用户名: 密码: 验证码:
硅/有机半导体复合光电材料与器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅基光电子材料是未来信息科技发展的关键材料,但由于硅是一种间接带隙的材料,本体发光效率极低,导致硅基光电子集成难以实现.为了改善硅材料本身的发光性能,国内外已经进行了许多研究,其中硅/有机半导体复合发光也是一个重要的研究方向,但目前进展甚微。有机半导体材料具有易加工低成本和能高效发光等优点,实施硅材料与有机半导体材料的复合,则有望克服硅材料的上述缺点,实现硅基光电集成;同时对硅/有机半导体复合体系中可能存在的能量转移、电子转移等作用过程进行系统研究,可以发现一些新现象、新结构,丰富相关理论。因而,对硅/有机半导体复合材料与器件的研究具有重要的科学意义和应用前景。
     本文首先综述了硅/有机半导体复合光电材料与器件的研究进展,然后以电化学腐蚀法制备多孔硅(PS),PS的扫描电镜表征结果表明,随着电化学腐蚀时间的延长,多孔硅的孔径变大;通过电化学沉积的方法制备PS/N,N'-苯基-3,4,9,10-花四羧基二酰亚胺(DPP)复合材料,PS/DPP复合材料研究结果表明,随着PS孔径的增大,DPP更容易进入孔内与PS接触,形成更大的两相界面;PL谱结果表明,复合后PS和DPP的PL都有一定程度的淬灭,而表面光电压谱(SPS)结果表明,复合后体系SPS响应增强,这说明在PS/DPP复合材料中,光生载流子的电荷分离效率得到提高;电化学腐蚀时间为60 min的PS与DPP复合后,体系的SPS响应增强幅度最大(从51μv增加到100μV),这是由于该复合体系有较大的两相界面。
     以萘钠为还原剂,与SiCl_4进行反应,在溶液中合成了表面链接辛氧基的可溶性纳米硅,并使之与聚乙烯基咔唑(PVK)进行复合,PL谱和紫外-可见光(UV-vis)吸收光谱研究结果表明,纳米硅的UV-vis吸收光谱和PVK的PL谱有较大重叠,可能导致两者之间的福斯特共振能量转移(FRET),通过光谱重叠计算得到FRET的福斯特临界距离(R_0)为51(?);PL谱和激发(PLE)谱结果表明,在纳米硅/PVK复合材料中,PVK的PL强度随纳米硅含量的增加而减弱,以明显红移于PVK的吸收边的激发光(415 nm)激发复合薄膜所得到的PL强度,弱于PVK和纳米硅同时被激发所得到的PL强度,同时PLE谱结果显示,纳米硅的PL除了来自自身被激发而发光的贡献外,还有来自PVK的激发贡献,表明了在该复合体系中存在从PVK到纳米硅的能量转移;时间分辨PL谱结果表明,复合后PVK的荧光寿命随着纳米硅含量的增加而变短,而纳米硅的荧光寿命则随着它的含量的增加而延长,通过荧光衰减动力学计算得到的R_0为47(?)。这与通过光谱重叠计算得到的结果接近;通过计算得到了从PVK到纳米硅FRET的效率(最高为0.42)和速率(最大为11.10×10~7s~(-1))。
     以N-十二烷基-N'-苯基-苝酰亚胺(DOPP)与纳米硅复合,PL谱显示,复合后纳米硅有较大的荧光淬灭,由于DOPP的UV-vis吸收光谱和纳米硅PL谱有一定重叠,提出荧光淬灭有可能是从纳米硅到DOPP的FRET过程所致;通过计算估算出DOPP浓度为10%的复合材料中,FRET过程只对22.4%的纳米硅荧光淬灭有贡献,但是纳米硅的荧光淬灭高达78%,据此提出还有其他的机理来支配荧光淬灭;循环伏安测试结果表明,DOPP和纳米硅具有能级交错结构,因此提出存在于两者之间的电子转移可能会主导纳米硅的荧光淬灭;时间分辨PL谱结果表明,复合后纳米硅的荧光寿命得到延长,这进一步说明电子转移是荧光淬灭的主导原因;电子转移也导致了体系光敏性的大幅提高,复合后体系的光敏性最多可提高近4倍。
     以p型单晶硅为阳极,可增强有机电致发光器件(OLEDs)的空穴注入,但是这也导致了器件电子(少子)、空穴(多子)注入的不平衡,以往的研究思路多是采用压制空穴注入(如在硅阳极长出一层SiO_2)的方式,来实现电子、空穴平衡注入;我们采用三(5-氟-8-羟基喹啉)铝作为电子传输材料来制备硅基/有机复合发光器件,研究结果表明,与常用电子传输材料-三(-8-羟基喹啉)铝(Alq_3)相比,5FAlq_3可以有效提高器件电子注入,这样就在一定程度上改善了硅基/有机复合发光器件电子、空穴注入不平衡的状况,但是由于5FAlq_3的荧光量子效率较低,并且经5FAlq_3改善后的电子注入仍不足以与器件空穴注入相匹配,导致器件发光性能与效率仍未提高;为此,在器件中引入空穴阻挡材料——1,10-邻菲罗林衍生物(BCP),实现了器件发光层(Alq_3)与电子传输层(5FAlq_3)的功能分离,结果器件的效率得到了较大提高(功率效率由0.117 lm/W提高到0.426 lm/W);引入BCP后,器件在硅阳极电阻率为1Ωcm时得到最大功率效率,这也说明此时器件的电子、空穴注入最为平衡。
Silicon is the basic material of modem electronic industry,but the low luminescence efficiency due to its indirect band gap excludes its further application in optoelectronic integration,which is important for future information technology. Organic semiconductor is cheap,easily processible and can luminesce efficiently. Fabricating organic-emitting diodes based on silicon is believed to be a possible route to achieve silicon-based optoelectronic integration.At the same time,some novel phenomena and structures can be found via the study on the energy transfer and charge transfer which may exist in the silicon/organic semiconductor composite systems.So the study on silicon/organic semiconductor composites and devices is not only significant in theory but also can impel the application of silicon/organic semiconductor composites and devices.
     PS was prepared by electrochemical anodization of p-type Si wafers.The influences of time on the morphology,photoluminescence(PL) spectra and surface photovoltaic spectra(SPS) of PS were investigated.The results showed that the longer etching time corresponded to the greater porosity of PS,which was explained via the formation mechanism of PS.Then the quantum confinement - luminescence center (QC-LC) model was employed to interpret the PL of PS.The model told that the photoexcited electron-hole pairs mainly occurred in the nano-Si-particles(NSPs) in PS,which could be used to explain the blue-shift of absorption peaks showed in SPS of PS.A n-type semiconductor-N,N'-diphenyl-3,4,9,10-perylenetetracarboxylic diimide(DPP) was synthesized and its energy band structure was investigated via UV-vis absorption spectra and cyclic voltammogram(CV) measurements.DPP was then embedded into PS by electrodeposition to form DPP/PS composites.Scanning electron microscope(SEM),PL spectra and SPS were employed to investigate the properties of the composites.According to the SEM images,the larger aperture helped the electrodeposition of DPP molecules into PS,leading to a larger interfacial area between DPP and PS.The PL quenching and stronger surface photovoltaic response resulting from the formation of the heterojunctions revealed a charge transfer process taking place in the composites.This process was even more intense in the composites based on PS with a longer etching time due to their larger interfacial area.The exciton dissociation efficiency was improved in the DPP/PS composites compared to that of PS,and could also be adjusted by the PS etching time,which we think was very important to fabricate solar cells based on PS.
     Silicon NPs were synthesized by using a solution-phase method.Silicon NPs could luminesce due to the quantum confinement effect.Poly(9-vinyl carbazole) (PVK),a hole transport polymer,was employed to composite with silicon NPs,and the PVK/silicon NPs composites with different silicon NPs content were fabricated by solution-blending method.The excellent overlap between the PL of PVK and the absorption of silicon NPs could also be observed from the PL spectra of PVK and the UV-vis absorption spectra of silicon NPs,which was the fundament of FRET from PVK to silicon NPs.A F(?)rster critical distance of about 51(?) was calculated from the overlap of the spectra.PL spectra of the composite films showed the enhancement of the PL intensity of silicon NPs in the composite films when both PVK and the silicon NPs were excited.PLE spectra revealed that the PL of silicon NPs in the composite films originated from photoexcitations in both PVK and silicon NPs.The PL and PLE results showed that FRET took place from PVK to silicon NPs in their composite films.The results of time-resolved PL decays showed the PL lifetime of silicon NPs was prolonged from 1.11 ns to 1.44,1.65,and 1.91 ns with increasing the content of silicon NPs from 0%to 0.2%,0.4%and 0.8%in the composite films,while that of PVK was decreased from 7.24 ns to 5.24,5.90,and 4.19 ns correspondingly.This was what expected in the presence of FRET.The decay kinetics yielded R0= 47A which was close to the one(51 A) calculated from the overlap of the spectra.At last,the energy transfer efficiency with a maximal value of 0.42 and the energy transfer rate with a maximal value of 11.10×10~7s~(-1) were also calculated from the decay kinetics. The results indicated that the prepared composites had potential application in polymer/inorganic NPs hybrid light-emitting diodes.
     N-dodecyl-N'-phenyl-3,4,9,10-perylenetetracarboxylic diimide(DOPP) was synthesized and characterized.DOPP/silicon NPs composites with different silicon NPs content were fabricated by solution-blending method.Remarkable photoluminescence(PL) quenching was observed in the composites dispersed in polymethyl methacrylate matrix.Considering the large overlap of the PL of silicon NPs and the absorption of DOPP,FRET from silicon NPs to DOPP might take place. For a composite with 10%DOPP,FRET only accounted for 22.4%of the total photogenerated excitons.On the other hand,a 78%decrease of the PL intensity of silicon NPs in the composite was observed.The low energy transfer efficiency and large PL intensity decrease strongly suggest a different mechanism which results in the PL quenching of silicon NPs in the composites.The energy band structure of DOPP and silicon NPs were investigated via CV measurement.The results showed that an electron energy transfer occurred from silicon NPs to DOPP.The results of time-resolved PL spectra showed that the lifetime of silicon NPs was prolonged in the silicon NPs/DOPP composites compared to that of the pure silicon NPs,which revealed that the electron transfer predominated the PL quenching.The photoconductivity of the composites was studied,and the photosensitivity enhancement of the composites was realized due to the photoinduced electron transfer between silicon NPs and DOPP.
     P-type silicon wafers were used as anodes to fabricate organic light-emitting diodes(OLEDs).The hole injection for the device with a silicon anode was superior to the device with an ITO anode,which also gave a greater carrier injection imbalance. 5-F-tris-(8-hydroxy-quinolinato) aluminum(5FAlq_3) was employed as electron transporting material to fabricate OLEDs with silicon anodes,and the results showed that it could ameliorate the cartier injection imbalance.But the performance of the device was not improved because the electron transporting layers and luminous layers were not separated completely.The complete separation of the electron transporting and luminous layers could be achieved via the using of the hole blocking material (BCP).Thus the performance of the devices was improved greatly.The highest power efficiency was improved from 0.117 to 0.462 lm/W,On the other hand,the resistivity of silicon anodes had a great influence on the performance of the devices.It was shown that the device with an 1Ωcm silicon anode had the best performance,which indicated that the best carrier injection balance was achieved in this device.
引文
[1]L.T.Canham,Silicon quantam wire array fabrication by electrochemical and chemical dissolution of wafers,Appl.Phys.Lett.,1990,57:1046.
    [2]秦国刚,纳米硅/氧化硅体系光致发光机制,红外与毫米波学报,2005,24(3):165.
    [3]刘云圻,朱道本,有机固体,科学出版社,1997.
    [4]A.G.Cullis,L.T.Canham,P.D.J.Calcott,The structural and luminescence properties of porous silicon,J.Appl.Phys.,1997,82:909.
    [5]T.Ozaki,M.Araki,S.Yoshimura,H.Koyama,et al,Photoelectronic properties of porous silicon,J.Appl.Phys.,1994,76:1986.
    [6]Lisa Kore,Gijs Bosman,Feasibility of porous silicon as a primary material in solar cells,Solar Energy Materials & Solar Cells,1999,(57):31.
    [7]H.Foll,M.Christophersen,J.Carstensen,Ct.Hasse,Formation and application of porous silicon,Mater.Sci.Eng.R:Rep.,2002,39:93.
    [8]O.Bisi,Stefano Ossicine,L.Pavesi,et al,Porous silicon:a quantum sponge structure for silicon based optoelectronics,Surface Science Reports,2000,(38):1.
    [9]L.Pavesi,L.Dal Negro,C.Mazzoleni,et al,Optical gain in silicon nanocrystals,Nature,2000,408:440.
    [10]R.W.Fathauer,T.George,A.Ksendzov,et al,Visible luminescence from silicon wafer subjected to stain etches,Appl.Phys.Lett.,1992,60(8):995.
    [11]Hummel R.E.,Chang S.S.,Novel technique for preparing porous silicon,Appl.Phys.Lett.,1992,61(16):1965.
    [12]陈乾旺,周贵恩,水热腐蚀制备多孔硅的研究,自然科学进展,1997,7(6):748.
    [13]V.Lehmann,H.Cerva,U.G6sele,Pore formation and propagation mechanism in porous silicon,Mater.Res.Soc.Symp.Proc.,1992,256:3.
    [14]M.I.J.Beale,J.D.Bejamin,M.J.Uren,et al,An experimental and theoretical study of the formation and microstructure of porous silicon, J. Crystal Growth, 1985, 73: 622.
    [15] T. A. Witten, L. M. Sander, Diffusion-limited aggregation, Phys. Rev. B, 1983, 27: 5686.
    [16] V. Lehmann, U. Gosele, Porous silicon formation: A quantum wire effect, Appl. Phys. Lett., 1991,58:856.
    
    [17] 方斌,多孔硅的光电特性研究及阵列化多孔硅的制备,浙江大学硕士论文,2005:7.
    
    [18] Canham L., Properties of porous silicon. London: INSPEC, 1997: 247.
    [19] Di Maria D. J., Kirtley J. R., Pakulis E. J., et al, Electroluminescence studies in silicon dioxide films containing tiny silicon islands, Appl. Phys., 1984, 56: 401.
    [20] Kanemitsu Y., et al. Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites. Phys. Rev. B, 1993,48: 2827.
    [21] Qin G. G., Song H. Z., Zhang B. R., et al, Experimental evidence for luminescence from silicon oxide layers in oxidized porous, Phys. Rev. B, 1996, 54: 2548.
    [22] Prokes S. M., Light emission in the thermally oxidized porous silicon: Evidence for oxide-related luminescence, Appl. Phys. Lett., 1993, 62: 3244.
    [23] Qin G. G., Jia Y. Q., Mechanism of the visible luminescence in porous silicon, Solid State Commun., 1993, 86: 559.
    [24] Qin G. G., Li Y. J., Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide, Phys. Rev. B, 2003, 68:085309.
    [25] G. Barillaro, A. Diligenti, F. Pieri, Integrated porous silicon light-emitting diodes: A fabrication process using graded doping profiles, Appl. Phys. Lett., 2001, 78(26): 4154.
    [26] B. Gelloz, N. Koshida, Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode, J. Appl. Phys., 2000, 88(7): 419.
    [27] N. Koshida, H. Koyama, Y. Yamamoto, G. J. Collins, Visible electroluminescence from porous silicon diodes with an electropolymerized contact, Appl., Phys. Lett., 1993,63:2655.
    [28] Juan Antipan Lara, Poopathy Kathirgamanathan, White light electroluminescence from porous silicon devices capped with poly(thiophene) as top contact, Synth. Met., 2004,110:233.
    [29] Kazuya Tada, Maki Harnaguchi, Akihiko Hosono, Shinsuke, Hiroshi, Harada, Light emitting diode with porous silicon/conducting polymer heterojunction, Jpn. J.Appl. Phys., 1998,36:418.
    [30] G. Wakefield, P. J. Dobson, J. L. Hutchison, Y. Y. Foo, Charge injection into porous silicon electroluminescence devices, Mat. Sci. Eng. B, 1998, 51: 141.
    [31] Natalya Tokranova, Igor Levitsky, Bai Xu, et al, Hybrid solar cells based on organic material embedded into porous silicon, Proc. SPIE Int. Soc. Opt. Eng., 2005,5724:183.
    [32] M. Conception Arenas, Hailin Hu, J. Antonio del Rio, et al, Electrical properties of porous silicon/polypyrrole heterojunctions , Solar Energy Materials & Solar Cells, 2006,90: 2413.
    [33] V. Vrkoslav, I. Jelinek, G. Broncova, et al, Polypyrrole-functionalized porous silicon for gas sensing applications, Materials Science and Engineering C, 2006, 26: 1072.
    [34] Davide Dattilo, Lidia Armelao, Michele Maggini, et al, Wetting Behavior of porous silicon surfaces functionalized with a fulleropyrrolidine, Langmuir, 2006, 22: 8764.
    [35] N. Herlin-Boime, K. Jursikova, E. Trave, E. Borsella, O. Guillois, F. Fabbri, J. Vicens, C. Reynaud, Mater. Res. Soc. Symp. Proc, 2004, 818: 387.
    [36] S. Lee, W. J. Cho, I. K. Han, W. J. Choi, J. I. Lee, Phys. Status Solid B, 2004, 241: 2767.
    [37] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in Phospholipid micelles, Science, 2002, 298: 1759.
    [38] I. Raniero, S. Zhang, H. Aguas, I. Ferreira, R. Igreja, E. Fortunato, R. Martins, Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz, Thin Solid Films, 2005,487: 170.
    [39] K. A. Littau, P. J. Szajowshki, A. J. Muller, et al, A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction, J. Phys. Chem., 1993, 97:1224.
    [40] A. Fojtik, A. Henglein, Luminescent colloidal silicon particles, Chem. Phys. Lett., 1994,221:363.
    [41] J. R. Heinrich, A liquid-solution-phase synthesis of crystalline silicon, Science, 1992,258:1131.
    [42] S. Berhane, S. M. Kauzlarich, K. Nishimura, R. L. Smith, J. E. Davis, H. W. H. Lee, M. L. S. Olson, L. L. Chase, Mater. Res. Soc. Symp. Proc, San Francisco, 1993:99.
    [43] R. A. Bley, S. M. Kauzlarich, K. Nishimura, R. L. Smith, J. E. Davis, H. W. H. Lee, Mater. Res. Soc. Symp. Proc, San Francisco, 1994: 275
    [44] R. A. Bley, S. M. Kauzlarich, K. Nishimura, R. L. Smith, H. W. H. Lee, J. E. Davis, Characterization of silicon nanoparticles prepared from porous silicon, Chem. Mater., 1996, 8(8): 1881.
    [45] R. A. Bley, S. M. Kauzlarich, A low-temperature solution phase route for the synthesis of silicon nanoclusters, J. Am. Chem. Soc, 1996, 118: 12461.
    [46] Q. Liu, S. M. Kauzlarich, A new synthetic route for the synthesis of hydrogen terminated silicon nanoparticles, Materials Science and Engineering B, 2002, 96: 72.
    [47] Chung-Sung Yang, R. A. Bley, S. M. Kauzlarich, et al, Synthesis of alkyl-terminated silicon nanoclusters by a solution route, J. Am. Chem. Soc, 1999,121:5191.
    [48] R. K. Baldwin, K. A. Pettigrew, Eva Ratai, et al, Solution reduction synthesis of surface stabilized silicon nanoparticles, Chem. Comm., 2002: 1822.
    [49] K. A. Pettigrew, Q. Liu, P. P. Power, et al, Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg~2Si, Chem. Mater., 2003,15:4005.
    [50] J. Zou, R. K. Baldwin, K. A. Pettigrew, et al, Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles, Nano Lett., 2004,4: 1181.
    [51] R. K. Baldwin, K. A. Pettigrew, J. C. Garno, et al, J. Am. Chem. Soc, 2002, 7: 1150.
    [52] J. H. Warner, A. Hoshino, K. Yamamoto, R. D. Tilley, Water-soluble photoluminescent silicon quantum dots, Angew. Chem. Int. Ed., 2005,44: 4550.
    [53] D. Neiner, H. W. Chiu, S. M. Kauzlarich, Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles, J. Am. Chem. Soc, 2006,128: 11016.
    [54] J. P. Wilcoxon, G. A. Samara, Tailorable, visible light emission from silicon nanocrystals, Appl. Phys. Lett., 1999,74: 3164.
    [55] J. P. Wilcoxon, G. A. Samara, P. N. Provencio, Optical and electronic properties of Si nanoclusters synthesized in inverse micells, Phys. Rev. B, 1999,60: 2704.
    [56] I. Lisiecki, M. P. Pileni, Sythesis of copper metallic clusters using reverse micelles as microreactors , J. Am. Chem. Soc, 1993,115: 3887.
    [57] R. K. Ligman, L. Mangolini, U. R. Kortshagen, Electroluminescence from surface oxidized silicon nanoparticles dispersed within a polymer matrix, Appl. Phys. Lett., 2007, 90: 061116.
    [58] C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett., 1987,51:913.
    [59] C. W. Tang, S. A. Vanslyke, C. H. Chen, Electroluminescence of doped oraganic thin films, J. Appl. Phys., 1989, 65: 3610.
    [60] J. H. Burroughes, D. D.C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. Land Bums, A. B. Holmes, Light-emitting diodes based on conjugated polymer, Nature, 1990, 347: 539.
    [61] J. Kido, K. Hongawa, White light-emitting organic electroluminescent, Appl. Phys. Lett., 1994,64:815.
    [62] J. R. Sheats, H. Antoniadis, M. Hueschen, Organic electroluminescent devices, Science, 1996,273:5277.
    [63] Y. Cao, I. D. Paker, A. J. Heeger, Improved quantum efficiency for electroluminescence in semiconducting polymers, Nature, 1998, 397: 114.
    [64] R. H. Friend, R. W. Gymer, A.B. Holmes, Electroluminescence in conjugated polymers, Nature, 1999, 397: 121.
    [65] A. Wedel, W. Wischert, M. Hanack, Synthesis and studies on luminescent biphenyl compounds, Synth. Met., 2000,110 (2): 141.
    [66] S. J. Wang, W. J. Oldham, R. A. Hudack, Synthesis, morphology, and optical properties of tetrahedral oligo(phenylenevinylene) materials, J. Am. Chem. Soc, 2000,122 (24): 5695.
    [67] L. S. Hung, C. H. Chen, Recent progress of molecular organic electroluminescent materials and devices, Mat. Sci. & Eng. R: Rep., 2002, 39 (5-6): 143-222
    [68] A. Tsuboyama, H. Iwawaki, M. Furugori, Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, J. Am. Chem. Soc, 2003,125 (42): 12971.
    [69] G. Z. Ran, Z. L. Wu, G. L. Ma, et al, Improvement of the charge imbalance caused by the use of a p-type silicon anode in an organic light-emitting diode, Chem. Phys. Lett., 2004,400: 401.
    [70] M. Pope, H. P. Kallmann, P. Magnante, Electroluminescence in organic crystals, J. Chem. Phys., 1963, 38: 2042.
    [71] R. E. Visco, E. A. Chandross, Electroluminescence in Solutions of Aromatic Hydrocarbons, J. Am. Chem. Soc, 1964, 86: 5350.
    [72] G. G. Roberts, M. McGinnity, W. A. Barloow, et al, Solid State Commun., 1979, 32: 683.
    [73] P. S. Vincett, W. A. Barloow, R. A. Hann, et al, Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films, Thin Solid Films, 1982,94:171.
    [74] C. K. Chiang, C. R. Fincher, Y. W. Park, et al, Electrical conductivity in doped polyacetylene, Phys. Rev. Lett., 1977, 39: 1098.
    [75] R. H. Partridge, Electroluminescence from polyvinylcarbazole films: 4. Electroluminescence using higher work function cathodes,Polymer,1983,24:755.
    [76]黄春辉,李富友,黄纬,有机电致发光材料与器件导论,上海复旦大学出版社,2005.
    [77]C.Adachi,T.Tsutsui,S.Saito,Blue light-emitting organic electroluminescent device,Appl.Phys.Lett.,1990,56:799
    [78]M.Uchida.Y.Ohmori,C.Morishima,Visible and blue electroluminescent diodes utilizing poly(3-alkylthiophene)s and poly(alkyflouorene)s,Synth.Met.,1993,55:4168.
    [79]F.Garten,A.Hiberer,E Cacialli,E.Esslink,Y.Dam,Efficient Blue LEDs from a partially conjugated Si-containing PPV coplymer in a double-layer configuration,Adv.Mater.,1997,9:127
    [80]C.Adachi,T.Tsutsui.S.Saito,Confinement of charge carries and molecular excitons within 5-nm-think emitter layer in organic electroluminescent devices with a double heterostructure,Appl.Phys.Lett.,1990,57:531.
    [81]Z.S.Huang,Z.L.Lin,J.X.Chen,et al,Research and development of transparent cathode of organic light emitting diodes,Chin.J.Liquid Crystals and Displays,2003,18(4):276.
    [82]R.B.Pode,J.C.Lee,D.G.Moon,et al,Transparent conducting metal electrode for top emission organic light-emitting devices:Ca-Ag double layer.Appl.Phys.Lett.,2004,84(23):4614.
    [83]V.Bulovic,P.Tian,P.E.Burrows,et al,A surface-emitting vacuum-deposited organic light emitting devices,Appl.Phys.Lett.,1997,70(22):2954.
    [84]T.Dobbertin,M.Kroeger,D.Heithecker,et al,Inverted top-emitting organic light emitting diodes using sputter-deposited anodes,Appl.Phys.Lett.,2003,82(2):284.
    [85]L.H.Smith,J.A.E.Wasey,W.L.Bames,Light outcoupling efficiency of top-emitting organic light-emitting diodes,Appl.Phys.Lett.,2004,84(16):2986.
    [86]L.S.Huang,C.W.Tang,Interface engineering in preparation of organic surface-emitting diodes,Appl.Phys.Lett.,1999,74(21):3209.
    [87]L.S.Huang,C.W.Tang,M.G.Mason,et al,Application of an ultrathin LiF/AI bilayer in organic surface-emitting diodes,Appl.Phys.Lett.,2001,78(4):544.
    [88]W.C.Chen,P.Y.Hsieh,H.H.Chiang,et al,Top-emitting organic light-emitting devices using surface-modified Ag anode,Appl.Phys.Lett.,2003,83(25):5127.
    [89]U.K.Barik,S.Srinivasan,C.L.Nagendra,et al,Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films role of oxygen,Thin Solid Films,2003,429(1-2):129.
    [90]G.Gu,V.Bulovic,P.E.Burrows,et al,Transparent organic light emitting devices,Appl.Phys.Lett.,1996,68(19):2606.
    [91]G.Pathasarathy,E E.Burrows,V.Khalfin,et al,A metal-free cathode for organic semiconductor devices,Appl.Phys.Lett.,1998,72(17):2138.
    [92]S.Han,X.Feng,Z.H.Lu,et al,Transparent-cathode for top-emission organic light-emitting diodes,Appl.Phys.Lett.,2003,82(16):2715.
    [93]Z.J.Wu,S.F.Chen,H.S.Yang,et al,Top-emitting organic light-emitting devices based on silicon substrate using Ag electrode,Semicond.Sci.Technol.,2004,19:1138.
    [94]杨惠山,陈淑芬,吴志军,硅片上顶发射的有机电致发光器件,发光学报,2005,26(2):242.
    [95]X.L.Zhu,J.X.Sun,H.J.Peng,et al,Vanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light-emitting diodes,Appl.Phys.Lett.,2005,87:153508.
    [96]X.L.Zhu,J.X.Sun,H.J.Peng,et al,Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,Appl.Phys.Lett.,2005,87:083504.
    [97]I.D.Parker,Helen H.Kim,Fabrication of polymer light-emitting diodes using doped silicon electrodes,Appl.Phys.Lett.,1994,64(14):1774.
    [98]X.Zhou,J.He,L.S.Liao,M.Lu,et al,Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,Appl.Phys.Lett.,1999,74:609.
    [99]R.J.Curry,W.P.Gillin,A.P.Knights,et al,Silicon-based organic light-emitting diode operating at a wavelength of 1.5μm, Appl. Phys. Lett., 2000, 77: 2271.
    [100] G. L. Ma, A. G. Xu, G. Z. Ran, et al, Experimental study of the organic light emitting diode with a p-type silicon anode, Thin Solid Films, 2006,496: 665.
    [101] G. L. Ma, G. Z. Ran, A. G. Xu, et al, Novel transparent Yb-based cathodes for top-emitting organic light emitting devices with high performance, Applied Surface Science, 2006,252: 3580.
    [102] N. Herlin-Boime, K. Jursikova, E. Trave, E. Borsella, O. Guillois, F. Fabbri, J. Vicens, C. Reynaud, Mater. Res. Soc. Symp. Proc. 2004, 818: 397.
    [103] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science, 2002,298: 1759.
    [104] I. Raniero, S. Zhang, H. Aguas, I. Ferreira, R. Igreja, E. Fortunato, R. Martins, Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz, Thin Solid Films, 2005,487: 170.
    [105] G. Barillaro, A. Diligenti, F. Pieri, Integrated porous silicon light-emitting diodes: A fabrication process using graded doping profiles, Appl. Phys. Lett., 2001, 78(26): 4154.
    [106] B. Gelloz, N. Koshida, Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode, J. Appl. Phys., 2000, 88(7): 419.
    [107] N. Koshida, H. Koyama, Y. Yamamoto, G. J. Collins, Visible electroluminescence from porous silicon diodes with an electropolymerized contact, Appl. Phys. Lett., 1993,63:2655.
    [108] H. Z. Chen, M. M. Ling, X. Mo, et al, air stable n-channel organic semiconductors for thin film transistors based on fluorinated derivatives of perylene diimides, Chem. Mater., 2007,19: 816.
    
    [109] Rademacher, S. Maerkle, H. Langhals. Loesliche perylen-Fluoreszenzfarbstoffe mit hoher photostabilitaet, Chem. Ber., 1982,115: 2927.
    
    [110] 吴芳,有机/聚合物材料的能带结构及其在电致发光器件中的应用,吉林大学 博士学位论文,2000.
    [111]莫雄,苝类衍生物电子传输材料的研究,浙江大学博士学位论文,2005.
    [112]M.I.J.Beale,J.D.Bejamin,M.J.Uren,et al,An experimental and theoretical study of the formation and microstructure of porous silicon,J.Crystal Growth,1985,73:622.
    [113]T.A.Witten,L.M.Sander,Diffusion-limited aggregation,Phys.Rev.B,1983,27:5686.
    [114]V.Lehmann,U.Gosele,Porous silicon formation:A quantum wire effect,Appl.Phys.Lett.,1991,58:856.
    [115]V.Lehmann,H.Cerva,U.Grsele,Pore formation and propagation mechanism in porous silicon,Mater.Res.Soc.Symp.Proc.,1992,256:3.
    [116]N.S.Sariciftci,L.Smilowitz,A.J.Heeger,et al,Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene,Science,1992,258:1474.
    [117]L.Kronik,Y.Shapira,Surface photovoltage phenomena:theory,experiment,and applications,Surface Sci.Rep.,1999,37:1.
    [118]J.Cao,J.Z.Sun,J.Hong,H.Y.Li,H.Z.Chen,M.Wang,Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method,Adv.Mater.,2004,16:84.
    [119]T.E.Xie,D.J.Wang,L.J.Zhu,Application of surface photovoltage technique to the determination of conduction types of azo pigment films,J.Phys.Chem.B,2000,104:8177.
    [120]M.Hiramoto,H.Fujiwara,M.Yokoyama,p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments,J.Appl.Phys.,1992,72:3781.
    [121]X.L.Zhu,J.X.Sun,H.J.Peng,et al,Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,Appl.Phys.Lett.,1999,74:609.
    [122]J.P.Proot,C.Delerue,G.Allan,Electronic structure and optical propertied of silicon crystallites:Application to porous slicon,Appl.Phys.Lett.,1992,61(16):1948.
    [123] J. M. Rehm, G. L. Mclendon, P. M. Fauchert, Conduction and valence band edges of porous silicon determined by electron transfer, J. Am. Chem. Soc, 1996, 118: 4490.
    [124] J. L. Gole, E. Veje, R. G. Egeberg, et al, Optical analysis of the light emission from porous silicon: A hybrid polyatom surface-coupled fluorophor, J. Phys. Chem. B, 2006,110:2064.
    [125] F. P. Romstad, E. Veje, Experimental determination of the electrical band-gap energy of porous silicon and the band offsets at the porous silicon/crystalline silicon heterojuction, Phys. Rev. B, 1997, 55: 5220.
    [126] Z. Chen, T. Z. Lee, G. Bosnian, Electrical band gap of porous silicon, Appl. Phys. Lett., 1994, 64: 3448.
    [127] P. H. Hao, X. Y. Hou, F. L. Zhang, X. Wang, Energy band lineup at the porous-silicon/siliocn heterointerface measured by electron spectroscopy, Appl. Phys. Lett., 1994, 64: 3602.
    [128] O. K. Andersen, E. Veje, Experimental study of the energy-band structure of porous silicon, Phys. Rev. B, 1996, 53: 15634.
    
    [129] O. Jambios, H. Rinnert, X. Devaux, M. Vergnat, Photoluminescence and electroluminescence of size-controlled silicon nanocrystallites embedded in SiO_2 thin films, J. Appl. Phys., 2005,98: 046105.
    
    [130] C. Lui, C. Li, A. Ji, et al, Exploring extreme particle density and size for blue photoluminescence from as-deposited amorphous Si-in-SiN_x films, Appl. Phys. Lett., 2005, 86: 223111.
    
    [131] S. Hazra, I. Sakata, M. Yamanaka, et al, Control on the formation of Si nanodots fabricated by thermal annealing/oxidation of hydrogenated amorphous silicon, J. Appl. Phys., 2004, 96: 7532.
    
    [132] P. Photopoulos , A. Nassiopolulou, Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO_2 layers, Appl. Phys. Lett., 2000, 77: 1816.
    [133]R.K.Ligrnan,L.Mangolini,U.R.Kortshagen,et al,Electroluminescence from surface oxidized silicon nanoparticles dispersed within a polymer matrix,Appl.Phys.Lett.,2007,90:061116.
    [134]R.J.Holmes,B.W.D 'Andrade,S.R.Forrest,X.Ren,J.Li and M.E.Thompson,Efficient,deep-blue organic electrophosphorescence by guest charge trapping,Appl.Phys.Lett.,2003,83:3818.
    [135]M.C.Schlamp,Xiaogang Peng,A.P.Alivisatos,Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer,J.Appl.Phys.,1997,82:5837.
    [136]V.L.Colvin,M.C.Schlamp,A.P.Alivisatos,_Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,Nature,1994,370:354.
    [137]Jong Hyeok Park,Yong Taik Lim,O Ok Park,Jai Kyeong Kim,Jae-Woong Yu and Young Chul Kim,Polymer/gold nanoparticle nanocomposite light-emitting diodes:enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers,Chem.Mater.,2004,16:688.
    [138]W.J.Parak,D.Gerion,T.Pellegrino,D.AZanchet,C.Micheel,S.C.Williams,R.Boudreau,M.A.Le Gros,C.A.Larabell,A.P.Alicisatos,Biological applications of colloidal nanocrystals,Nanotechnology,2003,14:R15.
    [139]M.P.Stewart,J.M.Buriak,Chemical and Biological Applications of Porous Silicon Technology,Adv.Mater.,2000,12:859.
    [140]黄春辉,李富友,黄继,有机电致发光材料与器件导论,上海复旦大学出版社,2005:33.
    [141]T.F6rster,Discuss.Faraday Soc.,1959,27:7.
    [142]A.L.Alvarez,J.Tito,M.B.Vaello,P.Velasquez,R.Mallavia,M.M.Sanchez-L6pez,S.Fernandez de.Avila,Polymeric multilayers for integration into photonic devices,Thin Solid Films,2003,433:277.
    [143]H.Y.Byun,I.J.Chung,H.K.Shim,C.Y.Kim,Optoelectronic and photophysical properties of polyfluorene blends as side-chain length and shape,Macromolecules,2004,37:6945.
    [144]J.R.Lakowicaz,Principles of Fluorescence Spectroscopy,2nd Ed.New York:Academic/Plenum Press,1999:95.
    [145]房喻,王辉,荧光寿命测定的现代方法与应用,化学通报,2001,(10):631.
    [146]M.Annl,L.Manna,R.Cingolani,et al,Frrster energy transfer from blue-emitting plymers to colloidal CdSe/ZnS core shell quantum dots,Appl.Phys.Lett.,2004,85:4169.
    [147]C.R.Kagan,C.B.Murray,M.Nirmal,M.G.Bawendi,Electronic energy transfer in CdSe quantum dot solids,Phys.Rev.Lea.,1996,76:1517.
    [148]V.L.Colvin,M.C.Schlamp,A.P.Alivisatos,Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,Nature,1994,370:354.
    [149]B.O.Dabbousi,M.G.Bawendi,O.Onitsuka,M.F.Rubner,Electroluminescence from CdSe quantum-dot/polymer composites,Appl.Phys.Lett.,1995,66,1316.
    [150]Wendy U.Huynh,Xiaogang Peng,A.Paul Alivisatos,CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices,Adv.Mater.,1999,11:923.
    [151]C.W.Tang,Two-layer organic photovoltaic cell,Appl.Phys.Lett.,1986,48:183.
    [152]N.C.Greenham,Xiaogang Peng,A.P.Alivisatos,Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity,Phys.Rev.B,1996,54:17628.
    [153]Jinsong Liu,Toru Tanaka,Kevin Sivula,A.Paul Alivisatos,and Jean M.J.Fre'chet,Employing End-Functional Polythiophene To Control the Morphology of Nanocrystal-Polymer Composites in Hybrid Solar Cells,J.Am.Chem.Soc.,2004,126:6550.
    [154]C.M.Ruiz,E.Saucedo,O.Martinez,and V.Bermudez,Hexagonal CdTe-like rods prompted from Bi_2Te_3 Droplets,J.Phy.Chem.C,2007,111:5588.
    [155]Soojin Lee,Woon Jo Cho,Ⅱ Ki Han,Won Jun Choi,Jung I1 Lee,White light emitting silicon nanocrystals as nanophosphor,Phys.Stat.Sol.B,2004,241: 2767.
    [156]L.Schmidt-Mende,A.Fechtenkotter,K.Mullen,E.Moons,R.H.Friend,J.D.Mackenzie,Self-organized discotic liquid crystals for high-efficiency of organic photovoltaics,Science,2001,293:1119.
    [157]H.Riramoto,K.Ihara,M.Yokoyama,Femi level shift in photoconductive organic pigment films measured by Kelvin vibrating capacitor method,J.Appl.Phys.,1995,34:3803.
    [158]J.van Herrikhuyzen,A.Syamakumari,A.P.H.J.Schenning,E.W.Meijer,Synthesis of n-type Perylene bismide derivatives and their orthogonal self-assembly with p-type oligo(p-phenylene vinylene)s,J.Am.Chem.Soc.,2004,126:10021.
    [159]X.G.Yang,J.Z.Sun,M.Wang,H.Z.Chen,A more efficient synthetic route to perylene-porphyrin arrays,Chin.Chem.Lett.,2003,14,1105.
    [160]曹雷,纳米碳管/稀土酞菁复合材料的制备与光电性能研究,浙江大学博士学位论文,2003.
    [161]J.N.Demas,B.A.DeGraff,W.Xu,Modeling of luminescence quenching-based sensors:comparison of multisite and nonlinear gas solubility models,Anal.Chem.,1995,67:1377.
    [162]Y.H.Wang,H.M.Zhang,L.Liu,et al,Photoinduced electron transfer in a supramolecular species building of mono-6-p-nitrobenzoyl-a-cyclodextrin with naphthalene derivatives,J.Org.Chem.,2002,67:2429.
    [163]J.Cheng,S.Wang,X.Y.Li,Y.J.Yan,S.Yang,C.L.Yang,J.N.Wang,W.K.Ge,Fast interfacial charge separation in chemically hybridized CdS-PVK nanocompsites studied by photoluminescence,Chem.Phys.Lett.,2001,333:375.
    [164]Waldo J.E.Beek,Martijn.M.Wienk,Martijn Kemerink,Xiaoniu Yang,and Rene A.J.Janssen,Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells,J.Phys.Chem.B,2005,19:9505.
    [165]Francis D'Souza,Suresh Gadde,Amy L.Scheumacher,Melvin E.Zandler,Atula S.D.Sandanayaka,Yasuyuki Araki,and Osamu Ito,Supramolecular triads of free-base porphyrin, fullerene, and ferric porphyrins via the "covalent-coordinate" binding approach: formation, sequential electron transfer, and charge stabilization, J. Phys. Chem. C, 2007, 111: 11123.
    [166] C. L. Yang, J. N. Wang, W. K. Ge, Wang, X. Y. Li, Y. J. Yan, S. Yang, C. L. Yang, J. N. Wang,, Significant enhancement of photoconductivity in truly two-component and chemically hybridized CdS-poly(N-vinylcarbazole) nanocomposites, Appl. Phys. Lett., 2001,78: 760.
    [167] J. Cabanillas-Gonzalez, T. Virgili, G. Lanzani, Photophysics of charge transfer in a polyfluorene/violanthrone blend, Phys. Rev. B, 2005,71: 014211.
    [168] S. Kumar, M. Jones, S. S. Lo, G. D. Scholes, Nanorod heterostructures showing photoinduced charge separation, Small, 2007, 3: 1633.
    [169] S. V. Frolov, P. A. Lane, M. Ozaki, et al, Picosecond to millisecond photoexcitation dynamics in blends of C60 with poly(p-phenylene vinylene) polymers, Chem. Phys. Lett., 1996,286: 21.
    [170] C. R. Kagan, C. B. Murray, M. Nirmal, M. G. Bawendi, Electronic energy transfer in CdSe quantum dot solids, Phys. Rev. Lett., 1996,76: 1517.
    [171] P. Ball, Let there be light, Nature, 2001,409: 974.
    [172] G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, et al, A top-emission organic lighy-emitting diode with a silicon anode and Sm/Au cathode, Appl. Phys. Lett., 2004, 85: 5406.
    [173] G. L. Ma, G. Z. Ran, A. G. Xu, Y. H. Xu, Y. P. Qiao, W. X. Chen, L. Dai, G. G. Qin, Improing charge-injection balance and cathode transmittance of top-emitting organic light-emitting device with p-type silicon anode, Appl. Phys. Lett., 2005, 87:081106.
    [174] W. Q. Zhao, G. Z. Ran, W. J. Xu, G. G. Qin, Passivated p-type silicon: hole injection tunable anode material for organic light emission, Appl. Phys. Lett., 2008, 92: 073303.
    [175] Yue-Wen Shi, Min-Min Shi, Hong-Zheng Chen, et al, Fluorinated Alq_3 derivatives with tunable optical properties, Chem. Comm., 2006: 1941.
    [176] D. V. Khramtchenkov, H. Bassler, V. I. Arkhipov, A model of electroluminescence in organic double-layer light-emitting diodes,J.Appl.Phys.,1996,79:9283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700