用户名: 密码: 验证码:
河套平原典型剖面地下水砷分布规律及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河套平原是我国大陆砷中毒的典型区域。病区主要包括19个乡镇,各村镇病情轻重差别悬殊。根据高砷地下水分布特征及各个典型的地质地貌单元,选择砷污染严重的地区及发病区,在河套平原首次建立典型剖面,在典型剖面上系统地采集水土样品,进行岩相古地理和地球化学分析,开展砷污染地区和非砷污染地区的对比分析,总结地下水砷污染的模式,研究地下水砷污染机理。
     本次研究分别在杭后-临河、五原县-乌拉特前旗西小召、土默特左旗-托克托县布置三条典型剖面,沿地下水流向布置,穿越山前冲洪积平原和黄河冲湖积平原(大黑河冲湖积平原)两个重要的地貌单元,北起阴山大青山南麓,南北贯穿河套平原,南至黄河北岸。在各典型地貌单元取样研究,将地质环境特征和地下水砷分布规律联系起来,宏观分析河套平原浅层地下水排泄路径上影响砷富集迁移的一系列化学组分,以及不同地质环境条件下砷富集变化特征和高砷地下水的吸附释放机理,这对整个河套平原高砷地下水形成机理的研究具有重要的意义。
     本文的主要研究内容及成果包括:
     1、结合三个典型剖面的研究结果,圈定出河套平原三大砷中毒地区——杭锦后旗、五原以及土默特左旗的高砷分布范围。
     2、对河套地区砷来源进行了分析研究,结合地质、水文等多方面资料,可得出河套平原的砷来源是多种因素结合造成的结果。
     3、根据三条典型剖面的水化学资料分析得出,河套平原As~(3+)占总As的比例远远大于As~(5+)所占的比例。C(As~(3+))/C(As~(5+))与总As的浓度呈正相关性。
     4、经试验结果可推测砷和HCO_3~-有着紧密的联系,可以认为河套地区高砷水为HCO_3型水。
     5、高砷地下水中,砷的存在形态主要为H_3AsO_3和HAsO_4~(2-)。
     6、吸附解吸是砷迁移和释放的主要行为,其主要的吸附剂是粘土矿物和Fe的氧化物或者氢氧化物。
Hetao region is a typical arsenic poisoning area in China.The area includes 19 towns,and the severity of disease is vast discrepancies.In the Hetao Plain arsenic pollution research,this study was first bring in the method of typical section according to the distribution of characteristics of high arsenic groundwater and selecting the arsenic areas.The author systematically collected groundwater and soil samples to analysis the lithofacies palaeogeography and geochemistry, carry out comparatively analysis of arsenic contaminated areas and non-arsenic-contaminated areas,summary the pattern of arsenic contaminative groundwater and study the arsenic contamination mechanism of groundwater.
     This study assigned three typical profiles: HangJinhou Banner-Linhe county,Wuyuan Town-XiaoZhao county in Wulate Front Bannner,Tumote left Banner-Tuoketuo county.The profiles were assigned to follow the direction of groundwater flowing.The profiles crossed two important geomorphic units,which were the piedmont alluvial diluvial plain and the Yellow River alluvial lacustrine plain(Daheihe River alluvial lacustrine plain).The south of Daqingshan was north of the profile,than run throμgh the whole Hetao Plain,finally south to the north of Yellow River.We sampled and studied in every typical geomorphic unit,uniting the geological environment and the distribution of arsenic in groundwater to obtain macroscopic analyses of a series of chemistry components, which affected the remobilization and accumulation of arsenic,in the path of ground water excreting .The item also studied the characteristics changes of arsenic and the release mechanism of high arsenic water under different geological environment.The reaserch is significant to study the formation mechanism of high arsenic groundwater in the Hetao Plain.
     The main research contents and results included as below:
     1. With the findings of three typical profiles, the authors as certain the main high arsenic distribution.
     2. With studying the source of arsenic in Hetao region,and unite geological, hydrological and other aspects of information,the author have drawed a conclusion that there were many reasons for the source of arsenic.
     3. According to the hydrochemical materials,the author have drawed a conclusion that As~(3+) was more than As~(5+) in the study area.
     4. The test results of this item can be assumed that the arsenic and the HCO_3~- linked tightly and we can assort the high-arsenic water for HCO_3~- type water,in Hetao region.
     5. In high-arsenic groundwater,the presence of arsenic forms mainly were: H_3AsO_3 and HAsO_4~(2-).
     6. The major act of arsenic migration and releasion was adsorption and desorption, and the adsorbent was clay mineral, iron oxides and iron hydroxide.
引文
[1]张翼龙,曹文庚,于娟等.河套地区典型剖面下地下水砷分布及地质环境特征研究[J];干旱区资源与环境;2010,12(24):167-171.
    [2]张翼龙,曹文庚,李江等.河套平原五原地区地下水Fe-As-H2O体系中砷的吸附释放趋势[J],地学前缘,2010,17(6):067-071.
    [3]杨素珍,郭华明,唐小惠等.内蒙古河套平原地下水砷异常分布规律研究[J].地学前缘,2008,15(1):242-24.
    [4]郭华明,王焰新,李永敏.山阴水砷中毒区地下水砷的富集因素分析[J].环境科学,2003,24(4):60-67.
    [5]郭华明,杨素珍,沈照理.富砷地下水研究进展[J].地球科学进展,2007,22 (11):1109-1117.
    [6] Huaming Guo , Xiaohui Tang, Suzhen Yang,et al. Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: Evidence from sediment incubations. Applied Geochemistry. 2008,19;3-11.
    [7] Wenxiang He ? Mallavarapu Megharaj,et al. Toxicity of tri- and penta-valent arsenic, alone and in combination, to the cladoceran Daphnia carinata: the in?uence of microbial transformation in natural waters. Environ Geochem Health,2009,31:133–141.
    [8] Huaming Guo, Suzhen Yang, Xiaohui Tang, et al. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin,Inner Mongolia. Science Of the Total Environment,2008,393:131– 144.
    [9]曹文庚,陈南祥,张翼龙等.杭锦后旗浅层地下水砷赋存形态研究[J],南水北调与水利科技,2010,6(8):98-101.
    [10] Yamin Deng,Yanxin Wang,Teng Ma,et al. Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environ Geol ,2009,56:1467–1477.
    [11] Chakraborti D, Rahman MM, Paul K, et al. Arsenic calamity in the Indian subcontinent: What lessons have been learned?[J]. Talanta, 2002, 58:3-22.
    [12] Gaus D.G. Kinniburgh J.C. Talbot et al. Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging[J]. Environmental Geology (2003) 44:939–948.
    [13] Bhattacharya P, Welch AH, Stollenwerk KG, et al. Arsenic in the environment: Biology and Chemistry[J]. Science of the Total Environment, 2007, 379: 109-120.
    [14]邱立萍.砷污染危害及治理技术[J].新疆环境保护, 1999, 21(3):15-19.
    [15] Jin K, Nriagu J. Oxidation of arsenite in groundwater using ozone and oxygen[J]. The Science of Total Enironment, 2000, 247: 71-79.
    [16]候少范,王五一,李海蓉等.我国地方性砷中毒的地理流行病学规律及防治对策[J].地理学科学进展,2002, 21(4): 391-400.
    [17]金银龙,梁超柯,何公理等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003, 32(6): 519-540.
    [18] Agusa T, Kunito T, Fujihara J, Kubota R, Minh TB, Trang PTK, et al.Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi,Vietnam. Environ Pollut 2006;139:95–106.
    [19] Gustafsson J P, Jacks G. Arsenic geochemistry in forested soil profiles as revealed by solid-phasestudies[J]. Applied Geochemistry, 1995, 10: 307-315.
    [20]张娟,许金泉.兰坪沘江中砷污染的化学形态及迁移转化规律[J].昆明理工大学学报, 2000, 25 (2): 75-80.
    [21]林年丰,汤洁,卞建民.内蒙古砷中毒病区环境地球化学特征研究[J].世界地质,1999,18(2):83-88.
    [22]刘五洲.呼包平原环境地质特征与砷中毒的关系[J].水文地质工程地质, 1996, (5): 20-22.
    [23] Chatterjee A. D, Mandal B. K, Chowdhury T. R, Samanta G, Chakraborty D. Arsenic in groundwater in 6 districts of West Bengal, India-the biggest arsenic calamity in the word. A Arsenic species in drinking water and urine of the affected people[J]. Analyst. 1995, 120:643-650.
    [24] Korte N.E., Fernando Q. A review of arsenic(III) in groundwate[J]. Crit. Rev. Environ. Control, 1991, 21:1-39.
    [25] DPHE/BGS/MML. Groundwater Studies for Arsenic Contamination in Bangladesh. Phase I: Rapid Investigation Phase[R]. BGS/MML Technical Report to Department for International Development, UK. 1999, 6 volumes.
    [26] Smedley P.L., Zhang M., Zhang G., Luo Z. Arsenic and other redox-sensitive elements in groundwater fromthe Huhhot Basin, Inner Mongolia[C]. In: Cidu, R. (Ed.), Water-Rock Interaction 2001, Vol. 1, 581–584.
    [27] Mariner P E, Holzmer F J, Jackson R E, Meinardus H. W, Wolf F. G. Effect of high pH on arsenic mobility in a shallow sandy aquifer and in aquifer, commencement bay superfund site,Tacoma,Washington[J]. Environ. Sci. Technal. 1996, 30:1645-1651.
    [28] Yan X. P., Kerrich R., Hendry M. J. Distribution of arsenic(III), arsenic(V) and totalinorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence , Saskatchewan, Canada[J]. Geochim. Cosmochim. Acta, 2000(64):2637-2648.
    [29] Chen H.W., Frey M. M., Clifford D. et al. Arsenic treatment considerations[J]. J. Amer. Water Works Assoc., 1999, 91(3):74-85.
    [30] Le X. C., Yalcin S., Ma M. Speciation of submicrogram per liter levels of arsenic in water: On-site species separation integrated with sample collection[J]. Environ. Sic. Technol. 2000,(34):2342-2347.
    [31] Edwards M.,Patel S.,McNeill L.,Chen H. M.,Frey M. M. Considerations in As analysis and speciation[J]. J. Am. Water Works Assoc,1998(90),103-113.
    [32] Rousse C,Bril H,Fernandez A,et al.Arsenic speciation:involvement in evaluation of environmental impact caused by mine wastes[J]. J. Environ.Qual,2000,(29):182-188.
    [33] Gautam S., Dennis A. C. Preservation of Inorganic Arsenic Species in Groundwate [J]. Environ. Sci. Techno, 2005, 39:8877-8882.
    [34] Ahmann D, Krumholz LR, Hemond HF, et al. Microbial mobilization of arsenic from sediments of the Aberjona Watershed[J]. Environmental Science and Technology, 1997, 31:2923-2930.
    [35] Newman DK,Beveridge TJ,Morel FMM. Precipitation of Arsenic Trisulfide by Desulfotomaculum auripigmentum[J]. Appl. Environ. Microbiol,1997, 63: 2022-2028.
    [36] Tessier A, Campbell PGc, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51: 844-850.
    [37] Keon NE, Swartz CH, Brarander DJ, Harvey C, Hemond HF. Validation of an arsenic sequential extraction method for evaluating mobility in sediments[J]. Environmental Science and Technology, 2001, 35(13): 2778-2784.
    [38] Smedley P. L., Kinniburgh D. G.. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Appl.Geochem 2002, (17):517-568.
    [39] Wilkie J. A, Hering J. G, Adsorption of arsenic onto hydrous ferric oxide; effect of adsorbate/adsorbent ratios and co-occurring solute[J]. Colloid surf, 1996, (107):97-110.
    [40] Masscheleyn, P.H., DeLaune, R.D., Patrick, W.H. Effect of redox potential and pH on arsenic speciation and solubility in acontaminated soil[J]. Environ. Sci. Technol, 1991(25): 1414-1419.
    [41] Oremland R. S., Stolaz J. E,. The ecology of arsenic[J]. Science, 2003,(300):939-944.
    [42] Kirk M. F, Holm T. R., Park J., Jin Q., Sanford R. A., Fouke B. W., Bettke C. M. Bacterial sulfate reduction limits natural arsenic contamination in groundwater[J]. Geology. 2004, 953-956.
    [43] McArthur J. M, Banerjee D. M, Hudson-Edwards K. A, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth R. J, Chatterjee A, Talukder T, Lowry D, Hoμghton S, Chadha D. K. Natural organic matter in sedimentary basin and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications[J]. Appl.Geochem, 2004(19):1255-1293.
    [44] Matisoft G,, Khourey C. J., Hall J. F., Varnes A. W., Strain W. The nature source of arsenic in Northeastern Ohio ground water[J]. Ground Water, 1982,(20):446-455.
    [45] Bhattacharya P., Chatteriee D., Jacks G. Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water supple[J]. J Water Res, 1997, Dev B:79-92.
    [46] Bhattacharya P., Jacks G., Jana J., Sracek A., Gustafsson J. P., Chatterjee D. Geochemistry of the Holocene alluvial sediments of Bengal Delta Plain from West Bengal, India: implication on arsenic contamination in groundwater. In: Jacks G,Bhattacharya P,Khan A A(Eds), Groundwater Arsenic Contamination in the Bengal Delta Plain of Bangladesh KTH Special Publication[R].TRIRA-AMI Report 3084, 2001, 21-40.
    [47] Bhattacharya P., Frisbie S. H., Smith E., Naidu R., Jacks G., Asrkar B. Arsenic in the environment: a global perspective. In: Sarkar B(Ed), Handbool of Heavy Metals in the Environment.Marcell Dekker Inc, 2002, 147-215.
    [48] Oremland RS, Kulp TR,Switzer BJ, et al. A microbial arsenic cycle in a saltsaturated, extreme environment[J]. Science,2005,(308): 1305-1308.
    [49] Sehlinin H. M., Lindstrom E. B. Oxidation and reduction of arsenic by sulfolobus acidocaldariws stain B C[J], Microbiol.Lett,1992, 93:87-92.
    [50] Zobrist J., Dowdle P. R., Davis J. A., Oremland R. S. Moilization of arsenite by dissimilatory reduction of adsorbed arsenate[J]. Environ.Sci.Technol , 2000 , (34):4747-4753.
    [51] Silver S. Bacterial resistances to toxic metal ions-a review[J]. Gene, 1996, (179):9-19.
    [52] Dowdle P. R., Laverman A. M., Oremland R. S. Bacterial Dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments[J]. Appl.Environ.Microbiol.May, 1996, 1664-1669.
    [53] Akai Junji , Iznmi Kaoru , Fukuhara Haruo , et al. Mineralogical and geomicrobiological investigations on groundwater arsenic environment in Bangladesh[J]. Applied Geochemistry, 2004, (19):215-230.
    [54] Sracek O., Bhattacharya P., Jacks G., Gustafsson J. P., Bromssen M. Von, Behavios of arsenic and geochemical modeling application[J]. Appl.Geochem, 2004(19):169-180.
    [55] David J., Vaμghan. Arsenic[J]. Elements, 2006, (2): 71-75.
    [56] Hsu K. H., Froines J. R., Chen C. J. Studies of arsenic ingestion from drinking water in northeastern Taiwan: chemical speciation and urinary metabolites[J]. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic Exposure and Health Effects. Chapman Hall, London, 1997, 190-209.
    [57] Wang L., Huang J. Chronic arsenism from drinking water in some areas of Xinjiang, China[J]. In: Nriagu, J.O. (Ed.), Arsenic in the Environment, Part II: Human Health and Ecosystem Effects. John Wiley, New York, 1994, 159-172.
    [58] Niu S., Cao S., Shen E. The status of arsenic poisoning in China. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic Exposure and Health Effects[J]. Chapman Hall, London, 1997, 78–83.
    [59] Del Razo LM, Arellano Cebrian ME. The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico. Environ Pollut, 1990, 64:143-153.
    [60] Thornton I., Farago M. The geochemistry of arsenic[J]. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic Exposure and Health Effects. Chapman Hall, London, 1997, 1-16.
    [61] Caceres L., Gruttner E., Contreras R. Water recycling in arid regions—Chilean case[J]. Ambio 21, 1992, 138-144.
    [62] Nicolli H. B., Tineo A., Garcia J. W.m Falcon C. W., Merino M. H. Trace-element quality problems in groundwater from Tucuman, Argentina[C]. In: Cidu, R. (Ed.), Water-Rock Interaction 2001. Vol. 2. Swets & Zeitlinger, Lisse, 2001, 993-996.
    [63] Welch A. H., Lico M. S, Factor controlling As and U in shallow groundwater southern Carson Desert, Nevada[J]. Appl Geochem,1998, 13:521-539.
    [64]范成万,娜仁高娃,李玉敏等.呼和浩特盆地西部饮用水砷含量分析及其富集因素的探讨[J].环境与健康杂志,1993,10(2):56-58.
    [65]汤洁,林年丰,卞建民等.内蒙河套平原砷中毒病区砷的环境地球化学研究[J].水文地质工程地质,1996,(1):49-54.
    [66] Smedley PL, Zhang M, Zhang G, et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia Applied Geochemistry, 2003, 18: 1453-1477.
    [67] Gong Z, Lu X, Watt C, et al. Speciation analysis of arsenic in groundwater from Inner Mongolia with an emphasis on acid-teachable particulate arsenic. Analytica Chimica Acta, 2006, 555: 181-187.
    [68]李树范,李浩基.内蒙古河套地区地方性砷中毒区地质环境特征与成因探讨[J].中国地质灾害与防治学报,1994,(5):213-219.
    [69]高存荣.河套平原地下水砷污染机理的探讨[J].中国地质灾害防治学报,1999,10(2):25-32.
    [70] Deng YM, Wang YX, Ma T, et al., 2008. Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environ. Geol., 10.1007/s00254-008-1243-y.
    [71]杨素珍,郭华明,唐小惠等.内蒙古河套平原地下水砷异常分布规律研究[J].地学前缘,2008,15(1):242-248.
    [72] Wang Y X, Shvartsev S L, Su C L (2008). Genesis of arsenic/fluorideenriched soda water: A case study at Datong, northern China. Appl Geochem (in press).
    [73]Cartwright I, Weaver T R, Fifield L K, 2006. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia. Chem. Geol., 231, 38-56.
    [74]邓娅敏.河套盆地西部高砷地下水系统中的地球化学过程研究[D].武汉:中国地质大学出版社,2008,67-68.
    [75]苏春利.大同盆地区域水文地球化学与高砷地下水成因研究[D].武汉:中国地质大学出版社,2006,14-128.
    [76]Masion A, Rose J, Ziarelli F, et al. NMR evidence of arsenic bending to silica colloides. Goldschmidt Conference Abstract, 2006.
    [77]郭华明,王焰新,李永敏.山阴水砷中毒区地下水砷的富集因素分析[J].环境科学,2003,24(4):60-67.
    [78]王焰新,郭华明,阎世龙等.浅层孔隙地下水系统环境演化污染敏感性分析[D].北京:科学出版社,2004:62.
    [79]王敬华,赵伦山,吴悦斌.山西山阴、应县一带砷中毒区砷的环境地球化学研究[J].现代地质, 1998. 12(2): 243-248.
    [80]李永敏.山西省山阴县水砷中毒成因环境化学研究.武汉:中国地质大学出版社, 2001.
    [81]郭华明.山西大同盆地浅层地下水环境演化及污染敏感性研究[D].武汉:中国地质大学出版社, 2002.
    [82]谢先军.山西大同盆地浅层地下水环境中砷的来源与迁移转化规律研究[D].武汉:中国地质大学出版社, 2008.
    [83]裴捍华,梁树雄,宁联元.大同盆地地下水中砷的富集规律及成因探讨[J].水文地质工程地质,2005,(4):65-69.
    [84] Edmunds W M, Ma J Z, Aeschbach-Hertig W, et al. Groundwater recharge historyand hydrogeochemical evolution in the Minqin Basin, North West China. Applied Geochemistry, 2006, 21:2148-2170.
    [85] Bullen T D, Krabbenhoft D P, Kendall C. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim Cosmochim Acta, 1996, 60(10): 1807-1821.
    [86] Norra S, Berner Z A, Agarwala P, et al. Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 2005, 20: 1890-1906.
    [87] Boyle D R, Turner R J W, Hall G E. Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environmental Geochemistry and Health, 1998, 20: 199-212. [88 Appelo C A J, Van der Weiden M J J, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 2002, 36:3096-3103.
    [89] Anawar HM, Akai J, Komaki K, et al. Geochemical occurrence of arsenic in groundwater of Bangladesh: source and mobilization processes. J Geochem Explorer, 2003, 77: 109-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700