用户名: 密码: 验证码:
气溶胶粒子光学常数的实验研究及辐射传输的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶粒子广泛存在于自然界中,如尘埃、烟粒、微生物、植物的孢子和花粉等,气溶胶粒子不仅影响人类的健康,还可以导致天气和气候的变化。气溶胶粒子对来自太阳短波辐射和地球的长波辐射产生吸收和散射作用,从而影响地-气系统的辐射能量平衡。因此,气溶胶粒子辐射问题的研究对大气光学、大气辐射学、气候学、环境医学及生态学等学科来说,都有重要意义。在此背景下,本文开展了含气溶胶粒子介质内辐射传输理论及数值求解方法的研究;探讨了准直光入射和漫射光入射时气溶胶粒子系的红外光谱透射特性;并在此基础上建立了气溶胶粒子光学常数反演模型,即通过实验测量得到气溶胶粒子系的红外透射率,然后结合Mie理论和K-K关系式反演得到气溶胶粒子的等效光学常数;最后,针对典型的气溶胶粒子系—云层计算了其红外辐射特性。
     首先,建立了求解二维线性各向异性散射参与性介质内辐射换热问题的积分方程有限元法模型。模拟了各向异性散射介质在规则形状和非规则形状几何体的辐射传输,考察了散射相函数、反照率和壁面发射率对边界出射辐射强度及热流的影响。对于复杂的各向异性散射问题,在详细分析二维球谐函数法(P1和P3近似)的基础上,建立了基于P1和P3近似的球谐函数有限差分模型。在进一步的研究中,将P1与有限元法结合发展了球谐函数有限元法,并将球谐函数有限元法推广应用于求解二维非规则参与性介质的辐射换热问题。
     其次,基于完整的辐射传输方程建立了准直光入射和漫射光入射时气溶胶粒子系红外透射特性的计算模型。在P1近似基础上发展了求解气溶胶粒子系红外透射特性计算的MDA法,并对气溶胶粒子系红外透射特性的影响因素(如粒子粒径、粒子形状、粒子浓度、粒子层厚度,探测角度)进行研究。通过研究获得了探测波段为3-5μm和8-12μm时水雾粒子红外隐身的最佳粒径。
     基于以上分析,建立反演气溶胶粒子光学常数的透射法模型,即实验测量气溶胶粒子粒子系的红外透射率,然后结合Mie理论和K-K关系式反演气溶胶粒子的光学常数。实验测得多种粒子按不同体积百分比混合而成的混合粒子系的红外光谱透射率,然后将所测得的红外光谱透射率带入到反演模型中得到混合粒子的等效光学常数,结果表明混合粒子的等效光学常数介于各组分的光学常数之间。将有效介质理论计算结果与反演结果进行比较,有效介质理论的计算结果与实验反演结果之间有一定的偏差,该偏差与各组分的体积比及混合方式有关。此外,对哈尔滨地区收集得到的气溶胶粒子,开展了等效光学常数的实验研究,结果表明哈尔滨地区气溶胶粒子的等效光学常数实部在1.45和1.7之间,而虚部在0和0.3之间。
     针对典型的气溶胶粒子系-云层,依据第四章和第五章的计算方法和计算结果分别计算了含有不同类型气溶胶粒子的五种水云的辐射特性和红外透射特性,上述的五种水云分别为洁净水云、含有乡村型气溶胶粒子的水云、含有城市型气溶胶粒子的水云、含有哈尔滨地区气溶胶粒子的水云和沙尘暴天气时含有哈尔滨地区气溶胶粒子的水云。计算波长范围分别为3-5μm和8-12μm。
     通过本文的研究,丰富和发展了辐射传输的数值计算方法;同时对气溶胶粒子系的红外辐射特性和透射特性及影响因素获得了较深入细致的认识,为气溶胶粒子光学常数的反演提供了理论依据;获得了基于实验测量气溶胶粒子红外透射率反演气溶胶粒子等效光学常数的模型。研究结果可为大气辐射传输、遥感探测等领域的研究提供参考依据。
Aerosol particles are widespread in nature in forms of dust, smoke, microbes,spores, pollen and so on. Aerosol particles can not only affect human health, but alsolead to changes in weather and climate. The direct impact aerosol particles have onweather and climate is reflected in its scattering and absorption of solar shortwaveradiation and the Earth's longwave radiation, and thus affect the radiative balance ofthe earth-atmosphere system. Therefore, the study of aerosol particle radiation is ofgreat significance to atmospheric optics, atmospheric radiation science, climatology,environmental medicine, ecology and other disciplines. In this paper, thesystematical study on radiation transfer theory and numerical method for solving inparticipating media with aerosol particles have been presented. The infrared spectraltransmittance characteristics of aerosol particles with collimated and diffuseincident irradiation are discussed. Based on transmittance of the aerosol particlesfrom experiments, the inverse model to obtain the optical constant of aerosolparticles is developed. The infrared radiative characteristics and atmosphericradiative transfer for a typical aerosol particle system, namely, cloud, are calculated.
     Firstly, integral equation method and the integral equation finite elementmethod are proposed to solve the radiative transfer within a two-dimensionalparticipating media. The radiation transfer caculations in the anisotropic scatteringmedia have been done for both regular and irregular enclosures. The influences ofthe scattering phase function, albedo, and the wall emissivity on the incidentradiation intensity and heat flux are studied in the dissertation. Based on the analysisof the spherical harmonics method (P1andP3), the finite difference model haspresented for the participating media with complicated anisotropic scattering.Further research has been done usingP1in conjunction with the finite elementmethod to deal with the radiative heat transfer in two-dimensional participatingmedia with regular and irregular enclosures.
     Secondly, A computational model of the infrared transmission characteristics ofthe aerosol particle layer with collimated and diffuse incident irradiation ispresented. On the basis ofP1approximation, MDA method has been developed forsolving the infrared transmission characteristics of the aerosol particle layer. Influencing factors (such as particle size, particle shape, particle volume fraction,particle layer thickness, the detection angle) on infrared transmission characteristicsof aerosol particle layer factors are studied in further reseach. The best infraredstealth diameter of water fog particles is obtained for the detecting waveband3-5μmand8-12μm.
     Based on the analysis above, a transmission model is used to obtain the opticalconstants of aerosol particles. The infrared spectral transmittance of mixed particleswhich is a mixture of different types of aerosol particles can be measured by meansof the experimental measurement. Combined with the Mie theory and K-Krelationship, the equivalent spectral optical constants of the mixed particles havebeen inversed with the measured infrared spectral transmittance. It is shown that theequivalent optical constant of the mixed particles lies between the optical constantsof each component. Comparing the inversion results with those are calculated by theeffective medium theory, certain differences exist between them which have therelationship with the volume fractions and mixed mode for each component.Furthermore, the equivalent optical constant of aerosol particles collected in Harbinarea is determined by the inverse model used in the present work. The real part ofthe equivalent optical constant of aerosol particles in Harbin area varies between1.45and1.7, and the imaginary part between0and0.3.
     For the typical aerosol particles-cloud, the radiative properties and infraredtransmission characteristics of water cloud and water clouds containing differenttypes of aerosol particles are studied with the simulation method as shown inchapters4and5. Five types water cloud are examined in the research, the cleanwater cloud, the water cloud with rural type aerosol particles, the water cloud withcity type aerosol particles, the water clouds with aerosol particles from Harbin forsandstorms and the clear weather. The infrared transmission characteristics of watercloud have been calculated in3-5μm and8-12μm wavelength ranges.
     With the investigations in this dissertation, the simulation methods for solvingthe radiative heat transfer in participating media are developed. The thoroughresearches have been done for infrared radiative properties of aerosol particles andtheir influencing factors. The research resultes prepare the ground for opticalconstant inversion of aerosol particles. A equivalent optical constants inversionmodel has been proposed based on experimental measurement of the infrared transmittance of aerosol particles. The results can provide a reference for researchesin the field of radiative transfer, remote sensing, etc.
引文
1毛节泰,张军华,王美华.中国大气气溶胶研究综述.气象学报,2002,60(5):625-632
    2熊晓洁.双区通风房间中气溶胶粒子输送的模拟.东华大学硕士学位论文.2007
    3石广玉.大气辐射学.北京:科学出版社,2007
    4J. R. Howell.Application of Monte Carlo to Heat TransferProblems.Advances in Heat Transfer,1968,5:1-54
    5M. F. Modest.Radiative Heat Transfer.New York: McGraw-Hill:Inc,2003
    6程强,周怀春,黄志锋,余永林,黄德修.Dresor法对二维辐射传递问题研究.工程热物理学报,2008,29(10):1735-1738
    7谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输的数值计算-计算热辐射学.哈尔滨:哈尔滨工业大学出版社,2006
    8W. A. Fiveland.Discrete-Ordinates Solution of the Radiative TransportEquation for Rectangular Enclosures.ASME Journal of Heat Transfer,1984,106:699-706
    9S. H. Kim,K. Y. Huh.Assessment of the Finite-Volume Method and theDiscrete Ordinate Method for Radiative Heat Transfer in a Three-DimensionalRectangular Enclosure.Numerical Heat Transfer,Part B,1999,35:85-112
    10G. Krishnamoorthy,R. Rawat,P. J. Smith.Parallel Computations of RadiativeHeat Transfer Using the Discrete Ordinates Method.Numerical Heat Transfer,Part B,2005,47:19-38
    11J. C. Chai,H. S. Lee,S. V. Patankar.Improved Treatment of Scattering Usingthe Discrete Ordinates Method.ASME Journal of Heat Transfer,1994,116:260-263
    12F. Liu,H. A. Becker,A. Pollard.Spatial Differencing Schemes of theDiscrete-Ordinates Method.Numerical Heat Transfer,Part B,1996,30:23-43
    13J. Con,P. J. Coelho.Parallelization of the Discrete OrdinatesMethod.Numerical Heat Transfer,Part B,1997,32:151-173
    14K. H. Lee,R. Viskanta.Two-Dimensional Combined Conduction andRadiation Heat Transfer: Comparison of the Discrete Ordinates Method andthe Diffusion Approximation Methods.Numerical Heat Transfer,Part A,2001,39:205-225
    15S. W. Baek,M. Y. Kim.Modification of the Discrete-Ordinates Method in anAxisymmetric Cylindrical Geometry.Numerical Heat Transfer,Part B,1997,31:313-326
    16N. Selcuk,G. Kirbas.The Method of Lines Solution of the Discrete OrdinatesMethod for Radiative Heat Transfer in Enclosures.Numerical Heat Transfer,Part B,2000,37:379-392
    17N. Selcuk,I. Ayranci.The Method of Lines Solution of the Discrete OrdinatesMethod for Radiative Heat Transfer in Enclosures Containing ScatteringMedia.Numerical Heat Transfer,Part B,2003,43:179-201
    18H. Amiri,S. H. Mansouri,P. J. Coelho.Application of the Modified DiscreteOrdinates Method with the Concept of Blocked-Off Region to IrregularGeometries.International Journal of Thermal Sciences,2011,50(4):515-524
    19C. Kim,M. Y. Kim,M. J. Yu,S. C. Mishra.Unstructured Polygonal FiniteVolume Solutions of Radiative Heat Transfer in a Complex AxisymmetricEnclosure.Numerical Heat Transfer,Part B,2010,57:227-239
    20K. Slimi,L. Zili-Ghedira,N. S. Ben,A. A. Mohamad.A Transient Study ofCoupled Natural Convection and Radiation in a Porous Vertical ChannelUsing the Finite-Volume Method.Numerical Heat Transfer,Part A,2004,45:451-478
    21J. C. Chai.One-Dimensional Transient Radiation Heat Transfer ModelingUsing a Finite-Volume Method.Numerical Heat Transfer,Part B,2003,44:187-208
    22G. D. Raithby.Discussion of the Finite-Volume Method for Radiation, and ItsApplication Using3d Unstructured Meshes.Numerical Heat Transfer,Part B,1999,35:389-405
    23G. D. Raithby,E. H. Chui.A Finite-Volume Method for Predicting a RadiantHeat Transfer in Enclosures with Participating Media.ASME J. HeatTransfer,1990,112:415-423
    24J. C. Chai,H. S. Lee.Finite-Volume Method for Radiation HeatTransfer.AIAA Journal of Thermophysics and Heat Transfer,1994,8:419-425
    25J. C. Chai,S. V. Patankar.Finite Volume Method for Radiation HeatTransfer.Advances in Numerical Heat Transfer,2000,2:109-141
    26J. Y. Murthy,S. R. Mathur.Finite Volume Method for Radiative Heat TransferUsing Unstructured Meshes.Journal of Thermophysics and Heat Transfer,1998,12:313-321
    27H. P. Tan,M. Lallemand.Transient Radiative-Conductive Heat Transfer inFlat Glasses Submitted to Temperature, Flux and Mixed BoundaryConditions.International Journal of Heat and Mass Transfer,1989,32(5):795-810
    28H. P. Tan,H. L. Yi,P. Y. Wang,L. M. Ruan,T. W. Tong.Ray Tracing Methodfor Transient Coupled Heat Transfer in an Anisotropic ScatteringLayer.International Journal of Heat and Mass Transfer,2004,47(19):4045-4059
    29J. F. Luo,H. P. Tan,L. M. Ruan,T. W. Tong.Refractive Index Effects on HeatTransfer in Multilayer Scattering Composite.Journal of Thermophysics andHeat Transfer,2003,17(3):407-419
    30M. F. Modest.The Improved Differential Approximation for RadiativeTransfer in Multi-Dimentional Media.ASME Journal of Heat Transfer,1990,112:819-821
    31M. P. Menguc,R. Viskanta.Radiative Transfer in Three-DimensionalRectangular Enclosures Containing Inhomogeneous, AnisotropicallyScattering Media.Journal of Quantitative Spectroscopy and RadiativeTransfer,1985,33(6):533-549
    32K. Grella,C. Schwab.Sparse Tensor Spherical Harmonics Approximation inRadiative Transfer.Journal of Computational Physics,2011,230(23):8452-8473
    33D. K. Alexander,W. L. Edward.Light Transport in Biological Tissue Based onthe Simplified Spherical Harmonics Equations.Journal of ComputationalPhysics,2006,220(1):441-470
    34K. Axel,L. Jens,S. Mohammed.Adaptive Solutions of Spn-Approximationsto Radiative Heat Transfer in Glass.International Journal of ThermalSciences,2005,44(1):1013-1023
    35F. Martin,K. Axel,W. L. Edward,Y. Shugo.Time-Dependent Simplified PNApproximation to the Equations of Radiative Transfer.Journal ofComputational Physics,2007,226(2):2289-2305
    36M. Ravishankar,S. Mazumder,M. Sankar.Application of the ModifiedDifferential Approximation for Radiative Transfer to ArbitraryGeometry.Journal of Quantitative Spectroscopy and Radiative Transfer,2010,111:2052-2069
    37D. B. Olfe.A Modification of the Differential Approximation for RadiativeTransfer.AIAA Journal,1967,5(2):638-643
    38H. P. Tan,H. C. Zhang,B. Zhen.Estimation of Ray Effect and False Scatteringin Approximation Solution Method for Thermal Radiative TransferEquation.Numerical Heat Transfer,Part A,2004,46:807-829
    39J. D. Lin.Exact Expressions for Radiative Transfer in an Arbitrary GeometryExposed to Radiation.Journal of Quantitative Spectroscopy and RadiativeTransfer,1987,37(6):591-601
    40J. M. Zhang,W. H. Sutton.Multidimensional Radiative Transfer in Absorbing,Emitting, and Linearly Anisotropic Scattering Cylindrical Medium withSpace-Dependent Properties.Journal of Quantitative Spectroscopy andRadiative Transfer,1994,52(6):791-808
    41W. H. Sutton,X. L. Chen.Radiative Transfer in Finite Cylindrical MediaUsing Transformed Integral Equations.Journal of Quantitative Spectroscopyand Radiative Transfer,2003,77:233-274
    42Z. Altac,M. Tekkalmaz.Solution of the Radiative Integral Transfer Equationsin Rectangular Absorbing, Emitting, and Anisotropically ScatteringHomogeneous Medium.ASME Journal of Heat Transfer,2004,126:137-140
    43Z. Altac,M. Tekkalmaz.Solution of the Radiative Integral Transfer Equationsin Rectangular Participating and Isotropically Scattering InhomogeneousMedium.International Journal of Heat and Mass Transfer,2004,47:101-109
    44A. L. Crosbie,R. G. Schrenker.Radiative Transfer in a Two-DimensionalRectangular Medium Exposed to Diffuse Radiation.Journal of QuantitativeSpectroscopy and Radiative Transfer,1984,31(4):339-372
    45S. T. Thynell.Radiation Transfer in an Isotropically Scattering HomogeneousSolid Sphere.Journal of Quantitative Spectroscopy and Radiative Transfer,1985,33(4):319-330
    46S. T. Thynell.Radiation Transfer Due to a Point Source in an IsotropicallyScattering Inhomogeneous Solid Sphere.Journal of Quantitative Spectroscopyand Radiative Transfer,1986,35(5):349-356
    47S. C. Wu,C. Y. Wu.Partition-Extrapolation Integration Applied to RadiativeTransfer in Cylindrical Media.Journal of Quantitative Spectroscopy andRadiative Transfer,1992,48(3):279-286
    48E. M. Abulwafa,M. T. Attia.Radiative Transfer in Inhomogeneous SolidCylinder with Anisotropic Scattering Using Galerkin Method.Journal ofQuantitative Spectroscopy and Radiative Transfer,2000,66:487-500
    49H. C. Hottel,E. S. Cohen.Radiant Heat Exchange in a Gas-Filled EnclosureAllowance for Nonuniformity of Gas Temperature.AIChE Journal,1958,4:3-14
    50Y. Zhang,M. H. N. Naraghi.Analysis of Spectral Radiative Heat TransferUsing Discrete Factor Method.Journal of Thermophysics and Heat Transfer,1993,7(3):542-544
    51C. Saltiel,M. H. N. Naraghi.Parallel Processing Approach for RadiativeTransfer in Participating Media Using Arbitray Nodal Distribution.NumericalHeat Transfer,Part B,1993,17:227-243
    52A. K. Ma.Generalized Zoning Mmethod in One-Dimensional ParticipatingMedia.ASME Journal of Heat Transfer,1995,117(2):520-523
    53P. S. Cumber.Improvements to the Discrete Transfer Method of CaculatingRadiative Heat Transfer.International Journal of Heat and Mass Transfer,1995,38(12):2251-2258
    54谈和平,夏新林,李林,鲍亦令,余其铮.用DT法求解三维圆柱体半透明介质内辐射与导热的非稳态复合换热.计算物理,1995,12(2):241-247
    55J. V. Daurelle,R. Occelli,R. Martin.Finite-Element Modeling of RadiationHeat Transfer Coupled with Conduction in an Adaptive Method.NumericalHeat Transfer,Part B,1994,25:61-73
    56L. M. Ruan,W. An,H. P. Tan,H. Qi.Least-Squares Finite-Element Methodof Multidimensional Radiative Heat Transfer in Absorbing and ScatteringMedia.Numerical Heat Transfer,Part A,2007,51:657-677
    57L. Zhang,J. M. Zhao,L. H. Liu.A Finite Element Model for the ThermalRadiative Properties of Graded Index Fiber Coated with Thin AbsorbingFilm.Numerical Heat Transfer,Part A,2010,58:85-100
    58齐宏,阮立明,谭建宇.矩形介质内辐射换热的有限元法.计算物理,2004,24(6):547-549
    59L. H. Liu,L. Zhang,H. P. Tan.Finite Element Method for Radiation HeatTransfer in Multi-Dimensional Graded Index Medium.Journal of QuantitativeSpectroscopy and Radiative Transfer,2006,97(3):436-445
    60L. H. Liu.Least-Square Finite Element Method for Radiative Transfer inGraded Index Medium.Journal of Quantitative Spectroscopy and RadiativeTransfer,2007,103(3):536-544
    61安巍.求解辐射传输方程的有限元法及瞬态反问题研究.哈尔滨工业大学博士学位论文,2007
    62J. N. Reddy,V. D. Murty.Finite Element Solution of Integral EquationsArising in Radiative Heat Transfer and Laminar Boundary LayerTheory.Numerical Heat Transfer,1978,1:389-401
    63T. J. Chung,J. Y. Kim.Two-Dimensional, Combined-Mode Heat Transfer byConduction, Convection and Radiation in Emitting, Absorbing, and ScatteringMedia-Solution by Finite Elements.ASME Journal of Heat Transfer,1984,106(2):448-452
    64L. R. Utreja,T. J. Chung.Combined Convection-Conduction-RadiationBoundary Layer Flows Using Optimal Control Penalty FiniteElements.ASME Journal of Heat Transfer,1989,111:433-437
    65S. Brandon,J. J. Derby.A Finite Element Method for Internal Radiative HeatTransfer and Its Application to Analysis of the Growth of SemitransparentCrystals.ASME HTD, Fundamentals of Radiation Heat Transfer,1991,(106):1-6
    66S. P. Burns,J. R. Howell,D. R. Klein.Finite Element Solution for RadiativeHeat Transfer with Nongray, Nonhomogeneous Radiative Properties.ASMENational Heat Transfer Conference,1995,(13):3-10
    67L. M. Ruan,M. Xie,H. Qi.Development of a Finite Element Model forCoupled Radiative and Conductive Heat Transfer in ParticipatingMedia.Journal of Quantitative Spectroscopy and Radiative Transfer,2006,102:190-202
    68M. F. Modest,J. Yang.Elliptic Pde Formulation and Boundary Conditions ofthe Spherical Harmonics Method of Arbitrary Order for GeneralThree-Dimensional Geometries.Journal of Quantitative Spectroscopy andRadiative Transfer,2008,109:1641-1666
    69E. D. Aydin,S. Katsimichas,C. R. E. de Oliveira.Time-Dependent Diffusionand Transport Calculations Using a Finite-Element-Spherical HarmonicsMethod.Journal of Quantitative Spectroscopy and Radiative Transfer,2005,95(3):349-363
    70S. T. Wu,R. E. Ferguson,L. L. Altgibers.Application of Finite ElementTechniques to the Interaction of Conduction and Radiation in a ParticipatingMedium.Heat Transfer and Thermal Control,1980,78:61-91
    71R. L. Fernandes,J. Francis,J. N. Reddy.A Finite Element Approach toCombined Conductive and Radiative Heat Transfer in a Planar Medium.HeatTransfer and Thermal Control,1980,(78):92-109
    72M. L. Nice.Application of Finite Elements to Heat Transfer in a ParticipatingMedium.Washing D. C:T. M. Shih,Hemisphere,1983:62-71
    73J. Y. Kim,T. J. Chung.Two-Dimensional, Combined-Mode Heat Transfer byConduction, Convection and Radiation in Emitting, Absorbing, and ScatteringMedia-Solution by Finite Elements.ASME Journal of Heat Transfer,1984,(106):448-452
    74S. Brandon,J. J. Derby.A Finite Element Method for Conduction, InternalRadiation, and Solidification in a Finite AxisymmetricEnclosure.International Journal Numerical Methods Heat Fluid Flow,1992,2:299-333
    75J. H. Jeans.The Equations of Radiativetransfer of Energy.Monthly NoticesRoyal Astronomical Society,1917,78:28-36
    76R. L. Murray.Nuclear Reactor Physics.Englewood Cliffs:Prentice Hall,1957
    77B. Davison.Neutron Transport Theory.London:Oxford University Press,1958
    78V. Kourganoff.Basic Methods in Transfer Problems.New York:DoverPublications,1963:36-97
    79Y. Bayazitoglu,J. Higenyi.The Higher-Order Differential Equations ofRadiative Transfer: P3Approximation.AIAA Journal,1979,17:424-431
    80A. C. Ratze,J. R. Howell.Two-Dimensional Radiation inAbsorbing-Emitting-Scattering Media Using the PNApproximation.Journal ofHeat Transfer-Transactions of the ASME,1983,105:333-340
    81P. Cheng.Dynamics of a Radiating Gas with Application to Flow over a WavyWall.AIAA Journal,1966,4(2):238-245
    82S. C. S. Ou,K. N. Liou.Generalization of the Spherical Harmonic Method toRadiative Transfer in Multi-Dimensional Space.Journal of QuantitativeSpectroscopy and Radiative Transfer,1982,4(28):271-288
    83M. F. Modest.The Modified Differential Approximation for RadiativeTransfer in General Three-Dimensional Media.Journal of Thermophysics andHeat Transfer,1989,3(3):283-288
    84张小娟.基于P3近似理论的空间分辨漫反射研究.天津大学博士学位论文,2005
    85高宗慧,刘迎,郭云峰,田会娟.基于P3近似的空间分辨漫反射研究.光学学报,2006,26(8):1220-1225
    86张昊春,易红亮,谈和平.球谐函数法求解辐射传输方程的假散射和射线效应.计算物理,2006,23(2):237-242
    87M. A. Atalay.PNSolutions of Radiative Heat Transfer in a Slab withReflective Boundaries.Journal of Quantitative Spectroscopy and RadiativeTransfer,2006,101:100-108
    88F. Martin,K. Axel.Time-Dependent Simplified PNApproximation to theEquations of Radiative Transfer.Journal of Computational Physics,2007,226:2289-2305
    89柴成刚.球谐函数法解点源辐射传输方程的P3近似及其在生物组织中的应用.计算物理,2009,26(1):101-106
    90M. Bhuvaneswari,C. Y. Wu.Differential Approximations for TransientRadiative Transfer in Refractive Planar Media with Pulse Irradiation.Journalof Quantitative Spectroscopy and Radiative Transfer,2009,110:389-401
    91Z. Yuan,X. H. Hu,H. B. Jiang.A Higher Order Diffusion Model forThree-Dimensional Photon Migration and Image Reconstruction in OpticalTomography.Physics in Medicine and Biology,2009,54:65-88
    92袁远,杨果,刘彬,谈和平.任意阶球谐函数法求解辐射传输问题的误差分析.工程热物理学报,2011,32(6):1043-1046
    93袁远,谢放,易红亮,董士奎,谈和平.非线性各向异性散射介质红外辐射传输特性的PN方法.红外与毫米波学报,2011,30(5):439-445
    94王希影,齐宏,王青青,阮立明.基于MDA法计算水雾粒子红外隐身粒径.工程热物理学报,2011,32(8):1389-1392
    95K. F. Evans.Two-Dimensional Radiative Transfer in CloudyAtmospheres:Spherical Harmonic Spatial Grid Method.Journal of theAtmospheric Science,1993,50(18):3111-3124
    96K. F. Evans.The Spherical Harmonics Discrete Ordinate Method forThree-Dimensional Atmospheric Radiative Transfer.Journal of theAtmospheric Science,1998,55:429-446
    97J. Yang,M. F. Modest.Elliptic Pde Formulation of GeneralThree-Dimensional Higher-Order Pn-Approximations for RadiativeTransfer.Journal of Quantitative Spectroscopy and Radiative Transfer,2006,104:217-227
    98N. S. Trasi,C. R. E. de Oliveira,J. D. Haigh.A Finite Element-SphericalHarmonics Model for Radiative Transfer in Inhomogeneous Clouds Part I. TheEvent Model.Atmospheric Research,2004,72:197-221
    99P. A. Cook,C. R. E. De Oliveira,J. D. Haigh.A Finite Element-SphericalHarmonics Model for Radiative Transfer in Inhomogeneous Clouds. Part IISome Applications.Atmospheric Research,2004,72:223-237
    100E. D. Aydin,C. R. E. De Oliveira,A. J. H. Goddard.A FiniteElement-Spherical Harmonics Radiation Transport Model for PhotonMigration in Turbid Media.Journal of Quantitative Spectroscopy andRadiative Transfer,2004,84:247-260
    101A. L. Fymat.Inversion Methods in Temperature and Aerosol RemoteSounding:Their Commonality and Differernces,and Some UnexploredApproaches.Inversion Methods in Atmospheric Remote Sounding: NASA,1977
    102Y. Shu,X. J. Zhou,Y. Z. Zhao.A Theoretical Study of Multi-WavelengthLidar Exploration of Optical Properties of Atmospheric Aerosols.Advances inAtmospheric Sciences,1986,1:23-38
    103J. H. Qiu,X. Y. Zhou.Simulataneous Determination of Aerosol SizeDistribution and Refractive Index and Surface Albedo from Radiance. Part I:Theroy.Advances in Atmospheric Sciences,1986,3:162-171
    104阮立明.煤灰粒子辐射特性的研究.哈尔滨工业大学博士学位论文,1997
    105阎逢旗,胡欢陵,周军.大气气溶胶粒子数密度谱和折射率虚部的测量.光学学报,2003,23(7):855-859
    106董真,黄士鸿,李子华.大气环境及化学组分对气溶胶辐射特性影响研究.过程工程学报,2004,4:838-844
    107李学彬,宫纯文,黄印博,魏合理,胡欢陵.大气气溶胶粒子折射率虚部反演方法研究.光子学报,2009,38(2):401-404
    108赵国艳.气溶胶颗粒材料光学常数的反演方法研究.南京航空航天大学硕士学位论文,2009
    109C. F. Bohren,D. R. Huffillan.Absorption and Seattering of Light by SmallPartieles.New York: Willey,2004
    110柳朝晖,刘迎晖,周英彪,郑楚光.多孔炭粒的等效光学常数及辐射特性.工程热物理学报,1997,18(2):251-255
    111殷金英,刘林华.灰渣的有效光学常数及辐射特性.工程热物理学报,2009,30(1):115-117
    112C. Erlick.Effective Refractive Indices of Water and Sulfate Drops ContainingAbsorbing Inclusions.Journal of the Atmospheric Sciences.2006,63:754-763
    113N. V. Voshchinnikov,V. B. Il'in,Th. Henning,D. N. Dubkova.Dust Extinctionand Absorption: The Challenge of Porous Grains.Astronomy andAstrophysics.2008
    114类成新,冯东太,吴振森.掺杂对随机取向团簇粒子辐射特性的影响.光子学报,2011,40(7):1055-1060
    115J. Y. Li,S. K. Dong,H. P. Tan.Effective Optical Constant of Alumina ParticleContaining Carbon.Journal of Thermophysics and Heat Transfer,2009,23(1):216-219
    116邱金恒,陈洪滨,王普才,吕达仁.大气遥感研究展望.大气科学,2005,29(1):131-136
    117胡丽琴.云的水平非均匀性对云特性参数反演结果的影响.中国气象科学研究院与南京信息工程大学联招博士学位论文,2005
    118卢鹏.大气辐射传输模式的比较及其应用.中国气象科学研究院硕士学位论文,2009
    119J. Brazile,R. Richter,D. Schl pfer,M. E. Schaepman, K. I. Itten.ClusterVersus Grid for Operational Generation of ATCOR's MODTRAN-Based Lookup Tables.Parallel Computing,2008,34(1):32-46
    120J. Keller,S. Bojinski,A. S. H. Prevot.Simultaneous Retrieval of Aerosol andSurface Optical Properties Using Data of the Multi-Angle ImagingSpectroradiometer (Misr).Remote Sensing of Environment,2007,107(1-2):120-137
    121A. Maghrabi,R. Clay,N. Wild,B. Dawson.Design and Development of aSimple Infrared Monitor for Cloud Detection.Energy Conversion andManagement,2009,50(11):2732-2737
    122J. Ballestrín,A. Marzo.Solar Radiation Attenuation in Solar TowerPlants.Solar Energy,2012,86(1):388-392
    123孟凡斌,郑丽.基于LOWTRAN7的红外大气透射率计算方法.光电技术应用,2009,24(3):29-32
    124M. P. Utrillas,J. A. Mart nez-Lozano,V. E Cachorro,F. Tena,S.Hernandez.Comparison of Aerosol Optical Thickness Retrieval fromSpectroradiometer Measurements and from Two Radiative TransferModels.Solar Energy,2000,68(2):197-205
    125S. P. Mahulikar,H. R. Sonawane,G. A. Rao.Infrared Signature Studies ofAerospace Vehicles.Progress in Aerospace Sciences,2007,43(7-8):218-245
    126P. Ineichen.Comparison of Eight Clear Sky Broadband Models against16Independent Data Banks.Solar Energy,2006,80(4):468-478
    127李娟,毛节泰.冰晶性质对卷云辐射特征影响的模拟研究.气象,2006,32(2):9-13
    128霍娟,吕达仁.晴空与有云大气辐射分布的数值模拟及其对全天空图像云识别的应用.气象学报,2006,64(1):31-38
    129A. D. Miguel,D. Mateos,J. Bilbao,R. Román.Sensitivity Analysis of Ratiobetween Ultraviolet and Total Shortwave Solar Radiation to Cloudiness,Ozone, Aerosols and Precipitable Water.Atmospheric Research.2011,102(1-2):136-144
    130J. Lenoble,M. Herman,J. L. Deuzé,B. Lafrance,R. Santer,D. Tanré.ASuccessive Order of Scattering Code for Solving the Vector Equation ofTransfer in the Earth's Atmosphere with Aerosols.Journal of QuantitativeSpectroscopy and Radiative Transfer.2007,107(3):479-507
    131C. A. Gueymard.Prediction and Validation of Cloudless Shortwave SolarSpectra Incident on Horizontal, Tilted, or Tracking Surfaces.Solar Energy,2008,82(3):260-271
    132K. Alam,T. Trautmann,T. Blaschke.Aerosol Optical Properties and RadiativeForcing over Mega-City Karachi.Atmospheric Research,2011,101(3):773-782
    133K. Sumit,P. C. S. Devara,M. G. Manoj.Multi-Site Characterization ofTropical Aerosols: Implications for Regional Radiative Forcing.AtmosphericResearch,2012,106:71-85
    134A. S. Panicker,G. Pandithurai,P. D. Safai,S. Dipu,Dong-In Lee.On theContribution of Black Carbon to the Composite Aerosol Radiative ForcingOver an Urban Environment.Atmospheric Environment,2010,44(25):3066-3070
    135D. B Mechem,Y. L Kogan,M. Ovtchinnikov.Large-Eddy Simulation of PBLStratocumulus: Comparison of Multi-Dimensional and IPA LongwaveRadiative Forcing.St. Petersburg:12Th ARM Science Team MeetingProceedings,2002
    136D. B Mechem,Y. L Kogan,A. B. Davis,M. Ovtchinnikov,R. F. Cahalan,K. F. Evans,E. E. Takara,R. G. Ellingson.Implied Dynamic Feedback of3DIR Radiative Transfer on Simulated Cloud Fields.Broomfield:13Th ARMScience Team Meeting Proceedings,Colorado,2003
    137K. F. Evans.Shdomppda: A Radiative Transfer Model for Cloudy Sky DataAssimilation.Journal of the Atmospherica Sciences-Special Section,2007,64:3854-3864
    138K. F. Evans,A. Marshak,T. Varnai.The Potential for Improved BoundaryLayer Cloud Optical Depth Retrievals from the Multiple Directions ofMisr.Journal of the Atmospherica Sciences-Special Section,2008,65(10):3179-3196
    139王越.云光学厚度与有效粒子半径地基反演方法发展及云非均性对卫星反演的影响.中国科学院研究生院博士学位论文,2007
    140刘林华,赵军明,谈和平.辐射传递方程数值模拟的有限元和谱元法.北京:科学出版社,2008:44-53
    141S. P. Burns.Finite Element Solution of Combined Mode Heat Transfer withNonhomogeneous, Nongray Radiative Properties.Dissertation for theDoctoral Degree in the Univeresity of Texas,1995
    142孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1998
    143S. W. Baek,D. Y. Byun,S. J. Kang.The Combined Monte-Carlo and FiniteVolume Method for Radiation in a Two-Dimensional IrregularGeometry.International Journal of Heat and Mass Transfer,2000,43:2337-2344
    144C. R. E. De Oliveira.An Arbitrary Geometry Finite Element Method forMultigroup Neutron Transport with Anisotropic Scattering.Prog. Nucl.Energy,1996,18:227-236
    145谢仲生,邓力.中子输运理论数值计算方法.西安:西北工业大学出版社,2005
    146I. W. Busbridge, S. E. Orchard. Reflection and transmission of light by a thickatmosphere according to a phase function:1+xcos.The AstrophysicalJournal,1967,149:655-664
    147W. An,L. M. Ruan,H. Qi,L. H. Liu.Finite Element Method for RadiativeHeat Transfer in Absorbing and Anisotropic Scattering Media.Journal ofQuantitative Spectroscopy and Radiative Transfer,2005,96(5):409-422
    148齐宏.弥散颗粒辐射反问题的理论与实验研究.哈尔滨工业大学博士学位论文,2008
    149袁江涛,杨立,谢骏,田恬,孙丰瑞.基于Mie理论的水雾粒子多光谱消光特性研究.光学技术,2007,32(3):459-461
    150T. C. Choy.Effective Medium Theory-Principles and Applications.Oxford:Clarendon,1999
    151S. A. Self.Optical Properties of Fly Ash.DOE/PC/79903-T16,QuarterlyReport,1992
    152王桥,杨一鹏,黄家柱.环境遥感.北京:科学出版社,2006
    153徐希孺.遥感物理.北京:北京大学出版社,2005
    154付娴娴.云辐射图像的分析处理.电子科技大学硕士学位论文,2006
    155姜贵庆,刘连元.高速气流传热与烧蚀热防护.北京:国防工业出版社,2003
    156尹宏.大气辐射学基础.北京:气象出版社,1993
    157D. B ume,B. Vogel,S. Versick,R. Rinke,O. M hler,M.Schnaiter.Relationship of Visibility, Aerosol Optical Thickness and AerosolSize Distribution in an Ageing Air Mass over South-WestGermany.Atmospheric Environment,2008,42:989-998
    158韩永,饶瑞中,王英俭.利用大气能见度获取多波长气溶胶光学特性.红外与激光工程,2007,36(2):265-269
    159傅刚,李晓岚,魏娜.大气能见度研究.中国海洋大学学报,2009,39(5):855-862
    160邱玉,邹学勇,张春来.沙尘天气发生频率对大气能见度方差的影响研究:以北京及其沙尘过往路径典型站点为例.环境科学,2006,27(6):1046-1051

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700