用户名: 密码: 验证码:
真菌漆酶高效定向固定化新策略探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶是一种含铜的多酚氧化酶,能够催化芳香胺和酚类等多种芳香化合物的氧化,同时伴随分子氧还原成水。漆酶的催化特征使其不但在木素降解、纸浆漂白、印染废水脱色与脱毒等工业和环保方面有着广泛应用,同时在生物传感器和生物燃料电池的开发上也极具应用价值。
     和大多数水溶性酶一样,漆酶的固定化是实现应用价值的必要途径。
     传统的酶固定化方法,大多是通过酶外表面氨基酸残基上的功能基团与载体进行作用而连接。这可能会导致酶多个位点和载体结合,破坏了酶的天然构象,使固定化酶活性大幅度下降,同时酶分子不恰当的空间取向,也可能使得固定化酶的活性位点与底物的接触受阻,使催化效率大大降低。因此,定向、高效成为酶固定化方法研究的关键。
     已报道的酶定向固定化方法中,有的依靠酶与载体(修饰)之间亲和作用,有的依靠蛋白的特定的氨基酸残基与载体上对应的偶联基团之间的共价结合。目前,单一活性中心酶的定向固定化技术的研究取得了一定的进展。
     漆酶是一个单链多氧化还原活性中心的大分子,这一结构特征使得固定化漆酶的催化效率在很大程度上依赖其在载体表面上的取向。就酶电极而言,不同的取向不仅影响其直接电子转移途径,还影响其生物电催化氧还原效率。因此,漆酶的高效定向固载是漆酶利用的关键。有关漆酶的定向固定化研究的报道,迄今为止仍然相对较少。因此,探索漆酶定向、高效的固定化新方法,对漆酶功能器件的开发具有重要意义。
     本论文分别从漆酶自身的生物修饰和/或载体的化学修饰等不同角度,尝试建立了几种漆酶高效定向固载新策略。
     一、漆酶的生物修饰
     相比于蛋白本身的化学修饰,功能蛋白的定点生物修饰是实现功能蛋白定向组装的理想手段之一。目前,生物学上对漆酶基因进行克隆和序列分析已经取得了很大进展,并且实现了其高效的重组表达(或异源表达)。以此为基础,以漆酶的定向固定化为目标,本文首先利用分子生物学的方法将漆酶进行了定点生物修饰。
     借助于半胱氨酸的侧链巯基和金基底形成的硫-金键常用来构建自组装修饰电极。因此在漆酶的氮端或碳端引入半胱氨酸将为漆酶的定向固定带来便利。而组氨酸的咪唑基团与金属离子的特异性亲和作用,也常常被用于蛋白的纯化和固定。
     本节首先设计了一段编码Cys-(His×6)-短肽的基因序列,通过基因重组的方法,将这段序列融合到来源于Trametes sp. AH28-2的漆酶基因lacA的3'/5'端,并构建了表达载体,再经过电转化导入毕赤酵母中进行了漆酶的异源高效表达,最终成功获得了分别在N端和C端带有Cys-(His×6)-短肽的重组漆酶rLacA-N和rLacA-C。对重组漆酶进行了酶学性质表征,结果表明两种重组漆酶和非重组漆酶具有相似的酶学性质,说明对漆酶的生物修饰没有对酶本身性质产生大的影响,为后续的固定化打好了基础。
     二、重组漆酶在金电极上定向固定化策略
     漆酶在常规电极上的直接电子转移现象不易观察到。不仅如此,还发现随机取向漆酶的电催化氧还原伴随着中间体过氧化氢的产生,影响电子转移效率。由此可见,电极上漆酶的定向组装是提高直接电子转移效率、构建漆酶电化学生物传感器和生物燃料电池等功能器件的关键步骤。
     利用重组漆酶蛋白链末端的半胱氨酸残基,与金电极形成的Au-S键,将重组漆酶定向地组装到平面金电极表面上。
     酶活测量表明,固定化漆酶能够较好地保持原有的生物活性。漆酶电极的循环伏安法表征又表明,两种重组漆酶在金电极表面均发生了直接电子转移,对氧也表现出生物电催化活性。然而两种重组漆酶电极的直接电化学行为却表现出明显差异,对氧的生物电催化还原效率及其还原产物也有差异。分析表明,金电极表面上不同取向漆酶的直接电子转移途径与难易程度不一样。T1位点靠近电极表面易于漆酶对氧的生物电催化还原。
     上述漆酶在电极上定向固定的研究不但有助于深化对漆酶直接电化学机制的认识,也有助于基于漆酶的生物燃料电池的研发。
     三、重组漆酶在琼脂糖载体的定向固定化策略
     将氮端或碳端带有His×6-短肽链的重组漆酶,通过组氨酸与Ni2+离子的螯合作用,定向地组装到氨基三乙酸-Ni2+-修饰的琼脂糖载体表面上。在这个固定化体系中,由于固定位点位于漆酶分子表面、远离漆酶活性中心,有利于漆酶结构的保持,使固定化漆酶可以保持较高的催化活性;同时多组氨酸链作为位点,也增加了固定化漆酶的稳定性;最重要的是,依靠漆酶本身定点生物修饰的氨基酸链作为固定位点,实现了漆酶取向单
     一、取向可控的高效固定化。
     固定化漆酶酶活测量结果表明,在相同条件下不同取向的两种固定化漆酶表现出不同的催化活性;然而酶结构的圆二色谱分析表明,不同取向漆酶的二级结构变化不大。分析表明,这可能是由于固定化T1位点的外露程度不同,导致底物的可触及性不同所致。研究结果还表明,固定化酶比游离酶有更高的热稳定性,同时具有较高的重复利用性。
     四、非重组漆酶在单壁碳纳米管上亲和固定化策略
     漆酶是一种糖蛋白酶,其表面的糖基可以作为固定化的位点。将固定载体——单壁碳纳米管用表面活性剂十二烷基麦芽糖苷进行表面修饰,利用伴刀豆蛋白对糖基的特异性亲和作用,同时又凭借表面活性剂对碳纳米管的分散作用,从增加碳纳米管比表面积、减少酶结构改变、增加固定化酶的稳定性等方面出发,构建了单壁碳纳米管-烷基糖苷-伴刀豆蛋白-糖蛋白酶固定化新体系。
     分别以漆酶和辣根过氧化物酶为例研究,实验结果表明,这种新型固定化方法,与两种酶直接固定于碳纳米管上相比,在酶的上载量、比活力、稳定性等方面,都有很大的优势。圆二色谱和荧光光谱分析测试酶的结构变化结果表明,单壁碳纳米管-烷基糖苷-伴刀豆蛋白复合载体和单壁碳纳米管相比,对酶的结构影响较小,这也是新体系中酶的比活力较高的直接原因。
     这种利用自组装方法,通过生物凝集素间接固定糖蛋白的新策略,有助于提高单壁碳纳米管上糖蛋白酶的酶学性质,为糖蛋白酶及碳纳米管的应用奠定了基础。
Laccase is a Cu-containing polyphenol oxidase, which catalyzes the oxidation of various aromatic amines and phenols with concomitant reduction of oxygen to water. The catalytic characteristics of laccase make it very useful not only in lignin degradation, pulp bleaching, dye decolorization/detoxication, and environmental protection but also in biosensor and biofuel cell development.
     Similar to other enzymes, the immobilization of laccase is an important strategy for its real application. Traditionally, an enzyme is immobilized via the interaction between a support and a functional group of amino acid residue on the enzyme surface. In this way, it is possible that multiple sites of enzyme are attached on the support, resulting in a disturbed enzyme structure, decreased enzyme activity and inappropriate orientation. It may also hinder the interaction between the active site of an enzyme and its substrate, resulting in decreased activity. Therefore, the oriented and high efficient immobilization becomes the focus of recent research.
     So far, some oriented immobilization strategies have been developed. Some are based on the affinity interaction between an enzyme and a support. Some are based on the covalent interaction between amino acid residue and coupling group on the support. Currently, some development on the oriented immobilization of enzymes of single active site has been achieved.
     It is known that laccase is a single-chain macromolecule with multiple redox active sites. The catalytie efficiency of the immobilized laccase therefore depends largely on the strategies used for the immobilization, especially when laccase is immobilized on an electrode for the direct electron transfer and bioelectrocatalysis. It follows that high efficient and oriented immobilization of laccase is significant for the development of laccase-based functional devices. However, few works have been carried out on the oriented immobilization of laccase. This thesis presents several new strategies for high-efficient and oriented immobilization of laccase from the perspective of the bio-modification of enzyme itself and/or chemical modification of the carrier.
     1. Bio-modification of laccase
     Relatively speaking, the biological modification of functional proteins is more suitable than its chemical modification for the orientation assembly of proteins. So far, great progress has been made in the cloning and sequence analysis of the gene of laccase and in the high efficient heterologous expression of laccase. In present study, the molecular biology-based bio-modification of laccase is used to realize the oriented immobilization of laccase.
     The self-assembly of the modified laccase on Au electrode is based on the Au-S band formed between side chain thiol of cysteine and gold substrate. Therefore, to facilitate the immobilization of laccase, the N-terminal or C-terminal is modified with cysteine. The coordination between the imidazole group of histidine and Ni2+ions has also frequently been used for purification and immobilization of protein.
     In the present study, a DNA sequence of Cys-(His×6)-was first designed and then fused to the3'/5'DNA terminus of laccase from Trameters sp. AH28-2. After that an expression vector was built and electroporated into Pichia pastoris for expression. Finally, the N-terminus and C-terminus of laccase was successfully modified with Cys-(His×6)-oligopeptide.
     The enzymatic property of the recombinant laccase was analyzed. The results show that the two recombinant laccases exhibit similar enzymatic properties, indicating that the biological modification has no big effect on enzyme properties and the modified laccase can be used for further immobilization.
     2. Oriented immobilization of recombinant laccase on gold electrode
     The direct electron transfer of laccase on common electrodes is hardly observed. It was also found that for non-oriented immobilized laccase electrode, the electrocatalytic reduction of oxygen is accompanied by the production of the intermediate H2O2, which decreases the electron transfer efficiency. Thus, the oriented immobilization of laccase on electrode is a key step for enhancing the electron transfer efficiency, and constructing high-performance biosensors and biofuel cells.
     Based on the Au-S band between the cysteine residue of the recombinant laccase and gold electrode, the recombinant laccase is assembled orientationally on the gold electrode.
     Enzyme activity test shows that the activity of the immobilized laccase is well-retained. Cyclic voltammetry test shows that the direct electron transfer and the bioelectroreduction of oxygen are achieved on both the electrodes modified the recombinant laccases. However, the two electrodes show different direct electrochemical behaviors. Analysis shows that laccase with different orientation on gold electrode have different electron transfer pathways and different direct electron transfer efficiency. Bioelectrocatalytic reduction of oxygen is easier for laccase modified electrode where the T1site is more close to the electrode surface. The above research is helpful to the in-depth understanding of the direct electrochemistry of laccase and also to the development of laccase-based biofuel cells.
     3. Oriented immobilization of recombinant laccase on agarose
     The recombinant laccase with Cysteine-6×Histidine tag at N-terminus and C-terminus is immobilized on the surface of NTA-Ni2+-modified agarose via the chelation between the histidine residue and Ni2+ion. In this system, the immobilization site is close to laccase surface but distant away from laccase active site, which is beneficial for the structure retention and high catalytic activity. The multiple immobilization sites also enhance the stability. More importantly, the bio-modified amino acid chain realizes the oriented immobilization with adjustable orientation.
     The enzyme activity test shows that the laccases with different orientations show different activities under the same testing conditions. Circular dichroism spectrum shows that the secondary structure changes little for the two recombinants prior to or after the immobilization. Analysis shows that it is the orientation that makes the exposure of T1site of laccase to the outer solution different, which results in different accessibility of the same substrate to the T1site and therefore different activity. It is also found after immobilization, thermal stability enhances and reusableility is high.
     4. Efficient immobilization of non-recombinant laccase on single wall carbon nanotube
     Laccase is one of the glucoproteinases. The glycosyl on the surface can be used as sites for immobilization. In the present study, the single wall carbon nanotube is first modified with surfactant (alkyl polyglucoside) to disperse the nano tubes and increase the specific surface area. Based on the affinity between concanavalin A and glycosyl, laccase is then immobilized on carbon nanotubes, forming a new conjugate of single wall carbon nanotube-(n-dodecyl β-D-maltoside)-concanavalin A-glucoproteinases with little structure change and high stability.
     The experimental results show that the new immobilization strategy has some advantages over the direct immobilization in terms of enzyme loading, specific activity and stability. Circular dichroism and fluorescence spectra show that single wall carbon nanotube-(n-dodecyl β-D-maltoside)-concanavalin A hybrid support has a smaller effect on the enzyme structure compared with bare carbon nanotube, demonstrating that the present self-assembly strategy is effective for laccase immobilization.
引文
1. Lu C., Jing H., ShiChun M. and Yu D., Research progress on enzyme application in resource recycling of livestock and poultry waste, Journal of Agricultural Science and Technology (Beijing),2013,15, 24-30.
    2. Kazakova L. I., Shabarchina L. I. and Sukhorukov G. B., Co-encapsulation of enzyme and sensitive dye as a tool for fabrication of microcapsule based sensor for urea measuring, Physical Chemistry Chemical Physics,2011,13,11110-11117.
    3. Jeanty G. and Marty J., Detection of paraoxon by continuous flow system based enzyme sensor, Biosensors and Bioelectronics,1998, 13,213-218.
    4. Zheng M., Chi Y., Yi H. and Shao S., Decolorization of alizarin red and other synthetic dyes by a recombinant laccase from Pichia pastoris, Biotechnology Letters,2014,36,39-45.
    5. 罗贵民,酶工程,化学工业出版社,2008.
    6. Moncada S., Gryglewski R., Bunting S. and Vane J., An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature,1976, 263,663.
    7. Bickerstaff Jr G. F., Immobilization of enzymes and cells, Springer,1997.
    8. Nelson J. and Griffin E. G., Adsorption of invertase, Journal of the American Chemical Society,1916,38,1109-1115.
    9. Tosa T., Mori T., Fuse N. and Chibata I., Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase, Enzymologia,1966,31,214.
    10. Tischer W. and Wedekind F., Immobilized enzymes:methods and applications, in:Biocatalysis:From Discovery to Application, Springer,1999, pp.95-126.
    11. D'souza S., Immobilized enzymes in bioprocess, Current Science,1999,77,69-79.
    12. Mojovic L., Knezevic Z., Popadic R. and Jovanovic S., Immobilization of lipase from Candida rugosa on a polymer support, Applied Microbiology and Biotechnology,1998,50,676-681.
    13. Kanata Y., Sato A., Saito N. and Suzuki A., Stability of enzyme activity immobilized on glycosylated egg white beads and some general carriers in a flow system, Food Science and Technology Research,2000,6,24-28.
    14. 陈石根,周润琦,酶学,上海复旦大学出版社,2001.
    15. Shleev S., Pita M., Yaropolov A. I., Ruzgas T. and Gorton L., Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes, Electroanalysis, 2006,18,1901-1908.
    16. Kobayashi S., Kikuchi H. and Uyama H., Lipase-catalyzed ring-opening polymerization of 1,3-dioxan-2-one, Macromolecular Rapid Communications,1997,18,575-579.
    17. Feng J., He F. and Zhuo R., Polymerization of trimethylene carbonate with high molecular weight catalyzed by immobilized lipase on silica microparticles, Macromolecules,2002,35,7175-7177.
    18. Qiu H., Lu L., Huang X., Zhang Z. and Qu Y., Immobilization of horseradish peroxidase on nanoporous copper and its potential applications, Bioresource Technology,2010,101,9415-9420.
    19. Reetz M. T., Zonta A. and Simpelkamp J., Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials, Biotechnology and Bio engineering,1996,49,527-534.
    20. Braun S., Rappoport S., Zusman R., Avnir D. and Ottolenghi M., Biochemically active sol-gel glasses:the trapping of enzymes, Materials Letters,1990,10,1-5.
    21. Cui G., Yoo J. H., Yoo J., Lee S. W., Nam H. and Cha G. S., Differential thick-film amperometric glucose sensor with an enzyme-immobilized nitrocellulose membrane, Electroanalysis,2001, 13,224-228.
    22. Tanyolac D. and Ozdural A. R., Preparation of low-cost magnetic nitrocellulose microbeads, Reactive and Functional Polymers, 2000,45,235-242.
    23. Torchilin V. P., Recent advances with liposomes as pharmaceutical carriers, Nature reviews Drug discovery,2005,4, 145-160.
    24. Niu M., Lu Y., Hovgaard L. and Wu W., Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation, International Journal of Nanomedicine,2011,6, 1155.
    25. Allen T. M. and Cullis P. R., Liposomal drug delivery systems:from concept to clinical applications, Advanced Drug Delivery Reviews,2013,65,36-48.
    26. Cao L., van Rantwijk F. and Sheldon R. A., Cross-linked enzyme aggregates:a simple and effective method for the immobilization of penicillin acylase, Organic Letters,2000,2, 1361-1364.
    27. St. Clair N. L. and Navia M. A., Cross-linked enzyme crystals as robust biocatalysts, Journal of the American Chemical Society,1992, 114,7314-7316.
    28. Schoevaart R., Wolbers M., Golubovic M., Ottens M., Kieboom A., Van Rantwijk F., Van der Wielen L. and Sheldon R., Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs), Biotechnology and Bio engineer ing,2004,87, 754-762.
    29. Avrameas S. and Ternynck T., The cross-linking of proteins with glutaraldehyde and its use for the preaparation of immunoadsorbernts, Immunochemistry,1969,6,53-66.
    30. Bi L., Cao Z., Hu Y., Song Y., Yu L., Yang B., Mu J., Huang Z. and Han Y., Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering, Journal of Materials Science:Materials in Medicine,2011,22,51-62.
    31. Han Y.-J., Watson J. T., Stucky G. D. and Butler A., Catalytic activity of mesoporous silicate-immobilized chloroperoxidase, Journal of Molecular Catalysis B:Enzymatic,2002,17,1-8.
    32. Khan A. A., Akhtar S. and Husain Q., Direct immobilization of polyphenol oxidases on Celite 545 from ammonium sulphate fractionated proteins of potato (Solanum tuberosum), Journal of Molecular Catalysis B:Enzymatic,2006,40,58-63.
    33. Bai Z. W. and Zhou Y. K., A novel enzyme support derived from aminated silica gel and polysuccinimide:preparation and application for the immobilization of porcine pancreatic lipase, Reactive and Functional Polymers,2004,59,93-98.
    34. Tu X., Zhao Y., Luo S., Luo X. and Feng L., Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method, Microchimica Acta,2012,1-8.
    35. Li Y., Huang X. and Qu Y., A strategy for efficient immobilization of laccase and horseradish peroxidase on single-walled carbon nanotubes, Journal of Chemical Technology and Biotechnology, 2013,88,2227-2232.
    36. Krajewska B., Application of chitin-and chitosan-based materials for enzyme immobilizations:a review, Enzyme and Microbial Technology,2004,35,126-139.
    37. Macario A., Verri F., Diaz U., Corma A. and Giordano G., Pure silica nanoparticles for liposome/lipase system encapsulation: Application in biodiesel production, Catalysis Today,2013,204, 148-155.
    38. Prevoteau A. and Faure C., Effect of onion-type multilamellar liposomes on Trametes versicolor laccase activity and stability, Biochimie,2012,94,59-65.
    39. Li S., Hu J. and Liu B., Use of chemically modified PMMA microspheres for enzyme immobilization, Biosystems,2004,77,25.
    40. Cao L., Immobilised enzymes:science or art?, Current Opinion in Chemical Biology,2005,9,217-226.
    41. Lin Y.-S., Tseng M.-J. and Lee W.-C., Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans Process Biochemistry,2011,46,2117-2121.
    42. Jiang Y., Guo C., Xia H., Mahmood I., Liu C. and Liu H., Magnetic nanoparticles supported ionic liquids for lipase immobilization:Enzyme activity in catalyzing esterification, Journal of Molecular Catalysis B:Enzymatic,2009,58,103-109.
    43. Xu C., Xu K., Gu H., Zhong X., Guo Z., Zheng R., Zhang X. and Xu B., Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins, Journal of the American Chemical Society,2004,126,3392-3393.
    44. Dyal A., Loos K., Noto M., Chang S. W., Spagnoli C., Shafi K. V., Ulman A., Cowman M. and Gross R. A., Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles, Journal of the American Chemical Society,2003,125,1684-1685.
    45. Verma M. L., Chaudhary R., Tsuzuki T., Barrow C. J. and Puri M., Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability:application in cellobiose hydrolysis, Bioresource Technology,2013,135,2-6.
    46. Zhu Y.-T., Ren X.-Y., Liu Y.-M., Wei Y., Qing L.-S. and Liao X., Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles:Characterization and application for enzymatic inhibition assays, Materials Science and Engineering:C,2014,38,278-285.
    47. Bornscheuer U. T., Immobilizing enzymes:how to create more suitable biocatalysts, Angewandte Chemie International Edition, 2003,42,3336-3337.
    48. Pavlidis I. V., Vorhaben T., Gournis D., Papadopoulos G. K., Bornscheuer U. T. and Stamatis H., Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials, Journal of Nanoparticle Research,2012,14,1-10.
    49. 刘宇,郭晨,王锋,刘春朝,刘会洲,磁性Si02纳米粒子的制备及其用于漆酶固定化,过程工程学报,2008,8,583-588.
    50. Zhou Q. Z. and Chen X. D., Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis, Biochemical Engineering Journal,2001,9, 33-40.
    51. Tanriseven A. and Dogan S., Immobilization of invertase within calcium alginate gel capsules, Process Biochemistry,2001,36, 1081-1083.
    52. 陈宁,王健,酶工程,中国轻工业出版社,2005.
    53. Qiu H., Xu C., Huang X., Ding Y., Qu Y. and Gao P., Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them, The Journal of Physical Chemistry C, 2008,112,14781-14785.
    54. Lu B., Smyth M. R. and O'Kennedy R., Tutorial review. Oriented immobilization of antibodies and its applications in immunoassays and immunosensors, Analyst,1996,121,29R-32R.
    55. Sassolas A., Blum L. J. and Leca-Bouvier B. D., Immobilization strategies to develop enzymatic biosensors, Biotechnology Advances,2012,30,489-511.
    56. Xue Y., Ding L., Lei J., Yan F. and Ju H., In situ electrochemical imaging of membrane glycan expression on micropatterned adherent single cells, Analytical Chemistry,2010,82, 7112-7118.
    57. Haider T. and Husain Q., Concanavalin A layered calcium alginate-starch beads immobilized β galactosidase as a therapeutic agent for lactose intolerant patients, International Journal of Pharmaceutics,2008,359,1-6.
    58. Porath J., Carlsson J., Olsson I. and Belfrage G., Metal chelate affinity chromatography, a new approach to protein fractionation, Nature,1975,258,598-599.
    59. Kroger D., Liley M., Schiweck W., Skerra A. and Vogel H., Immobilization of histidine-tagged proteins on gold surfaces using chelator thioalkanes, Biosensors and Bioelectronics,1999,14,155-161.
    60. Ley C., Holtmann D., Mangold K. M. and Schrader J., Immobilization of histidine-tagged proteins on electrodes, Colloids and Surfaces B:Biointerfaces,2011,88,539-551.
    61. Balland V., Hureau C., Cusano A. M., Liu Y., Tron T. and Limoges B., Oriented immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes, Chemistry,2008,14,7186-7192.
    62. Ferapontova E., Schmengler K., Borchers T., Ruzgas T. and Gorton L., Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold, Biosensors and Bioelectronics,2002, 17,953-963.
    63. Schauer-Vukasinovic V. and Daunert S., Purification of recombinant proteins based on the interaction between a phenothiazine derivatized column and a calmodulin fusion tail, Biotechnology Progress,1999,15,513-516.
    64. Yoshida H., LXIII.—Chemistry of lacquer (Urushi). Part I. Communication from the chemical society of tokio, Journal of the Chemical Society, Transactions,1883,43,472-486.
    65. D'Annibale A., Rita Stazi S., Vinciguerra V., Di Mattia E. and Giovannozzi Sermanni G., Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment, Process Biochemistry,1999,34,697-706.
    66. Pickard M. A., Roman R., Tinoco R. and Vazquez-Duhalt R., Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase, Applied and Environmental Microbiology,1999,65,3805.
    67. Brunel L., Denele J., Servat K., Kokoh K. B., Jolivalt C., Innocent C., Cretin M., Rolland M. and Tingry S., Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell, Electrochemistry Communications,2007,9,331-336.
    68. Liu Y., Qu X., Guo H., Chen H., Liu B. and Dong S., Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite, Biosensors and Bioelectronics,2006,21,2195-2201.
    69. Soukharev V., Mano N. and Heller A., A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V, Journal of the American Chemical Society,2004, 126,8368-8369.
    70. Wang H. and Ng T., Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii, Applied Microbiology and Biotechnology,2006,69,521-525.
    71. Thurston C. F., The structure and function of fungal laccases, Microbiology,1994,140,19-26.
    72. Baldrian P., Fungal laccases-occurrence and properties, FEMS Microbiology Reviews,2006,30,215-242.
    73. Ducros V., Brzozowski A. M., Wilson K. S., Brown S. H., (?)stergaard P., Schneider P., Yaver D. S., Pedersen A. H. and Davies G. J., Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution, Nature Structural & Molecular Biology, 1998,5,310-316.
    74. Piontek K., Antorini M. and Choinowski T., Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers, Journal of Biological Chemistry,2002,277,37663-37669.
    75. Ferraroni M., Myasoedova N. M., Schmatchenko V., Leontievsky A. A., Golovleva L. A., Scozzafava A. and Briganti F. Crystal structure of a blue laccase from Lentinus tigrinus:evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases, BMC Structural Biology,2007,7,60.
    76. Ge H., Gao Y., Hong Y., Zhang M., Xiao Y., Teng M. and Niu L., Structure of native laccase B from Trametes sp. AH28-2, Acta Crystallographica Section F:Structural Biology and Crystallization Communications,2010,66,254-258.
    77. Fukushima Y. and Kirk T. K., Laccase component of the Ceriporiopsis subvermispora lignin-degrading system, Applied and Environmental Microbiology,1995,61,872-876.
    78. Witayakran S. and Ragauskas A. J., Synthetic applications of laccase in green chemistry, Advanced Synthesis & Catalysis,2009,351, 1187-1209.
    79. Torres J., Svistunenko D., Karlsson B., Cooper C. E. and Wilson M. T., Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate, Journal of the American Chemical Society,2002,124,963-967.
    80. Lloret L., Eibes G., Feijoo G., Moreira M. T. and Lema J. M., Application of response surface methodology to study the removal of estrogens in a laccase-mediated continuous membrane reactor, Biocatalysis and Biotransformation,2013,31,197-207.
    81. Feng Y., Colosi L. M., Gao S., Huang Q. and Mao L. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions: reaction rates, products, and pathways, Environmental science & technology,2013,47,1001-1008.
    82. Wong D. W., Structure and action mechanism of ligninolytic enzymes, Applied Biochemistry and Biotechnology,2009,157,174-209.
    83. Wicklow D., Langie R., Crabtree S. and Detroy R., Degradation of lignocellulose in wheat straw versus hardwood by Cyathus and related species (Nidulariaceae), Canadian Journal of Microbiology,1984,30,632-636.
    84. Rodriguez J., Ferraz A., Nogueira R. F., Ferrer I., Esposito E. and Duran N., Lignin biodegradation by the ascomycete Chrysonilia sitophila, Applied Biochemistry and Biotechnology,1997,62,233-242.
    85. Tien M. and Kirk T. K., Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds, Science,1983,221, 661-662.
    86. Vivekanand V., Dwivedi P., Sharma A., Sabharwal N. and Singh R. P., Enhanced delignification of mixed wood pulp by Aspergillus fumigatus laccase mediator system, World Journal of Microbiology and Biotechnology,2008,24,2799-2804.
    87. D'Souza-Ticlo D., Sharma D. and Raghukumar C., A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus, Marine Biotechnology,2009,11,725-737.
    88. Arisoy M., Biodegradation of chlorinated organic compounds by white-rot fungi, Bulletin of Environmental Contamination and Toxicology,1998,60,872-876.
    89. Keum Y. S. and Li Q. X., Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls, Chemosphere,2004, 56,23-30.
    90. Kadhim H., Graham C., Barratt P., Evans C. S. and Rastall R. A., Removal of phenolic compounds in water using Coriolus versicolor grown on wheat bran, Enzyme and Microbial Technology,1999,24, 303-307.
    91. Itoh K., Fujita M., Kumano K., Suyama K. and Yamamoto H., Phenolic acids affect transformations of chlorophenols by a Coriolus versicolor laccase, Soil Biology and Biochemistry,2000,32,85-91.
    92. Canas A. I., Alcalde M., Plou F., Martinez M. J., Martinez A. T. and Camarero S., Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil, Environmental Science & Technology,2007,41, 2964-2971.
    93. Johannes C. and Majcherczyk A., Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems, Applied and Environmental Microbiology,2000,66,524-528.
    94. Pozdnyakova N. N., Rodakiewicz-Nowak J., Turkovskaya O. V. and Haber J., Oxidative degradation of poly aromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators, Enzyme and Microbial Technology,2006,39, 1242-1249.
    95. Mechichi T., Mhiri N. and Sayadi S., Remazol Brilliant Blue R decolourization by the laccase from Trametes trogii, Chemosphere, 2006,64,998-1005.
    96. Champagne P.-P., Nesheim M. and Ramsay J., A mechanism for NaCl inhibition of Reactive Blue 19 decolorization and ABTS oxidation by laccase, Applied Microbiology and Biotechnology,2013, 97.6263-6269.
    97. Wang H., Zhang W., Zhao J., Xu L., Zhou C., Chang L. and Wang L., Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support, Industrial & Engineering Chemistry Research,2013,52,4401-4407.
    98. Wong Y. and Yu J., Laccase-catalyzed decolorization of synthetic dyes, Water Research,1999,33,3512-3520.
    99. Lanzellotto C., Favero G., Antonelli M., Tortolini C., Cannistraro S., Coppari E. and Mazzei F., Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles:Preparation, characterization and analytical applications, Biosensors and Bioelectronics,2014,55,430-437.
    100. Mousty C., Vieille L. and Cosnier S., Laccase immobilization in redox active layered double hydroxides:a reagentless amperometric biosensor, Biosensors and Bioelectronics,2007,22, 1733-1738.
    101. Quan D. and Shin W., Amperometric detection of hydroquinone and homogentisic acid with laccase immobilized platinum electrode, Bulletin of the Korean Chemical Society,2004,25,833-837.
    102. Quan D. and Shin W., Amperometric detection of catechol and catecholamines by immobilized laccase from DeniLite, Electroanalysis,2004,16,1576-1582.
    103. Li D., Luo L., Pang Z., Ding L., Wang Q., Ke H., Huang F. and Wei Q., A novel phenolic biosensor based on magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofibers composite, ACS Applied Materials & Interfaces,2014.
    104. Ardhaoui M., Bhatt S., Zheng M., Dowling D., Jolivalt C. and Khonsari F. A., Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode, Materials Science and Engineering:C,2013,33,3197-3205.
    105. Eremia S. A., Vasilescu I., Radoi A., Litescu S.-C. and Radu G.-L., Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content, Talanta,2013,110,164-170.
    106. Li Y., Zhang J., Huang X. and Wang T., Construction and direct electrochemistry of orientation controlled laccase electrode, Biochemical and Biophysical Research Communications,2014,446, 201-205.
    107. Rochefort D., Kouisni L. and Gendron K., Physical immobilization of laccase on an electrode by means of poly (ethyleneimine) microcapsules, Journal of Electro analytical Chemistry, 2008,617,53-63.
    108. Fernandez-Fernandez M., Sanroman M. and Moldes D., Recent developments and applications of immobilized laccase, Biotechnology Advances,2013,31,1808-1825.
    109. Qiu H., Xu C, Huang X., Ding Y., Qu Y. and Gao P., Immobilization of laccase on nanoporous gold:comparative studies on the immobilization strategies and the particle size effects, The Journal of Physical Chemistry C,2009,113,2521-2525.
    110. Wang Y., Zheng X.-h. and Zhao M., Study of immobilization of laccase on mesoporous molecular sieve MCM-41, Journal of Chemical Engineering of Chinese Universities,2008,22,83.
    111. Shleev S., Persson P., Shumakovich G., Mazhugo Y. Yaropolov A., Ruzgas T. and Gorton L., Laccase-based biosensors for monitoring lignin, Enzyme and Microbial Technology,2006,39, 835-840.
    112. Wang F., Guo C., Liu H. Z. and Liu C. Z., Immobilization of Pycnoporus sanguineus laccase by metal affinity adsorption on magnetic chelator particles, Journal of Chemical Technology and Biotechnology,2008,83,97-104.
    113. Forde J., Tully E., Vakurov A., Gibson T. D., Millner P. and O'Fagain C., Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila, Enzyme and Microbial Technology,2010,46,430-437.
    114. Szamocki R., Flexer V., Levin L., Forchiasin F. and Calvo E., Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator, Electrochimica Acta,2009,54,1970-1977.
    115. Rahman M. A. and Noh H.-B., Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulated-dendrimer bonded conducting polymer:application for a catechin sensor, Analytical Chemistry,2008,80,8020-8027.
    116. Wang K., Liu P., Ye Y., Li J., Zhao W. and Huang X., Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine, Sensors and Actuators B:Chemical,2014,197,292-299.
    117. Huang J., Xiao H., Li B., Wang J. and Jiang D., Immobilization of Pycnoporus sanguineus laccase on copper tetra-aminophthalocyanine-Fe3O4 nanoparticle composite, Biotechnology and Applied Biochemistry,2006,44,93-100.
    118. Yu L., Cen G. and Feng W., Preparation of magnetic silica nanoparticles and their application in laccase immobilization, The Chinese journal of process engineering,2008,8,583-589.
    119. Brandi P., D'Annibale A., Galli C., Gentili P. and Pontes A. S. N., In search for practical advantages from the immobilisation of an enzyme:the case of laccase, Journal of Molecular Catalysis B: Enzymatic,2006,41,61-69.
    120. Stanescu M. D., Fogorasi M., Shaskolskiy B. L., Gavrilas S. and Lozinsky V. I., New potential biocatalysts by laccase immobilization in PVA cryogel type carrier, Applied Biochemistry and Biotechnology,2010,160,1947-1954.
    121. Plagemann R., Jonas L. and Kragl U., Ceramic honeycomb as support for covalent immobilization of laccase from Trametes versicolor and transformation of nuclear fast red, Applied Microbiology and Biotechnology,2011,90,313-320.
    122. Beneyton T., El Harrak A., Griffiths A. D., Hellwig P. and Taly V., Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications, Electrochemistry Communications,2011,13,24-27.
    123. Martinez-Ortiz J., Flores R. and Vazquez-Duhalt R., Molecular design of laccase cathode for direct electron transfer in a biofuel cell, Biosensors and Bioelectronics,2011,26,2626-2631.
    124. Phetsom J., Khammuang S., Suwannawong P. and Sarnthima R., Copper-alginate encapsulation of crude laccase from Lentinus polychrous lev. and their effectiveness in synthetic dyes decolorizations, Journal of Biological Sciences,2009,9,573-583.
    125. Dayaram P. and Dasgupta D., Decolorisation of synthetic dyes and textile wastewater using Polyporus rubidus, Journal of Environmental Biology,2008,29,831-836.
    126. Qiu L. and Huang Z., The treatment of chlorophenols with laccase immobilized on sol-gel-derived silica, World Journal of Microbiology and Biotechnology,2010,26,775-781.
    127. Klis M., Karbarz M., Stojek Z., Rogalski J. and Bilewicz R. Thermoresponsive Poly(N-isopropylacrylamide) gel for immobilization of laccase on indium tin oxide electrodes, Journal of Physical Chemistry B,2009,113,6062-6067.
    128. Zhang Y. and Rochefort D., Comparison of emulsion and vibration nozzle methods for microencapsulation of laccase and glucose oxidase by interfacial reticulation of poly(ethyleneimine), Journal of Microencapsulation,2010,27,703-713.
    129. Makas Y. G., Kalkan N. A., Aksoy S., Altinok H. and Hasirci Nesrin N., Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks, Journal of Biotechnology, 2010,148,216-220.
    130. Niladevi K. and Prema P., Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 2008,24,1215-1222.
    131. Wang J. Y., Yu H. R., Xie R., Ju X. J., Yu Y. L., Chu L. Y. and Zhang Z., Alginate/protamine/silica hybrid capsules with ultrathin membranes for laccase immobilization, AIChE Journal,2013,59, 380-389.
    132. Iqbal H. M. and Asgher M., Decolorization applicability of sol-gel matrix immobilized manganese peroxidase produced from an indigenous white rot fungal strain Ganoderma lucidum, BMC Biotechnology,2013,13,56.
    133. Mogharabi M., Nassiri-Koopaei N., Bozorgi-Koushalshahi M., Nafissi-Varcheh N., Bagherzadeh G. and Faramarzi M. A., Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes, Bioinorganic Chemistry and Applications,2012,2012.
    134. Matijosyte I., Arends I. W. C. E., de Vries S. and Sheldon R. A., Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases, Journal of Molecular Catalysis B:Enzymatic,2010,62, 142-148.
    135. Jordaan J., Mathye S., Simpson C. and Brady D., Improved chemical and physical stability of laccase after spherezyme immobilisation, Enzyme and Microbial Technology,2009,45,432-435.
    136. De Stefano L., Rea I., De Tommasi E., Rendina I., Rotiroti L., Giocondo M., Longobardi S., Armenante A. and Giardina P., Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus, European Physical Journal E, 2009,30,181-185.
    137. Pita M., Gutierrez-Sanchez C., Olea D., Velez M., Garcia-Diego C., Shleev S., Fernandez V. M. and De Lacey A. L., High redox potential cathode based on laccase covalently attached to gold electrode, The Journal of Physical Chemistry C,2011,115, 13420-13428.
    138. Rusmini F., Zhong Z. and Feijen J., Protein immobilization strategies for protein biochips, Biomacromolecules,2007,8,1775-1789.
    139. Hernandez K. and Fernandez-Lafuente R., Control of protein immobilization:coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance, Enzyme and Microbial Technology,2011,48,107-122.
    140. Schroper F., Baumann A., Offenhausser A. and Mayer D., Direct electrochemistry of novel affinity-tag immobilized recombinant horse heart cytochrome c, Biosensors and Bioelectronics,2012,34, 171-177.
    1. Shleev S., Tkac J., Christenson A., Ruzgas T., Yaropolov A. I., Whittaker J. W. and Gorton L., Direct electron transfer between copper-containing proteins and electrodes, Biosensors and Bioelectronics, 2005,20,2517-2554.
    2. Solomon E. I., Sundaram U. M. and Machonkin T. E., Multicopper oxidases and oxygenases, Chemical Reviews,1996,96,2563-2605.
    3. Qiu H., Xu C., Huang X., Ding Y., Qu Y. and Gao P., Immobilization of laccase on nanoporous gold:comparative studies on the immobilization strategies and the particle size effects, The Journal of Physical Chemistry C,2009,113,2521-2525.
    4. Thorum M. S., Anderson C. A., Hatch J. J., Campbell A. S., Marshall N. M., Zimmerman S. C., Lu Y. and Gewirth A. A., Direct, Electrocatalytic Oxygen Reduction by Laccase on Anthracene-2-methanethiol-Modified Gold, The journal of physical chemistry letters,2010,1,2251-2254.
    5. Asgher M., Bhatti H. N., Ashraf M. and Legge R. L., Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system, Biodegradation,2008,19,771-783.
    6. Rincon R. A., Lau C., Luckarift H. R., Garcia K. E., Adkins E., Johnson G. R. and Atanassov P., Enzymatic fuel cells:Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design, Biosensor and Bioelectronics,2011,27,132-136.
    7. Milton R. D., Giroud F., Thumser A. E., Minteer S. D. and Slade R. C., Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells:FAD-dependent glucose dehydrogenase as a replacement, Physical Chemistry Chemical Physics,2013, 15,19371-19379.
    8. Zheng M., Chi Y., Yi H. and Shao S., Decolorization of alizarin red and other synthetic dyes by a recombinant laccase from Pichia pastoris, Biotechnology Letters,2014,36,39-45.
    9. Gutierrez-Sanchez C., Pita M., Vaz-Dominguez C., Shleev S. and De Lacey A. L., Gold nanoparticles as electronic bridges for laccase-based biocathodes, Journal of the American Chemical Society,2012,134, 17212-17220
    10. Martinez-Ortiz J., Flores R. and Vazquez-Duhalt R., Molecular design of laccase cathode for direct electron transfer in a biofuel cell, Biosensors and Bioelectronics,2011,26,2626-2631.
    11. Pita M., Shleev S., Ruzgas T., Fernandez V. M., Yaropolov A. I. and Gorton L., Direct heterogeneous electron transfer reactions of fungal laccases at bare and thiol-modified gold electrodes, Electrochemistry Communications,2006,8,747-753.
    12. Balland V., Hureau C., Cusano A. M., Liu Y., Tron T. and Limoges B., Oriented immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes, Chemistry,2008,14, 7186-7192.
    13. Bourourou M., Elouarzaki K., Lalaoui N., Agnes C., Le Goff A., Holzinger M., Maaref A. and Cosnier S., Supramolecular Immobilization of Laccase on Carbon Nanotube Electrodes Functionalized with (Methylpyrenylaminomethyl) anthraquinone for Direct Electron Reduction of Oxygen, Chemistry-A European Journal,2013,19,9371-9375.
    14. Ataka K., Giess F., Knoll W., Naumann R., Haber-Pohlmeier S., Richter B. and Heberle J., Oriented attachment and membrane reconstitution of His-tagged cytochrome c oxidase to a gold electrode:in situ monitoring by surface-enhanced infrared absorption spectroscopy, Journal of the American Chemical Society,2004,126,16199-16206.
    15. Hernandez K. and Fernandez-Lafuente R., Control of protein immobilization:coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance, Enzyme and Microbial Technology,2011,48,107-122.
    16. Gwenin C., Kalaji M., Williams P. and Jones R., The orientationally controlled assembly of genetically modified enzymes in an amperometric biosensor, Biosensors and Bioelectronics,2007,22,2869-2875.
    17. Schroper F., Baumann A., Offenhausser A. and Mayer D., Direct electrochemistry of novel affinity-tag immobilized recombinant horse heart cytochrome c Biosens Bioelectron,2012,34,171-177.
    18. Benson D. E., Conrad D. W., Trammell S. A. and Hellinga H. W., Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins, Science,2001,293,1641-1644.
    19. Kondo M., Iida K., Dewa T., Tanaka H., Ogawa T., Nagashima S., Nagashima K. V., Shimada K., Hashimoto H. and Gardiner A. T., Photocurrent and electronic activities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode, Biomacromolecules,2012,13,432-438.
    20. Record E., Punt P. J., Chamkha M., Labat M., van den Hondel C. A. and Asther M., Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme, European Journal of Biochemistry,2002,269,602-609.
    21. Yang Y., Wei F., Zhuo R., Fan F., Liu H., Zhang C., Ma L., Jiang M. and Zhang X., Enhancing the Laccase Production and Laccase Gene Expression in the White-Rot Fungus Trametes velutina 5930 with Great Potential for Biotechnological Applications by Different Metal Ions and Aromatic Compounds, PloS one,2013,8, e79307.
    22. You L. F., Liu Z. M., Lin J. F., Guo L. Q., Huang X. L. and Yang H. X., Molecular cloning of a laccase gene from Ganoderma lucidum and heterologous expression in Pichia pastoris, Journal of Basic Microbiology, 2013,53,1-8.
    23. Li J., Hong Y., Xiao Y., Xu Y. and Fang W., High production of laccase B from Trametes sp. in Pichia pastoris, World Journal of Microbiology and Biotechnology,2007,23,741-745.
    24. Hong Y., Xiao Y., Zhou H., Fang W., Zhang M., Wang J., Wu L. and Yu Z., Expression of a laccase cDNA from Trametes sp. AH28-2 in Pichia pastoris and mutagenesis of transformants by nitrogen ion implantation, FEMS Microbiology Letters,2006,258,96-101.
    25. Xiao Y., Chen Q., Hang J., Shi Y., Wu J., Hong Y. and Wang Y., Selective induction, purification and characterization of a laccase isozyme from the basidiomycete Trametes sp. AH28-2, Mycologia,2004,96,26-35.
    26. Xiao Y., Hong Y., Li J., Hang J., Tong P., Fang W. and Zhou C., Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression, Applied Microbiology and Biotechnology,2006,71,493-501.
    27. Xiao Y., Tu X., Wang J., Zhang M., Cheng Q., Zeng W. and Shi Y., Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2, Applied Microbiology and Biotechnology,2003,60,700-707.
    28. Dhakar K., Jain R., Tamta S. and Pandey A., Prolonged laccase production by a cold and pH tolerant strain of penicillium pinophilum (MCC 1049) isolated from a low temperature environment, Enzyme Research,2014, 2014.
    29. Tang X.-S., Tang Z.-R., Wang S.-P., Feng Z.-M., Zhou D., Li T.-J. and Yin Y.-L., Expression, purification, and antibacterial activity of bovine lactoferrampin-lactoferricin in Pichia pastoris, Applied Biochemistry and Biotechnology,2012,166,640-651.
    30. Ge H., Gao Y., Hong Y., Zhang M., Xiao Y., Teng M. and Niu L Structure of native laccase B from Trametes sp. AH28-2, Acta Crystallographica Section F,2010,66,254-258.
    31. Guex N. and Peitsch M. C., SWISS-MODEL and the Swiss-Pdb viewer:an environment for comparative protein modeling, Electrophoresis, 1997,18,2714-2723.
    1. Shleev S., Tkac J., Christenson A., Ruzgas T., Yaropolov A. I., Whittaker J. W. and Gorton L., Direct electron transfer between copper-containing proteins and electrodes, Biosensors and Bioelectronics, 2005,20,2517-2554.
    2. Solomon E. I., Sundaram U. M. and Machonkin T. E., Multicopper oxidases and oxygenases, Chemical Reviews,1996,96,2563-2605.
    3. Xu F., Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases, Journal of Biological Chemistry,1997,272, 924-928.
    4. Gutierrez-Sanchez C., Pita M., Vaz-Dominguez C., Shleev S. and De Lacey A. L., Gold nanoparticles as electronic bridges for laccase-based biocathodes, Journal of the American Chemical Society,2012,134, 17212-17220.
    5. Martinez-Ortiz J., Flores R. and Vazquez-Duhalt R., Molecular design of laccase cathode for direct electron transfer in a biofuel cell, Biosensors and Bioelectronics,2011,26,2626-2631.
    6. Pita M., Gutierrez-Sanchez C., Olea D., Velez M., Garcia-Diego C., Shleev S., Fernandez V. M. and De Lacey A. L., High redox potential cathode based on laccase covalently attached to gold electrode, The Journal of Physical Chemistry C,2011,115,13420-13428.
    7. Karaskiewicz M., Majdecka D., Wieckowska A., Biernat J. F., Rogalski J. and Bilewicz R., Induced-fit binding of laccase to gold and carbon electrodes for the biological fuel cell applications, Electrochimica Acta,2013.
    8. Das M., Barbora L., Das P. and Goswami P., Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode, Biosensors and Bioelectronics,2014.
    9. Balland V., Hureau C., Cusano A. M., Liu Y., Tron T. and Limoges B., Oriented immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes, Chemistry,2008,14, 7186-7192.
    10. Qiu H., Xu C., Huang X., Ding Y., Qu Y. and Gao P., Adsorption of Laccase on the Surface of Nanoporous Gold and the Direct Electron Transfer between Them, The Journal of Physical Chemistry C,2008,112, 14781-14785.
    11. Pita M., Shleev S., Ruzgas T., Fernandez V. M., Yaropolov A. I. and Gorton L., Direct heterogeneous electron transfer reactions of fungal laccases at bare and thiol-modified gold electrodes, Electrochemistry Communications,2006,8,747-753.
    12. Benson D. E., Conrad D. W., Trammell S. A. and Hellinga H. W., Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins, Science,2001,293,1641-1644.
    13. Shleev S., Pita M., Yaropolov A. I., Ruzgas T. and Gorton L., Direct heterogeneous electron transfer reactions of Trametes hirsuta laccase at bare and thiol-modified gold electrodes, Electroanalysis,2006,18, 1901-1908.
    14. Souza G. R., Levin C. S., Hajitou A., Pasqualini R., Arap W. and Miller J. H., In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters, Analytical Chemistry,2006,78,6232-6237.
    15. Ghawla S., Rawal R. and Pundir C. S., Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode, Journal of Biotechnology,2011,156,39-45.
    16. Gupta G., Rajendran V. and Atanassov P., Bioelectrocatalysis of oxygen reduction reaction by laccase on gold electrodes, Electroanalysis, 2004,16,1182-1185.
    17. Ataka K., Giess F., Knoll W., Naumann R., Haber-Pohlmeier S., Richter B. and Heberle J., Oriented attachment and membrane reconstitution of His-tagged cytochrome c oxidase to a gold electrode:in situ monitoring by surface-enhanced infrared absorption spectroscopy, Journal of the American Chemical Society, 2004,126,16199-16206.
    18. Gutierrez-Sanchez C., Olea D., Marques M., Fernandez V. M., Pereira I. A., Velez M. and De Lacey A. L., Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer, Langmuir,2011,27,6449-6457.
    19. Gwenin C., Kalaji M., Williams P. and Jones R., The orientationally controlled assembly of genetically modified enzymes in an amperometric biosensor, Biosensors and Bioelectronics,2007,22,2869-2875.
    20. Ley C., Holtmann D., Mangold K. M. and Schrader J., Immobilization of histidine-tagged proteins on electrodes, Colloids and Surfaces B:Biointer-faces,2011,88,539-551.
    21. Schroper F., Baumann A., Offenhausser A. and Mayer D., Direct electrochemistry of novel affinity-tag immobilized recombinant horse heart cytochrome c, Biosensors and Bioelectronics,2012,34,171-177.
    22. Qiu H., Sun Y., Huang X. and Qu Y., A sensitive nanoporous gold-based electrochemical aptasensor for thrombin detection, Colloids and Surfaces B:Biointer faces,2010,79,304-308.
    23. Sauerbrey G., Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung, Zeitschrift fur Physik,1959,155, 206-222.
    24. Ge H., Gao Y., Hong Y., Zhang M., Xiao Y., Teng M. and Niu L., Structure of Native Laccase B from Trametes sp. AH28-2, Act a Crystallographica Section F:Structural Biology and Crystallization Communications,2010,66,254-258.
    25. Guex N. and Peitsch M. C., SWISS-MODEL and the Swiss-Pdb Viewer:An environment for comparative protein modeling, Electrophoresis, 1997,18,2714-2723.
    26. Murray R., Micrographics education for librarians:selected findings of a directed study, Microform & Imaging Review,1984,13,177-179.
    1. Riva S., Laccases:blue enzymes for green chemistry, Trends in Biotechnology,2006,24,219-226.
    2. Xu F., Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases, Journal of Biological Chemistry,1997,272, 924-928.
    3. Xu F., Oxidation of phenols, anilines, and benzenethiols by fungal laccases:correlation between activity and redox potentials as well as halide inhibition, Biochemistry,1996,35,7608-7614.
    4. Yaropolov A., Skorobogat'Ko O., Vartanov S. and Varfolomeyev S., Laccase, Applied Biochemistry and Biotechnology,1994,49,257-280.
    5. Enguita F. J., Marcal D., Martins L. O., Grenha R., Henriques A. O., Lindley P. F. and Carrondo M. A., Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis, Journal of Biological Chemistry 2004,279,23472-23476.
    6. Ge H., Gao Y., Hong Y., Zhang M., Xiao Y., Teng M. and Niu L., Structure of native laccase B from Trametes sp. AH28-2, Acta Crystallographica Section F:Structural Biology and Crystallization Communications,2010,66,254-258.
    7. Balland V., Hureau C., Cusano A. M., Liu Y., Tron T. and Limoges B., Oriented immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes, Chemistry,2008,14, 7186-7192.
    8. Porath J., Carlsson J., Olsson I. and Belfrage G., Metal chelate affinity chromatography, a new approach to protein fractionation, Nature, 1975,258,598-599.
    9. Kroger D., Liley M., Schiweck W., Skerra A. and Vogel H., Immobilization of histidine-tagged proteins on gold surfaces using chelator thioalkanes, Biosensors and Bioelectronics,1999,14,155-161.
    10. Keller T. A., Duschl C., Kroger D., Sevin-Landais A.-F., Vogel H., Cervigni S. E. and Dumy P., Reversible oriented immobilization of histidine-tagged proteins on gold surfaces using a chelator thioalkane, Supramolecular Science,1995,2,155-160.
    11. Martinez M. N. and Odunuga O. O., Effects of size, buffer composition, number and position of tag on purity and yield of purification of histidine-tagged proteins by immobilized metal affinity chromatography, The FASEB Journal,2013,27,790.799.
    12. Dhakar K., Jain R., Tamta S. and Pandey A., Prolonged Laccase Production by a Cold and pH Tolerant Strain of Penicillium pinophilum (MCC 1049) Isolated from a Low Temperature Environment, Enzyme Research,2014, 2014.
    13. Zeng H., Liao L.-W., Li M.-F., Tao Q., Kang J. and Chen Y.-X. Poly aryl amide and multiwalled carbon nanotube composite supported laccase electrode and its electrochemical behavior, Acta Physico-Chimica Sinica, 2010,26,3217-3224.
    14. Bradford M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry,1976,72,248-254.
    15. 姬广磊,漆酶在染料脱色和疏水性芳香化合物降解转化中的应用研究[D],山东大学,2009.
    16. Das D. and Das P. K., Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles, Langmuir,2009, 25,4421-4428.
    17. Nepal D. and Geckeler K. E., pH-sensitive dispersion and debundling of single-walled carbon nanotubes:lysozyme as a tool, Small, 2006,2,406-412.
    18. Telke A. A., Ghodake G. S., Kalyani D. C., Dhanve R. S. and Govindwar S. P., Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR, Bioresource Technology, 2011,102,1752-1756.
    19. Lu L., Zhao M. and Wang Y., Immobilization of. laccase by alginate-chitosan microcapsules and its use in dye decolorization, World Journal of Microbiology and Biotechnology,2007,23,159-166.
    20. Yu L., Cen G. and Feng W., Preparation of magnetic silica nanoparticles and their application in laccase immobilization, The Chinese Journal of Process Engineering,2008,8,583-589.
    21. Stanescu M. D., Fogorasi M., Shaskolskiy B. L., Gavrilas S. and Lozinsky V. I., New potential biocatalysts by laccase immobilization in PVA cryogel type carrier, Applied Biochemistry and Biotechnology,2010,160, 1947-1954.
    1. Bachilo S. M., Strano M. S., Kittrell C., Hauge R. H., Smalley R. E. and Weisman R. B., Structure-assigned optical spectra of single-walled carbon nanotubes, Science,2002,298,2361-2366.
    2. Iijima S., Helical microtubules of graphitic carbon, Nature,1991, 354,56-58.
    3. Iijima S. and Ichihashi T., Single-shell carbon nanotubes of 1-nm diameter, Nature,1993,363,603-605.
    4. Strano M. S., Dyke C. A., Usrey M. L., Barone P. W., Allen M. J., Shan H., Kittrell C., Hauge R. H., Tour J. M. and Smalley R. E., Electronic structure control of single-walled carbon nanotube functionalization, Science, 2003,301,1519-1522.
    5. Cella L. N., Chen W., Myung N. V. and Mulchandani A., Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules:ultrasensitive glucose detection, Journal of the American Chemical Society,2010,132,5024-5026.
    6. Kim K. H., Oh Y. and Islam M. F., Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue, Nature Nanotechnology,2012,7,562-566.
    7. Villasenor F., Loera O., Campero A. and Viniegra-Gonzalez G., Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the later, Fuel Processing Technology,2004, 86,49-59.
    8. Wang H., Wu Z., Plaseied A., Jenkins P., Simpson L., Engtrakul C. and Ren Z., Carbon nanotube modified air-cathodes for electricity production in microbial fuel cells, Journal Of Power Sources,2011,196,7465-7469.
    9. Zhu Z., Garcia-Gancedo L., Flewitt A. J., Moussy F., Li Y. and Milne W. I., Design of carbon nanotube fiber microelectrode for glucose biosensing, Journal of Chemical Technology and Biotechnology,2012,87, 256-262.
    10. Das D. and Das P. K., Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles, Langmuir,2009, 25,4421-4428.
    11. Moore V. C., Strano M. S., Haroz E. H., Hauge R. H., Smalley R. E., Schmidt J. and Talmon Y., Individually suspended single-walled carbon nanotubes in various surfactants, Nano Letters,2003,3,1379-1382.
    12. Zhong W. and Claverie J. P., Probing the carbon nanotube-surfactant interaction for the preparation of composites, Carbon,2013,51, 72-84.
    13. Grunlan J. C., Liu L. and Kim Y. S., Tunable single-walled carbon nanotube microstructure in the liquid and solid states using poly (acrylic acid), Nano Letters,2006,6,911-915.
    14. Nap R. and Szleifer I., Control of carbon nanotube-surface interactions:the role of grafted polymers, Langmuir,2005,21,12072-12075.
    15. Cathcart H., Nicolosi V., Hughes J. M., Blau W. J., Kelly J. M., Quinn S. J. and Coleman J. N., Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions, Journal of the American Chemical Society,2008,130,12734-12744.
    16. Zheng M., Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science,2003,302,1545-1548.
    17. Karajanagi S. S., Yang H., Asuri P., Sellitto E., Dordick J. S. and Kane R. S., Protein-assisted solubilization of single-walled carbon nanotubes, Langmuir,2006,22,1392-1395.
    18. Nakashima N., Okuzono S., Murakami H., Nakai T. and Yoshikawa K., DNA dissolves single-walled carbon nanotubes in water, Chemistry Letters, 2003,32,456-457.
    19. Nie H., Wang H., Cao A., Shi Z., Yang S.-T., Yuan Y. and Liu Y. Diameter-selective dispersion of double-walled carbon nanotubes by lysozyme, Nanoscale,2011,3,970-973.
    20. Asuri P., Bale S. S., Pangule R. C., Shah D. A., Kane R. S. and Dordick J. S., Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes, Langmuir,2007,23,12318-12321.
    21. Karajanagi S. S., Vertegel A. A., Kane R. S. and Dordick J. S., Structure and function of enzymes adsorbed onto single-walled carbon nanotubes, Langmuir,2004,20,11594-11599.
    22. Crespilho F. N., Emilia Ghica M., Florescu M., Nart F. C., Oliveira O. N. and Brett C. M. A., A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator, Electrochemistry communications,2006,8, 1665-1670.
    23. Tu X., Zhao Y., Luo S., Luo X. and Feng L., Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method, Microchimica Acta,2012.
    24. Sassolas A., Blum L. J. and Leca-Bouvier B. D., Immobilization strategies to develop enzymatic biosensors, Biotechnology Advances,2012,30, 489-511.
    25. Becker J. W., Reeke G. N., Jr., Cunningham B. A. and Edelman G. M., New evidence on the location of the saccharide-binding site of concanavalin A, Nature,1976,259,406-409.
    26. Matto M. and Husain Q., Entrapment of porous and stable concanavalin A-peroxidase complex into hybrid calcium alginate-pectin gel, Journal of Chemical Technology and Biotechnology,2006,81,1316-1323.
    27. Xue Y., Ding L., Lei J., Yan F. and Ju H., In situ electrochemical imaging of membrane glycan expression on micropatterned adherent single cells, Analytical Chemistry,2010,82,7112-7118.
    28. Bucur B., Danet A. F. and Marty J.-L., Versatile method of cholinesterase immobilisation via affinity bonds using Concanavalin A applied to the construction of a screen-printed biosensor, Biosensors and Bioelectronics,2004,20,217-225.
    29. D'Annibale A., Rita Stazi S., Vinciguerra V., Di Mattia E. and Giovannozzi Sermanni G., Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment, Process Biochemistry,1999,34,697-706.
    30. Pickard M. A., Roman R.,Tinoco R. and Vazquez-Duhalt R. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase, Applied and Environmental Microbiology,1999,65,3805.
    31. Brunel L., Denele J., Servat K., Kokoh K. B., Jolivalt C., Innocent C., Cretin M., Rolland M. and Tingry S., Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell, Electrochemistry Communications,2007,9,331-336.
    32. Liu Y., Qu X., Guo H., Chen H., Liu B. and Dong S., Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite, Biosens. Bioelectron., 2006,21,2195-2201.
    33. Soukharev V., Mano N. and Heller A., A four-electron 02-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V, Journal of the American Chemical Society,2004,126, 8368-8369.
    34. Xue L., Qiu H., Li Y., Lu L., Huang X. and Qu Y., A novel water-in-ionic liquid microemulsion and its interfacial effect on the activity of laccase, Colloids and Surfaces B-biointerfaces,2011,82,432-437.
    35. Jia W., Jin C., Xia W., Muhler M., Schuhmann W. and Stoica L. Glucose oxidase/horseradish peroxidase Co-immobilized at a CNT-modified graphite electrode:towards potentially implantable biocathodes, Chemistry-A European Journal,2012,18,2783-2786.
    36. Qiu H., Xu C., Huang X., Ding Y., Qu Y. and Gao P., Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them, The Journal of Physical Chemistry C,2008,112,14781-14785.
    37. Qiu H., Xu C., Huang X., Ding Y., Qu Y. and Gao P., Immobilization of laccase on nanoporous gold:comparative studies on the immobilization strategies and the particle size effects, The Journal of Physical Chemistry C,2009,113,2521-2525.
    38. Lu L., Huang X. and Qu Y., Effect of the structure of imidazolium cations in [BF4]--type ionic liquids on direct electrochemistry and electrocatalysis of horseradish peroxidase in Nafion films, Colloids and Surfaces B-biointerfaces,2011,87,61-66.
    39. Qiu H., Lu L., Huang X., Zhang Z. and Qu Y., Immobilization of horseradish peroxidase on nanoporous copper and its potential applications, Bioresource Technology,2010,101,9415-9420.
    40. Li C., Jiang Z., Gao J., Yang Y., Wang S., Tian F., Sun F., Sun X. Ying P. and Han C., Ultra-Deep Desulfurization of Diesel:Oxidation with a Recoverable Catalyst Assembled in Emulsion, Chemistry-A European Journal,2004,10,2277-2280.
    41. Sachdeva T. O. and Pant K. K., Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst, Fuel Processing Technology,2010,91,1133-1138.
    42. Montiel C., Terres E., Dominguez J.-M. and Aburto J., Immobilization of chloroperoxidase on silica-based materials for 4,6-dimethyl dibenzothiophene oxidation, Journal of Molecular Catalysis B:Enzymatic, 2007,48,90-98.
    43. Bradford M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry,1976,72,248-254.
    44. Bucur B., Danet A. F. and Marty J. L., Versatile method of cholinesterase immobilisation via affinity bonds using Concanavalin A applied to the construction of a screen-printed biosensor, Biosens Bioelectron, 2004,20,217-225.
    45. Islam M., Rojas E., Bergey D., Johnson A. and Yodh A., High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Letters,2003,3,269-273.
    46. Das D. and Das P. K., Improved activity of enzymes in mixed cationic reverse micelles with imidazolium-based surfactants, Biochimie,2008, 90,820-829.
    47. Nepal D. and Geckeler K. E., pH-sensitive dispersion and debundling of single-walled carbon nanotubes:lysozyme as a tool, Small, 2006,2,406-412.
    48. Gajhede M., Schuller D. J., Henriksen A., Smith A. T. and Poulos T. L., Crystal structure of horseradish peroxidase C at 2.15 resolution, Nature Structural & Molecular Biology,1997,4,1032-1038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700