥,牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学,1998,28(3):194-200.
    [55]邵济安,刘福田,陈辉,韩庆军.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报,2001,75(1):56-63.
    [56]邵济安,张履桥,储著银.冀北早白垩世的火山-沉积作用及其构造背景讨论[J].地质通报,2003,22(6):384-390.
    [57]邵济安,牟保磊,朱慧忠,张履桥.大兴安岭中南段中生代成矿物质的深部来源与背景[J].岩石学报,2010,26(3):649-686.
    [58]邵积东,谭强,王惠,张明,贺宏云.大兴安岭地区中生代地层特征及侏罗-白垩纪界线的讨论[J].地质与资源,2011,20(1):4-11.
    [59]佘宏全,李进文,向安平,关继东,杨郧城,张德全,谭刚,张斌.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报,2012,28(2):571-594.
    [60]孙德有,吴福元,李惠民,林强.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学能报,2000,45(20):2217-2222.
    [61]孙德有,苟军,任云生,付长亮,王晰,柳小明.满洲里南部玛尼吐组火山岩锆石U-Pb年龄与地球化学研究[J].岩石学报,2011,27(10):3083-3094.
    [62]孙立新,赵凤清,王惠初,谷永昌,冀世平.燕山地区土城子组划分、时代与盆地性质探讨[J].地质学报,2007,81(4):445-454.
    [63]隋振民,葛文春,吴福元,张吉衡,徐学纯,程瑞玉.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007,23(2):461-480.
    [64]隋振民,葛文春,吴福元,徐学纯,张吉衡.大兴安岭北部察哈岩体的Hf同位素特征及其地质意义[J].吉林大学学报(地球科学版),2009,39(5):849-867.
    [65]隋振民,徐学纯.大兴安岭东北部侏罗纪花岗岩类Sr-Nd同位素特征及其地质意义[J].中国地质,2010,37(1):49-55.
    [66]王长明.大兴安岭中南段喷流-沉积成矿特征与成矿预测[D].中国地质大学博士论文,2008,84-86.
    [67]汪建明,杨年强,李康强,丁桂春.功州A型花岗岩的岩浆分异与成矿作用[J].岩石学报,1993,9(1):33-43.
    [68]王建国,和钟铧,许文良.大兴安岭南部钠闪石流纹岩的成因:年代学和地球化学证据.岩石学报[J],2013,29(3):853-863.
    [69]王汾连,赵太平,陈伟.铌钽矿研究进展和攀西地区铌钽成因初探[J].矿床地质,2012,31(3):293-308.
    [70]王濮,潘兆橹,翁玲宝.系统矿物学(中册)[M].北京:地质出版社,1992.
    [71]王汝成,赵广涛,王德滋,陆建军,徐士进.花岗岩中流体的分异聚集:矿物证据[J].科学通报,2000,45(7):771-775.
    [72]王艳芬.内蒙古巴尔哲碱性花岗岩稀有稀土矿床东矿区锆石的稀土元素、微量元素特征及其成因指示[D].中山大学硕士论文,2009:1-46.
    [73]王一先,赵振华.巴尔哲超大型稀土铌铍锆矿床地球化学和成因[J].地球化学,1997,26(1):24-35.
    [74]王友勤,苏养正,刘尔义.东北区区域地层[M].武汉:中国地质大学出版社,1997:1-175.
    [75]吴福元,李献华,杨进辉.花岗岩研究的若干问题[J].岩石学报.2007,23(6):1217-1238.
    [76]夏军,王成善,李秀华.海拉尔及其邻区中生代火山岩的特征及其边缘陆块型火山岩的提出[J].成都地质学院学报,1993,20(4):67-79.
    [77]夏卫华,章锦统.关于华南稀有元素矿化花岗岩成因的几个问题[J].地球科学,1982,(1):119-128.
    [78]肖庆辉,邓晋福,马大铨.花岗岩研究思维与方法[M].北京:地质出版社,2002:71-79,277-280.
    [79]谢磊,王汝成,陈小明,邱检生,王德滋.碱性A型花岗岩中的富钍锆:矿物学研究与岩石学意义[J].科学能报,2005,50(10):1016-1023.
    [80]薛怀民,郭利军,侯增谦,周喜文,童英.中亚-蒙古造山带东段的锡林郭勒杂岩:造山作用的产物而非古老陆块?锆石SHRIMP U-Pb年代学证据[J].岩石学报,2009,25(8):2001-2010.
    [81]徐美君,许文良,孟恩,等.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报,2011,30(9):1321-1338.
    [82]许保良,王式,韩宝福,阎国翰,何中甫.富集性和亏损性A型花岗岩—以化北燕山和北疆乌伦河地区岩石为例[J].北京大学学报(自然科学版),1998,34(2-3):352-362.
    [83]许文良,葛文春,裴福萍,孟恩,于洋,杨德彬.东北地区中生代火山作用的年代学格架及其构造意义[J].矿物岩石地球化学通报,2008,27(Z1):286-287.
    [84]杨庚,柴育成,吴正文.燕山造山带东段—辽西地区薄皮逆冲推覆构造[J].地质学报,2001,75(3):322-332.
    [85]杨荣兴.再论细碧-角斑岩系及成因[J].矿产与地质,2000,14(76):109-113.
    [86]杨武斌,牛贺才,单强.巴尔哲超大型稀有稀土矿床成矿机制研究[J].岩石学报,2009,25(11):2924-2932.
    [87]杨武斌,单强,赵振化.巴尔哲地区碱性花岗岩的成岩成矿作用:矿化和未矿化岩体的比较[J].吉林大学学报(地球科学版),2011,41(6):1689-1704.
    [88]袁忠信,张敏,万德芳.低18O碱性花岗岩成矿讨论-以内蒙巴尔哲碱性花岗岩为例[J].岩石矿物学杂志,2003,22(2):119-124.
    [89]张长厚,王根厚,王果胜,吴正文,张路锁,孙卫华.辽西地区燕山板内造山带东段中生代逆冲推覆构造[J].地质学报,2002,76(1):64-76.
    [90]张宏,柳小明,李之彤,杨芳林,王晓蕊.辽西阜新-义县盆地及附近地区早白垩世地壳大规模减薄及成因探讨[J].地质评论,2005,51(4):360-372.
    [91]张宏,韦忠良,柳小明,李栋.冀北-辽西地区土城子组的LA-ICP-MS测年[J].中国科学, D辑,2008,38(8):960-970.
    [92]张吉衡.大兴安岭中生代火山岩年代学及地球化学研究[D].中国地质大学博士论文,2009:15-26.
    [93]张培善.中国稀土矿床成因类型[J].地质科学,1989,(1):26-32.
    [94]张培善,杨主明,陶克捷,宋仁奎.我国铌钽稀土矿物学及工业利用[J].稀有金属,2005,29(2):206-210.
    [95]张旗,潘国强,李承东,金惟俊,贾秀勤.花岗岩结晶分离作用问题—关于花岗岩研究的思考之二[J].岩石学报,2007,23(6):1239-1251.
    [96]张舒,张招崇,艾羽,袁万明,马乐天.安徽黄山花岗岩岩石学、矿物学及地球化学研究[J].岩石学报,2009,25(1):25-38.
    [97]张文淮,陈紫英,张恩世.流体包裹体地学[M].武汉:中国地质大学出版社,1993,1-193.
    [98]张兴洲,杨宝俊,吴福元.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823.
    [99]张彦龙,葛文春,柳小明,张吉衡.大兴安岭新林镇岩体的同位素特征及其地质意义[J].吉林大学学报(地球科学版),2008,38(2):177-185.
    [100]张彦龙,赵旭晁,葛文春,张吉衡,高妍.大兴安岭北部塔河花岗杂岩体的地球化学特征[J].岩石学报,2010,26(2):3507-3520.
    [101]张永北,孙世华,毛骞.大学安岭南段示麓中生代O型埃达克质火山岩及其成因、古构造环境和找矿意义[J].岩石学报,2006,22(9):2289-2304.
    [102]张永正,张赋,鞠文信,贾林柱.内蒙古东乌珠穆沁旗舒哈迪铅锌多金属矿成矿特征[J].地质与资源,2010,19(4):302-304.
    [103]赵国龙,扬桂林,傅嘉有.大兴安岭中南部中生代火山岩[M].北京:北京科学技术出版社,1989.
    [104]赵利青.元素的类质同象置换简表[J].黄金地质,1996,2(4):39-42.
    [105]赵越,张拴宏,徐刚,杨振宇,胡健民.燕山板内变形带侏罗纪构造事件[J].地质通报,2004,23(9-10):854-863.
    [106]赵振华,周玲棣.我国某些富碱侵入岩的稀土元素地球化学[J].中国科学(B辑),1994,24(10):1109-1120.
    [107]赵振华,熊小林,韩小东.花岗岩稀土元素四分组效应形成机理探讨[J].中国科学,1999,29(4):331-338.
    [108]赵振华,包志伟,乔玉楼.一种特殊的“M”与“W”复合型稀土元素四分组效应:以水泉沟碱性正长岩为例[J].科学通报,2010,55(15):1473-1488.
    [109]中华人民共和国国土资源部.中华人民共和国地质矿产行业标准[Z].稀有金属矿产地质勘查规范(DZ/T0203-2002),2002.
    [110]中华人民共和国国土资源部.中华人民共和国地质矿产行业标准[Z].稀土金属矿产地质勘查规范(DZ/T0204-2002),2002.
    [111]周建波,张兴洲,马志红,刘立,金蘶,张梅生,王成文,迟效国.中国东北地区的构造格局与盆地演化[J].石油与天然气地质,2009,30(5):530-538.
    [112]周金城,陈繁荣.英安流纹质岩浆的熔离实验[J].岩石学报,1991,3:14-19.
    [113]周新华,英基丰,张连昌,张玉涛.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约[J].地球科学-中国地质大学学报,2009,34(1):1-10.
    [114]周振华,吕林素,杨永军,李涛.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约[J].岩石学报,2010,26(12):3521-3537.
    [115] Abdel F M, Abdel R and Robert F M. The Mount Ghanb A type granite, Nubian Shield:petrogenesis and role of metasomatism at the source[J]. Contrib. Mineral. J Petrol,1996,104:173-183.
    [116] Anderson T. Correction of common lead in U-Pb analyses that do not report204Pb[J]. ChemicalGeology,2002,192:59-79.
    [117] Belousova EA, Griffin WL, O’Reilly SY and Fisher N I. Igneous zircon: trace elementcomposition as an indicator of source rock type[J]. Contributions to Mineralogy and Pegrology,2002,143:602-622.
    [118] Bi X W, Hu R Z, Ye Z J and Shao S X. Relations between A type granites and coppermineralization as exemplified by the Machangqing Cu deposit[J]. Science in China(Sedes D),2000,43(1):93-102.
    [119] Bonin B. From orogenic to anomgenic environments: evidence from associated magmaticepisodes[J]. Schweiz. Mineral. Petrogr. Mitt,1988,68:301-311.
    [120] Bonin B. From orogenic to anorogenic settings: evolution of granitoid suites after a majororogenesis[J]. Geology,1990,25:261-270.
    [121] Bonin B, Azzouni-Sekkal A, Bussy F, Ferrag S. Alkalicalcic and alkaline post-orogenic (PO)granite magmatism: petrologic constraints and geodynamic settings[J]. Lithos,1998,45:45-70.
    [122] Clemens J D, Holloway J R and White A J R. Origin of A type granite, Experimental constrats[J].Am. Mineral.,1986,71:317-324.
    [123] Collins W J, Beams S D, White A J R, Chappell B W. Nature and origin A-type granites withparticular reference to Southeastern Australia[J]. Contrib. Mineral.J Petrol,1982,80:189-200.
    [124] Creaser R A,Price R C,Wormald R J. A-type granites revisited:assessment of a residual-sourcemodel[J].Geology,1991,19:163-166.
    [125] Drysdall A R, N J Jackson, C R Ramsay, C J Douch and D Hackett. Rare element mineralizationrelated to Precambrian alkali granites in the Arabian Shield[J]. Econ. Geol,1984,79:1366-1377.
    [126] Eby G N. The A-type granitoids: a review of their occurrence and chemical characteristics andspeculations on their petrogenesis[J]. Lithos,1990,26:115-134.
    [127] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonicimplications[J]. Geology,1992,20:641-644.
    [128] Engebretson D C, Cox A&Go rdon R G. Relative motions between oceanic and continental plates in the Pacific basins[J]. Geo logical Society of America Special Paper,1985,206:1-59.
    [129] Faure M and Natalin B. The geodynam ic evolution of the eastern Eurasian margin in Mesozo ictimes[J]. Tectonophy,1992,208:397-411.
    [130] Green T H. Experimental studies of trace-element partitioning applicable to igneouspetrogenesis-Sedona16years later[J]. Chem. Geol,1994,117:1-36.
    [131] Groult D, Michel C, Raveau B. Surde nouveaux pyrochlores lacunaires dions bivalentssynthetises par, echanges dions[J]. Journal of Inorganic and Nuclear Chemistry,1975,37:2203-2205.
    [132] Hawkesworth C J, Turner S, Gallagher K, Hunter A, Bradshaw Tand Rogers N. Calc2alkalinemagmatism, litho spheric thinning and extension in the Basin and Range[J]. Geophy. Res.1995,100:10271-10286.
    [133] Hawthorne F C. The crystal structure and site chemistry of fluor-riebeckite[J]. The crystalchemistry of the amphiboles.,1978,16:187-194.
    [134] Hess P C. Structure of silicate melts[J]. Can. Minera.,1977,15:162-178.
    [135] Hess P C. Polymerization model for silicate melts[M]. Princeton: Princeton University press,1980:3-42.
    [136] Hilyard M, Nielsen R L, Beard J S, Patin B D A, Blencoe J. Experimental determination of thepartitioning behavior of rare earth and high field strength elements between pargasitic amphiboleand natural silicate melts[J]. Geochim. Cosmochim. Acta,2000,64(6):1103-1120.
    [137] Hooper P R, Bailey D G and McCarley Holder G A. Tertiary calc-alkaline magmatismassociated with litho spheric extension in the Pacific Northwest[J]. Geophy Res,1995,100:10303-10319.
    [138] Jackson N J and A R Drysdall. Alkali granite-related Nb-Zr-Ree-U-Th mineralization in theArabian shield, In:high heat production granite, hydrothermal circulation and ore genesis[A].Edited by the Institution of Mining and Metallurgy[C], chameleon press Ltd,1985,479-487.
    [139] Jahn B M, Wu F Y, CaIpdevila R et a1. Highly evolved juvenile granites with tetrad REEpatterns: the Woduhe and and Baerzhe granites from the Great Xing’ an Mountains in NEChina[J]. Lithos,2001.59:171-198.
    [140] Jiang N, Zhang S Q, Zhou W G, Liu Y S. Origin of a Mesozoic granite with A typecharacteristics from the North China craton: highly fractionated from I-type magmas? ContribMineral Petrol[J], Published online,2009,21. January.
    [141] Jian P, Liu D Y, Kr ner A. Time scale of an early to mid-paleozoic orogenic cycle of thelong-lived Central Asian Orogenic Belt, Inner Mogolia of China: Implication for continentalgrowth[J]. Lithos,2008,101(3-4):233-259.
    [142] Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks[M]. New York:Springer-Ver-lag,1996.
    [143] Kevin K, Francois H, Penelope L K. Fractionation VS. magma mixing in the Wangrah Suite Atype granites, Lachlan Fold Belt, Australia: Experimental constraints[J]. Lithos,2008,102:415-434.
    [144] King P L, Chappell B W, Allen C M and White A J R. Are A type granites the hightemperaturefelsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Australia EarthSci.,2001,48:501-514.
    [145] King P L, White A J R, Chappell B W and Alien C M.1997. Characterization and origin ofalumionous A tppe granites from the Lachlan Fold Belt, Southeastern Australia[J]. J Petrol,38:371-391.
    [146] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal ofMicroscopy,1993,171:223-232.
    [147] Kuzmin M L., Abramovich G Y A., Dril S L,&Kravch insky V Y A., The Mongolian-Okhotsksuture as the evidence of late Paleozo ic-Mesozo ic collisional p rocesses in Central Asia[J].Abstract of30th IGC,1996,1(1):231.
    [148] Кузъменко м.в.,Геохимия тантала И генезис танталовых андогенных месторождений. Изц,Наука,1978.
    [149] Liegeois J P, Navez J, Hertogen J, Black R. Contrasting origin of post-collisional high-Kcalc-alkaline and shoshonitic versus alkaline and peralkaline granitoids[J]. The use of slidingnormalization. Lithos,1998,45:1-28.
    [150] Linnen R L. The effect of water on accessory phase solubility in subaluminous and peralkalinegranitic melts[J]. Lithos,2005,80:267-280.
    [151] Liu S, Hu R, Gao S, Feng C, Qi, Y, Wang T, Feng G and Coulson IM. U-Pb zircon age,geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions andassociated mafic dikes from Sulu orogenic belt, eastern China[J]. Lithos,2008,106:365-379.
    [152] London D. The application of experimental petrolog to the genesis and crystallization of graniticpegmatites[J]. Canadian M ineralogist,1992,30(3):499-519.
    [153] Miller C, Schuster R, Klo tzliU, F rank, W&Purtscheller F. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochem ical and Sr-Nd-Pb-O isotop ic constraints for mantlesource characteristics and petrologenesis[J]. J Petrol.1999,40(9):1399-1324.
    [154] Mitchell A H G and M S Carson, Mineral deposits and global tectonic settings[J]. AcademicPress,1981,405.
    [155] Mohammed Z, El-Bialy and Martin J S. Late Neoproterozoic alkaline magmatism in theArabian-Nubian Shield: the postcollisional Aype granite of Sahara-Umm Adawi pluton. Sinai,Egypt[J]. Arab J. Geosci., published online,2008,23decenmber.
    [156] Munha J and Kerrieh R. Sea water basalt interaetion in spilites from the Iberian pyrite belt.Contrib[J]. Mineral.Petrol.,1980,73:191-200.
    [157] Mysen B O. Virgo D and seifert F A. The sttucture of silicate melts: implications for chemicaland Physical Properties of natural magma[J]. Reviews of geophysics and space physics.1982,20(3):353-383.
    [158] Patino Dounce AE. Generation of metaluminous A-type granites blow-pressure melting ofcalc-alkaline granitoids[J]. Geology,1997,25:743-746.
    [159] Poitrasson F, Pin C, Duthou J L, Platevoet B. Aluminous subsolvous anorogenic granite gneiss inthe light of Nd isotopic heterogeneity[J]. Chem. Geol,1994,112:199-219.
    [160] Poitrasson F, Duthou J L, Pin C. The relationship between petrology and Nd isotopes as evidencefor contrasting anorogenic granites gneiss: example of the Corsican Province (SE France)[J]. JPetrol,1995,36:1251-1274.
    [161] Qiu J S, Wang D Z, Mclnnes B I A, Jiang S Y, Wang R C, Kanisawa S.Two subgroups of Atype granites in the coastal area of Zhejiang and Fujian Provinces, S E China: age andgeochemical constraints on their petrogenesis[J]. Trans. R. Soc. Edinb. Earth Sci.,2004,95:227-236.
    [162] Rajesh HM. Characterization and origin of a compositionally zoned aluminous A-type granitefrom South India[J]. Geological Magazine,2000,37(3):291-318.
    [163] Reid JB, Murray DP, Hermes OD and Steig EJ. Fractional crystallization in granites of the SierraNevada: How importants is it?[J], Geology,1993,21:587-590.
    [164] Rogem J W, Greenberg J K. Late-orogenic, post-orogenic, and anorogenic granites:distinctionby major-element and trace-element chemistry and possible origin[J]. Geol,1990,98:291-309.
    [165] Ronald T, Flynn C, Wayne Burnham. An experimental determination of rare earth partit ioncoefficients between achloride containing vaporphase and silicate melts [J]. GeochimCosmochim Acta.,1978,42(6):685-701.
    [166] Ruppel C. Extensional p rocesses in continental litho sphere[J]. Geophys. Res,1995,100:24187-24215.
    [167] Sawkins F J, Metal deposit in relation to plate tectonics[M]. Springer-Verlay,1984:315.
    [168] Seng r AMC, Natal’ in BA and Burtman VS. Evolution of the Altaid tectonic collage andPaleozoic crustal growth in Eurasia[J]. Nature,1993,364:299-307.
    [169] Shepherd T J, Rankin AHand Alderton D HM. A practical guide to fluid inclusion studies[M].Blackie&Son Limited,1985,1-239.
    [170] Skjerlie K P and Johnston A D. Fluid-absent melting behavior of an F-rich tonalitic gnieiss atmid-crustal pressures: Implications for the generation of anorogenic granite[J]. J Petrol,1993a,34:785-815.
    [171] Skjerlie K P and Johnston A D. Vapor-absent melting at10kbar of a biotite-and amphibole-bearing tonalitic gnesis: Implications for the genemtion of A-type granites[J]. Geology,1993b,20:263-266.
    [172] Swanson S E.. Relation of nucleation and cry stal_growth rate to the development of granitictextures[J]. American Mineralogist,1977,62:966-978.
    [173] Sylvester P J. Post-collisional alkaline granites[J]. Geol,1989,97:261-280.
    [174] Tuttle O F and Bowen N L. Origin of Granite in the Light of Granite in the Light of ExperimentalStudies in the System NaAlSi3O8-KAlsi3O8-SiO2-H2O [M]. Geol. Soc. Am. Memoir,1958:74.
    [175] Turner S, Hawkeswo rth C J, Liu J, Rogers N, Kelly&vanCalsteren P. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. N ature,,1993,364:50-53.
    [176] Turner S and Foden J. Magma mingling in late-Delamerian A-type granites at Mannum SouthAustralia[J]. Mineralogy and Petrology,1996,56:147-169.
    [177] Turner S, A rnaud N, Liu J, Hawkeswo rth C J, Harris N, Kelley S, van Calsteren P&Peng W,1996, Post-collision, shonitic volcanism on the Tibetan Plateau: implications for convectivethinning of the litho sphere and the source of oceanic basalts[J]. J Petrol,1993,37:45-71.
    [178] Veevers JJ, Saeed A, Belousova FA. U-Pb ages and source composition by Hf-isotope and traceelement analysis of detrital zircons in Permian sandstone and modern sand from southwesternAustralia and a review of the paleogeographical and denudational history of the YilgarnCraton[J]. Earth Science Reviews,2005,68:245-279.
    [179] Wang, F., Zhou, X.H., Zhang, L.C., Ying, J.F.,Zhang, Y.T.,Wu, F.Y., Zhu, R.X. Late Mesozoicvolcanism in the Great Xing’an Rang (NE China): Timing and implications for the dynamicsetting of NE Asia[J]. Earth and Planetary Science Letters,2006,251,179-198.
    [180] Wang R C, Wang D Z, Zhao G T. Accessory Mineral Record of Magma-Fluid Interaction in thelaoshan I-and A-Type Granitic Complex, Eastern China[J]. Phys. Chem. Earth,2001,26(9-10):835-849.
    [181] Wechsler B A, Prewitt C T, Crystal structure of ilmenite (FeTiO3) at high temperature and highpressure[J]. American Mineralogist,1984,69:176-185.
    [182] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics,discrimination and petrogenesis[J]. Contrib. Mineral. J Petrol,1987,95:407-419.
    [183] Whalen J B, Jenner G A, Longstaffe F J, Robert F, Gariepy C. Geochemical and isotopic (O, Nd,Pb and Sr) constraints on A-type granite: petrogenesis based on the Topsails igneous suite,Newfoundland Appalachians[J]. J Petrol,1996,37:1463-1489.
    [184] Wei C S, Zheng Y F, Zhao Z F. John W V. Oxygen and neodymium isotope evidence forrecycling of juvenile crust in northeast China[J]. Geology,2002,30(4):375-378.
    [185] Wei C S.207Pb-208Pb decoupling of alkali feldspar from a late Mesozoic A-type granite in easternChina[J]. Miner. Petrol,2008a,94:209-223.
    [186] Wei C S. Zhao Z F, Spicuzza M J. Zircon oxygen isotopic constraint on the sources of lateMesozoic A-type granites in eastern China[J]. Chem. Geol,2008b,250:1-15.
    [187] Wickham S M, Litvinovsky B A, Zanvilevich A N, Bindeman D N. Geochemical evolution ofPhanerzoic magmatism in Transbaikalia. East Asia: a key constraint on the origin of Kdch silicicmagmas and the process of cratonization[J]. Geophys. Res,1995,100:15641-15654.
    [188] Wickham S M, Alberts A D, Zanvilevich A N, Litvinovsky B A, Bindeman D N, Schauble E A.A stable isotope study of anorogenic magmatism in East Central Asia[J]. J Petrol,1996,37:1063-1095.
    [189] Windley B F. Proterozoic anorogenic magmatism and its orogenic connections[J]. J. Geol. Soc.,1993,150:39-50.
    [190] Winter J D. An introduction igneous and Metamorphic petrology[M]. New Jersey: printice Hall,2001:1-697.
    [191] Wu F Y, Sun D Y, Li H M, Jahn B M, Wilde S. A-type granites in northeastern China: age andgeochemical constraints on their petrogenesis[J]. Chemical Geology,2002,187:143-173.
    [192] Wu FY, Sun DY, Ge WC, Zhang YB, Matthew L, Wilde SA. and Jahn BM. Geochronology ofthe Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences,2011,41(1):1-30.
    [193] Xie L, Wang R C, Chen X M, Qiu J S and Wang D Z. Th-rich zircon from peralkaline A typegranite: Mineralogical features and petrological implications[J]. Chinese Science Bulletinl,2005,50(8):809-817.
    [194] Xu WL, Ji WQ, Pei FP, Meng E,Yu Y, Yang DB and Zhang XZ. Triassic volcanism in easternHeilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonicimplications[J]. Journal of Asian Earth Sciences,2009,34:392-402.
    [195] Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB and Wang W. Spatial-temporal relationshipsof Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting andtransformations between multiple tectonic systems. Journal of Asian Earth Sciences,2013,74:167-193.
    [196] Xiong XL, Zhao Z H, Zhu J C and Rao B. Phase relations in albite granite-H2O-HF system andtheir petrogenetic application[J]. Geochemical Journal,9991,33:199-214.
    [197] Yang JH, Chung, SL, Wilde,SA, Wu, FY, Chu MF, Lo CH and Fan, HR. Petrogenesis ofpost-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemicaland Nd-Sr isotopic evidence[J]. Chemical Geology,2005,214:99-125.
    [198] Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW, Liu XM. Constraints on the timing of uplift ofthe Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters,2006,246:336-245.
    [199] Ying J F, Zhou XH and Hang LC. Geochronological framework of Mesozoic volcanic rocks inthe Great Xing’an Range, NE China and their geodynamic implications[J]. Journal of AsianEarth Sciencse,2010,39(6):786-793.
    [200] Yuan HL, Gao S and Liu XM. Accurate U-Pb age and trace element determinations of zircon bylaser ablation-inductively coupled plasma mass spectrometry[J]. Geostandards and GeoanalyticalResearch,2004,28:353-370.
    [201] Zhang, J.H., Ge, W.C., Wu, F.Y., Liu, X.M., Mesozoic bimodal volcanic suite in Zhalantun ofthe Da hinggan Range and its geological siginificance: Zircon U-Pb age and Hf isotopicconstrants[J]. Acta Geol. Sin,2006,80:801-802.
    [202] Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH, and Liu XM. Large-scale Early Cretaceousvolcanic events in the northern Great Xing'an Range[J]. Lithos,2008,102:138-157.
    [203] Zhang JH, Gao S, Ge WC, Wu FY, Yang JH, Wilde SA and Li M. Geochronology of theMesozoic volcanic rocks in the Great Xing'an Range, northeastern China: implications forsubduction-induced delamination[J]. Chemical Geology,2010,276:144-165.
    [204] Zhao X F, Zhou M F, Li J W and Wu F Y. Association of Neoproterozoic A-and I-type granitesin South China: Implications for generation of A-type granites in a subduction-relatedenvironment[J]. Chemical Geology,2008,257:1-15.
    [205] Zhao X X and Coe R S,1996, Paleomagnetic constraints on the paleogeography of China:Implications for Gondwana land. A bsatract of30th IGC,1996,1(1):231.
    [206] Zhong H, Zhu WG, Chu ZY, He DF and Song XY. Shrimp U-Pb zircon geochronology,geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneousprovince, SW China[J]. Chemical Geology,2007,236:112-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700