用户名: 密码: 验证码:
变密度条件下地下水模拟优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪80年代以来美国Alabama州Baldwin县南部由于地下水超采而引起的滨海含水层海水入侵问题一直困扰着当地政府和居民。随着人口的增加和经济的发展,该地区地下水的需求不断加大,导致海水入侵问题日渐严峻,而且地下水合理开采的要求也日益迫切。本文利用变密度地下水模拟工具SEAWAT2000、遗传算法和并行技术,对该地区海水入侵建模和地下水开采管理问题以及通用变密度地下水模拟优化模型及其并行计算程序的研发进行了详细的研究,并取得了以下成果:
     (1)基于过渡带理论建立了首个描述美国Alabama州Baldwin县南部墨西哥湾附近滨海含水层海水入侵的三维非稳定流变密度地下水有限差分模型—Baldwin南部海水入侵模型,并利用它模拟和预测研究区滨海含水层中海水入侵的动态和未来趋势,结果发现现有各种条件不变情况下未来海水入侵状况将进一步恶化,必须对当地地下水开采井进行优化管理以控制海水入侵的态势。
     (2)确立了适用于变密度地下水优化管理常见问题的一般目标函数形式,并建立通用变密度地下水优化管理模型。
     (3)将作了改进的遗传算法(对于已经评价过的相同个体不进行重复的个体适应度评价)与基于过渡带理论的变密度地下水模拟工具SEAWAT2000耦合,开发完成了第一个通用变密度地下水模拟优化模型SWTGA。
     (4)利用并行编程工具MPI开发了并行SWTGA程序,实现通用变密度地下水模拟优化模型SWTGA的并行计算,成倍提高了SWTGA模型的运算效率。
     (5)运用并行SWTGA程序对研究区滨海含水层地下水开采方案进行优化,获得了控制海水入侵范围前提下的地下淡水最佳开采方案和最大开采量,为当地地下水开采管理提供科学依据和决策支持。
     这些成果的取得不仅为认识研究区滨海含水层海水入侵的规律和制定合理的地下水开采管理策略提供了科学合理的实用模型,同时也为解决变密度地下水优化管理常见问题提供了高效可靠的模拟优化工具。
The problem of seawater intrusion in coastal aquifers caused by groundwater overexploitation has been existing, and fazing local governments and residents in the southern part of Baldwin County, Alabama, USA since 1980s. With the growing of the population and development of the economy, the demand for ground water has been increasing continuously so that the problem of seawater intrusion has been getting worse day by day and the requirement of reasonable exploitation of ground water has been becoming more and more urgent in this area. This dissertation is focused on the study about the seawater intrusion modeling, the management of groundwater extraction in the study area, and the design and development of an all-purpose parallel groundwater simulation-optimization model under variable-density conditions by using a density-dependent groundwater modeling tool - SEAWAT2000, genetic algorithms and a parallel-computing technique. The main conclusions are as follows:
     (1) A three-dimensional transient finite-difference groundwater model under variable-density conditions - southern Baldwin seawater intrusion model is developed based on the theory of a transition zone between freshwater and saltwater, to simulate the seawater intrusion in coastal aquifers near the Gulf of Mexico in the southern part of Baldwin County, Alabama, USA. The new model is used to predict the dynamics and trend of seawater intrusion in coastal aquifers in the study area 40 years after 1996. The prediction shows that the situation of seawater intrusion in the future will become worse when all the conditions remain the same as those in 1996, which requires the management of local groundwater pumping wells so as to control the future dynamics and trend of seawater intrusion in the study area.
     (2) A general form of the objective function suitable for a wide variety of groundwater optimization management problems under variable-density conditions is presented and an all-purpose groundwater optimization management model under variable-density conditions is created.
     (3) A new all-purpose groundwater simulation-optimization model under variable-density conditions -SWTGA is developed through coupling the improved genetic algorithms (it will skip the evaluation of an individual the same as any individual evaluated before) with the density-dependent groundwater modeling tool based on the theory of a transition zone between freshwater and saltwater -SEAWAT2000.
     (4) A parallel SWTGA program is further developed by using the Message-Passing Interface - MPI. With this program, the all-purpose groundwater simulation-optimization model - SWTGA can be run in a parallel-computing system, which significantly improves the calculation speed of SWTGA.
     (5) The parallel SWTGA program is applied to optimize the pumping scheme of ground water in the study area. After the optimization, the optimal pumping scheme and the largest amount of water that can be extracted from coastal aquifers are obtained with the precondition that seawater intrusion is controlled to a certain degree, which can scientifically and technically support the decisions made for the management of groundwater exploitation in the study area.
     This study does not only construct reasonable and practical models for investigating the dynamics and rule of seawater intrusion in coastal aquifers and determining reasonable strategies of groundwater management in the study area, but also provide a reliable and efficient simulation-optimization tool for solving a wide variety of groundwater optimization management problems under variable-density conditions.
引文
都志辉.高性能计算之并行编程技术—MPI并行程序设计[M].北京:清华大学出版社,2001
    郭占荣,黄奕普.海水入侵问题研究综述[J].水文,2003,23(3):10-15
    林锦,郑春苗,吴剑锋,等.基于遗传算法的变密度条件下地下水模拟优化模型—SWTGA[J].水利学报,2007,38(10):1236-1244
    莫则尧,袁国兴.消息传递并行编程环境MPI[M].北京:科学出版社,2001
    王萃寒,赵晨,许小刚,等.分布式并行计算环境:MPI[J].计算机科学,2003,30(1):25-26
    王小平,曹立明.遗传算法—理论,应用与软件实现[M].西安:西安交通大学出版社,2002
    薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2001
    薛禹群,谢春红,吴吉春,等.海水入侵、咸淡水界面运移规律研究[M].南京:南京大学出版社,1991
    薛禹群主编.地下水动力学[M].北京:地质出版社,1997
    周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999
    Abarca E,Vazquez-Sune E,Carrera J,et al.Optimal design of measures to correct seawater intrusion[J].Water Resources Research,42,2006,W09415,doi:10.1029/2005WR004524
    Ahlfeld D P,Mulligan A E.Optimal Management of Flow in Groundwater Systems [M].San Diego,CA:Academic Press,2000
    Ahlfeld D P,Riefler R G.Documentation for MODOFC—A Program for Solving Optimal Flow Control Problems Based on MODFLOW Simulation,version 2.3[R].Amherst,MA:Department of Civil and Environmental Engineering,University of Massachusetts,2003
    Ahlfeld D P,Barlow P M,Mulligan A E.GWM—A ground-water management process for the U.S.Geological Survey modular ground-water model (MODFLOW-2000)[R].USGS Open-File Report 2005-1072,2005
    Aksoy A,Culver T B.Effect of sorption assumptions on aquifer remediation designs [J].Ground Water,2000,38(2):200-208
    Aly A H,Peralta R C.Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm[J].Water Resources Research,1999,35(8):2523-2532 Bakker M. A dupuit formulation for modeling seawater intrusion in regional aquifer systems [J]. Water Resources Research, 2003, 39(5), 1131, doi:10.1029/2002WR001710
    Bakker M, Schaars F. The Sea Water Intrusion (SWI) Package Manual, version 0.2 [R]. Athens, Georgia: University of Georgia, 2003
    Bakker M, Oude Essink G H P, Langevin C D. The rotating movement of three immiscible fluids - a benchmark problem [J]. Journal of Hydrology, 2004, 287: 270-278
    Bauer P, Held R J, Zimmermann S, et al. Coupled flow and salinity transport modeling in semi-arid environments: the Shashe River Valley, Botswana [J]. Journal of Hydrology, 2006, 316: 163-183
    Bear J. Dynamics of Fluids in Porous Materials [M]. New York: Dover Publications, 1972
    
    Bear J. Hydraulics of Groundwater [M]. New York: Mcgraw-Hill, 1979
    Bear J, Cheng A H-D, Sorek S, et al. Seawater Intrusion in Coastal Aquifers — Concepts, Methods and Practices [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1999
    Carey A E, Lyons W L, Poreda R J. Geochemistry of a gulfcoastal aquifer system, Baldwin County, Alabama [J]. Geological Society of America Abstracts with Programs, 2005, 37(7): 470
    Carroll D L. Genetic algorithms and optimizing chemical oxygen-iodine lasers [C]. In: Wilson H B, Batra R C, Bert C W, et al., eds. Developments in Theoretical and Applied Mechanics. Tuscaloosa, Alabama: School of Engineering, The University of Alabama, 1996
    Chandler R V, Moore J D, Gillett B. Ground-water chemistry and salt-water encroachment, southern Baldwin County, Alabama [R]. Tuscaloosa, Alabama: Geological Survey of Alabama Bulletin 126, 1985
    Chandler R V, Gillett B, DeJarnette S S. Hydrogeologic and water-use data for southern Baldwin County, Alabama [R]. Tuscaloosa, Alabama: Alabama Geological Survey Circular 188, 1996
    Chang L-C, Hsiao C-T. Dynamic optimal ground water remediation including fixed and operation costs [J]. Ground Water, 2002, 40(5): 481-490
    Chang L-C, Chu H-J, Hsiao C-T. Optimal planning of a dynamic pump-treat-inject groundwater remediation system [J]. Journal of Hydrology, 2007, 342: 295 — 304
    Cheng A H-D, Halhal D, Naji A, et al. Pumping optimization in saltwater-intruded coastal aquifers [J]. Water Resources Research, 2000, 36(8): 2155—2165
    Das A, Datta B. Development of multiobjective management models for coastal aquifers [J]. Journal of Water Resources Planning and Management, 1999a, 125(2): 76-87
    Das A, Datta B. Development of management models for sustainable use of coastal aquifers [J]. Journal of Irrigation and Drainage Engineering, 1999b, 125(3): 112 -121
    Dausman A, Langevin C D. Movements of the saltwater in the surficial aquifer system in response to hydrologic stresses and water-management practices, Broward County, Florida. U.S. Geological Survey Scientific Investigations Report 2004-5256, 2005
    Davis M E. Stratigraphic and hydrogeologic framework of the Alabama coastal plain [R]. U. S. Geological Survey Water-Resources Investigations Report 87-4112, 1987
    David C K-M, Moore J D. Water in Alabama [R]. Tuscaloosa, AL: Geological Survey of Alabama Circular 1220, 2002
    Dougherty D E, Marryott R A. Optimal groundwater management 1. Simulated annealing [J]. Water Resources Research, 1991, 27(10): 2493-2508
    Emch P, Yeh W. Management model for conjunctive use of coastal surface water and ground water [J]. Journal of Water Resources Planning and Management, 1998, 124(3): 129-139
    Erickson M, Mayer A, Horn J. Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) [J]. Advances in Water Resources, 2002, 25: 51—65
    Goldberg D E. Genetic algorithms with sharing for multimodal function optimization [J]. In: Proceedings of the Second International Conference on Genetic Algorithms. Mahwah, NJ: Lawrence Erlbaum Associates, 1987, 41—49
    Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [M]. New York: Addison-Wesley, 1989
    Gordon E, Shamir U, Bensabat J. Optimal management of a regional aquifer under salinization conditions [J]. Water Resources Research, 2000, 36(11): 3193 — 3203
    
    Gorelick S M. A review of distributed parameter groundwater management modeling methods [J]. Water Resources Research, 1983, 19(2): 305—319
    Gorelick S M. Large scale nonlinear deterministic and stochastic optimization: formulations involving simulation of subsurface contamination [J]. Mathematical Programming, 1990, 46: 19—39
    Gorelick S M, Freeze R A, Donohue D, et al. Groundwater Contamination: Optimal Capture and Containment [M]. Boca Raton, Florida: Lewis Publishers, 2001
    Greenwald R M. MODMAN—User's Manual [R]. Golden, CO: International Ground Water Modeling Center (IGWMC), 1994
    Guan J, Aral M M. Optimal remediation with well locations and pumping rates selected as continuous decision variables [J]. Journal of Hydrology, 1999, 221: 20-42
    Guo W, Bennett G D. Simulation of saline/fresh water flows using MODFLOW [C]. In: Proceedings of MODFLOW '98 Conference at the International Ground Water Modeling Center. Golden, Colorado: Colorado School of Mines, 1998a, 1: 267-274
    Guo W, Bennett G D. SEAWAT Version 1.1: A Computer Program for Simulations of Groundwater Flow of Variable Density [R]. Fort Myers, Florida: Missimer International Inc., 1998b
    Guo W, Langevin C D, Bennett G D. Improvements to SEAWAT and application of the variable-density modeling program in southern Florida [C]. In : MODFLOW 2001 and Other Modeling Odysseys Conference. Golden, Colorado: Colorado School of Mines, 2001, 2: 621-627
    Guo W, Langevin C D. User's guide to SEAWAT: A computer program for the simulation of three-dimensional variable-density ground-water flow [R]. U.S. Geological Survey Techniques of Water Resources Investigations Book 6, Chapter A7, 2002
    Harbaugh A W, Banta E R, Hill M C, et al. MODFLOW-2000, the U.S. Geological Survey modular ground-water model—User guide to modularization concepts and the ground-water flow process [R]. U.S. Geological Survey Open-File Report 00-92, 2000
    He K J, Zheng L, Dong S B, et al. PGO: a parallel computing platform for global optimization based on genetic algorithm [J]. Computers & Geosciences, 2007, 33: 357-366
    Hilton A B C, Culver T B. Constraint handling for genetic algorithms in optimal remediation design [J]. Journal of Water Resources Planning and Management, 2000, 126(3): 128-137
    Holland J H. Adaptation in Natural and Artificial System [M]. Ann Arbor, Michigan: University of Michigan Press, 1975
    Hsiao C-T, Chang L-C. Optimizing remediation of an unconfined aquifer using a hybrid algorithm [J]. Ground Water, 2005, 43(6): 904-915
    HydroGeoLogic Inc. MODHMS - MODFLOW-Based Hydrologic Modeling System : Documentation and User's Guide [R]. Herndon , Virginia : HydroGeoLogic Inc., 2002
    Karterakis S M, Karatzas G P, Nikolos I K, et al. Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria [J]. Journal of Hydrology, 2007, 342: 270-282
    Kipp K L J. HST3D - A computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems [R]. USGS Water-Resources Investigations Report 86-4095, 1986
    Kipp K L J. Guide to the revised heat and solute transport simulator, HST3D - Version 2 [R]. USGS Water-Resources Investigations Report 97-4157, 1997
    Krishnakumar K. Micro-genetic algorithms for stationary and non-stationary function optimization [C]. In: SPIE: Intelligent Control and Adaptive Systems. Philadelphia , Pennsylvania : Society of Photo-Optical Instrumentation Engineers, 1989, 1196: 289-296
    Langevin C D, Guo W. Improvements to SEAWAT, a variable-density modeling code [J]. EOS Transactions, 1999, 80(46): F373
    Langevin, C D. Simulation of ground-water discharge to Biscayne Bay, southeastern Florida [R]. U.S.Geological Survey Water-Resources Investigations Report 00-4251, 2001
    Langevin, C D, Shoemaker W B, Guo W. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—Documentation of the SEAWAT-2000 version with the variable-density flow process (VDF) and the integrated MT3DMS Transport Process (IMT) [R]. U.S. Geological Survey Open-File Report 03-426, 2003
    Langevin C D. Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida [J]. Ground Water, 2003, 41(6): 758-771
    Langevin C D, Oude Essink G H P, Panday S, et al. 2004. MODFLOW-based tools for simulation of variable-density groundwater flow. In: Cheng A, Ouazar D, eds. Coastal Aquifer Management: Monitoring, Modeling, and Case Studies [M]. Boca Raton, Florida: Lewis Publishers, 2004, 49 — 76
    Langevin C D , Swain E D , Wolfert M A. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary [J]. Journal of Hydrology, 2005, 314: 212-234
    Langevin C D, Guo W. MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport [J]. Ground Water, 2006, 44(3): 339-351
    Leendertse J J, Gritton E C. A water-quality simulation model for well-mixed estuaries and coastal seas: Volume II, Computation procedures [R]. New York: The New York City Rand Institute, R-708-NYC, 1971
    Leendertse J J. Aspects of SIMSYS2D, a system for two-dimensional flow computation [R]. Santa Monica, CA: Rand Corporation Report R-3572-USGS, 1987
    Lefkoff L J, Gorelick S M. AQMAN: Linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling [R]. U.S. Geological Survey Water-Resources Investigations Report 87-4061, 1987
    Lin J, Wu J-F, Zheng C. MF2K-GWM: A ground water management modeling tool based on MODFLOW-2000 [J]. Ground Water 2007, 45(2): 122-124
    Lin J, Snodsmith J B, Zheng C, et al. A modeling study of seawater intrusion in Alabama Gulf Coast, USA [J]. Environmental Geology, 2008 , DOI: 10.1007/s00254-008- 1288-y
    Maliva R G, Guo W, Missimer T. Vertical migration of municipal wastewater in deep injection well systems, South Florida, USA [J]. Hydrogeology Journal, 2007, 15: 1387-1396
    Mantoglou A. Pumping management of coastal aquifers using analytical models of saltwater intrusion [J]. Water Resources Research, 2003, 39(12): 1335, doi:10.1029/2002WR001891
    Mantoglou A, Papantoniou M, Giannoulopoulos P. Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms [J]. Journal of Hydrology, 2004, 297: 209-228
    Mao X, Enot P, Barry D A, Li L, et al. Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary [J]. Journal of Hydrology, 2006, 327: 110-127
    Mao X, Prommer H, Barry D A, et al. Three-dimensional model for multi-component reactive transport with variable density groundwater flow [J]. Environmental Modeling & Software, 2006, 21: 615-628
    Marryott R A, Dougherty D E, Stollar R L. Optimal groundwater management 2. Application of simulated annealing to a field-scale contamination site [J]. Water Resources Research, 1993, 29(4): 847-860
    Marsh O T. Geology of Escambia and Santa Rosa Counties, western Florida Panhandle [R]. Tallahassee, Florida: Florida Geological Survey Bulletin 46, 1966
    Masterson J P. Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, Lower Cape Cod Aquifer System, Massachusetts [R]. U.S. Geological Survey Scientific Investigations Report 2004-5014, 2004
    Mayer A S, Kelley C T, Miller C T. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems [J]. Advances in Water Resources, 2002, 25: 1233-1256
    McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference ground-water flow model [R]. U.S. Geological Survey Techniques of Water Resources Investigations Book 6, Chapter A1, 1988
    McKinney D C, Lin M D. Genetic algorithms solution of ground water management models [J]. Water Resources Research, 1994, 30(6): 1897-1906
    Nassar M K K, EI-Damak R M, Ghanem A H M. Impact of desalination plants brine injection wells on coastal aquifers [J]. Environmental Geology, 2007, DOI 10.1007/s00254-007-0849-9
    Oude Essink G H P. MOC3D adapted to simulate 3D density-dependent groundwater flow [C]. In: Proceedings of MODFLOW '98 Conference at the International Ground Water Modeling Center. Golden, Colorado: Colorado School of Mines, 1998, 1: 291-300
    Park C H, Aral M M. Multi-objective optimization of pumping rates and well placement in coastal aquifers [J]. Journal of Hydrology, 2004, 290: 80—99
    Parkhurst D L, Thorstenson D C, Plummer, L N. PHREEQE-a computer program for geochemical calculations [R]. U.S. Geological Survey Water-Resources Investigations Report 80-96, 1990
    Parkhurst D L, Appelo C A J. User's Guide to PHREEQC - a Computer Program for Speciation, Reaction-path, 1D-transport, and Inverse Geochemical Calculations [R]. U.S. Geological Survey Technical Report 99-4259, 1999
    Qahman K, Larabi A. Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine) [J]. Hydrogeology Journal, 2006, 14: 713 — 728
    Rao S, Thandaveswara B, Bhallamudi S, et al. Optimal groundwater management in deltaic regions using simulated annealing and neural networks [J]. Water Resources Management, 2003, 17(6): 409—428
    Rao S V N, Kumar S, Shekhar S, et al. Optimal pumping from skimming wells from the Yamuna River flood plain in north India [J]. Hydrogeology Journal, 2007, 15: 1157-1167
    Raymond D E. Depositional sequences in the Pensacola Clay (Miocene) of southwest Alabama [R]. Tuscaloosa, Alabama: Alabama Geological Survey Bulletin 114, 1985
    Reed P C. Geologic map of Baldwin County, Alabama [R]. Tuscaloosa, AL: Alabama Geological Survey Special Map 94, 1971
    Reed P, Minsker B, Valocchi A J. Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation [J]. Water Resources Research, 2000, 36(12): 3731-3741
    Rejani R, Jha M K, Panda S N, et al. Simulation modeling for efficient groundwater management in Balasore Coastal Basin, India [J]. Water Resources Management, 2008, 22: 23-50
    Remington W C. The atlas of Alabama counties [R]. Tuscaloosa, Alabama: Geography Department, University of Alabama, 1995
    Romanov D, Dreybrodt W. Evolution of porosity in the saltwater-freshwater mixing zone of coastal carbonate aquifers: an alternative modeling approach [J]. Journal of Hydrology, 2006, 329: 661-673
    Schneider J C, Kruse S E. A comparison of controls on freshwater lens morphology of small carbonate and siliciclastic islands: examples from barrier islands in Florida, USA [J]. Journal of Hydrology, 2003, 284: 253-269
    Schneider J C, Kruse S E. Assessing selected natural and anthropogenic impacts on freshwater lens morphology on small barrier islands: Dog Island and St. George Island, Florida, USA [J]. Hydrogeology Journal, 2005, 14: 131-145
    Shoemaker W B, Edwards K M. Potential for saltwater intrusion into the Lower Tamiami Aquifer near Bonita Springs, Southwestern Florida [R]. U.S. Geological Survey Water-Resources Investigations Report 03-4262, 2003
    Smalley J B, Minsker B S, Goldberg D E. Risk-based in situ bioremediation design using a noisy genetic algorithm [J]. Water Resources Research, 2000, 36(10): 3043-3052
    Sorek S, Pinder G F. Survey of computer codes and case histories. In: Bear et al., eds. Seawater Intrusion in Coastal Aquifers - Concepts, Methods, and Practices [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1999
    Tung C-P, Chou C-A. Pattern classification using tabu search to identify the spatial distribution of groundwater pumping [J]. Hydrogeology Journal, 2004, 12: 488 -496
    Voss C I. A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport [R]. USGS Water-Resources Investigations Report 84-4369, 1984
    Wagner B J. Recent advances in simulation-optimization groundwater management modeling [R]. Review of Geophysics, 1995, 33(S1): 1021-1028
    Walter G R, Kidd R E. Ground-water management techniques for the control of salt-water encroachment in Gulf Coast aquifers, a summary report [J]. Tuscaloosa, Alabama: Alabama Geological Survey Open File Report, 1979
    Wang H F, Anderson M P. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods [M]. New York: Academic Press, 1982
    Wang M, Zheng C. Optimal remediation policy selection under general conditions [J]. Groundwater, 1997, 35(5): 757-764
    Willis R L, Yeh W W-G Groundwater System Planning and Management [M]. New Jersey: Prentice-Hall Inc., 1987
    Wu J-F, Zheng C, Chien C C. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions [J]. Journal of Contaminant Hydrology, 2005, 77: 41—65
    Wu J-F, Zheng C, Chien C C, et al. A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty [J]. Advances in Water Resources, 2006, 29: 899-911
    Wu J-F, Zheng L, Liu D. Optimizing groundwater development strategies by genetic algorithm: a case study for balancing the needs for agricultural irrigation and environmental protection in northern China [J]. Hydrogeology Journal, 2007, 15: 1265-1278
    Yager R M, Kappel W M, Plummer L N. Origin of halite brine in the Onondaga Trough near Syracuse, New York State, USA: modeling geochemistry and variable-density flow [J]. Hydrogeology Journal, 2007, 15: 1321 — 1339
    Yeh W W-G Systems analysis in groundwater planning and management [J]. Journal of Water Resources Planning and Management, 1992, 118(3): 224-237
    Zhang Y, Pinder G F, Herrera G S. Least cost design of groundwater quality monitoring networks [J]. Water Resources Research, 2005, 41, W08412, doi:10.1029/2005WR003936
    Zheng C, Wang P P. Parameter structure identification using tabu search and simulated annealing [J]. Advances in Water Resources, 1996, 19(4): 215—224
    Zheng C. MT3D—A modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems [M]. Bethesda, Maryland: S.S. Papadopulos & Associates Inc., 1996
    Zheng C, Wang P P. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground-water systems; documentation and user's guide [R]. Vicksburg, Mississippi: U.S. Army Corps of Engineers Contract Report SERDP-99-1, 1999
    Zheng C, Wang P P. A field demonstration of the simulation optimization approach for remediation system design [J]. Ground Water, 2002, 40(3): 258—265
    Zheng C, Bennett G D. Applied Contaminant Transport Modeling: Second Edition [M]. New York: John Wiley & Sons, 2002
    Zheng C, Wang P P. MGO—a modular groundwater optimizer incorporating MODFLOW/MT3DMS: Documentation and User's Guide [M]. Tuscaloosa, Alabama: University of Alabama, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700