用户名: 密码: 验证码:
金矿开采引起砷在水环境中迁移转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金矿的伴生矿主要是含砷矿物,金矿开采引起的砷的环境污染已是不争的事实,水环境是砷产生和释放毒害效应的一个重要介质和途径。不同价态的砷,其毒性也不一样。通常,无机砷化合物比有机砷化合物的毒性大,As(III)类比As(V)类的毒性大约50倍。因此,对水环境中不同形态的砷进行研究是环境评价的重要内容。
     针对含砷金矿床的开采引发的砷污染的问题,本论文以辽宁丹东地区杨树金矿为研究对象,在枯水期和丰水期进行矿区河流和地下水的取样调查研究,并在室内进行静态吸附实验和土柱吸附实验研究水环境中不同形态的砷在浅层含水系统的迁移规律及土壤对砷的吸附容量,结合实测数据预测砷在河流的迁移规律。
     本文首先利用离子色谱--氢化物发生—原子荧光(IC-HG-AFS)联用方法研究了不同形态砷的分析方法,该方法具有成本低,灵敏度高,As(Ⅲ)、As(Ⅴ)、一甲基砷(MMA)、二甲基砷(DMA)最小检出量分别可达2.0μg /L、4μg /L、4μg /L和4μg /L,相对标准偏差(n=7)小于5%。同时进行了水样保存实验研究,水样首先通过0.45μm滤膜并在4℃下低温保存,可有效地降低微生物对不同形态砷化合物相互转化的影响。在水样中加入酸,把水样酸化到pH≤2或是加入EDTA,可有效地降低Fe、Mn等金属氢氧化物沉淀产生,以防止其对砷的吸附。
     其次,本文通过野外枯水期和丰水期的野外水样调查,发现金矿开采对周围的水环境会造成砷的污染,超出国家GB3838-2002地表水水质III类标准的3~20倍,地表水和地下水中都没有发现有机胂,只有三价砷和五价砷。
     砷在枯水期较丰水期难以迁移,通过计算得到,在枯水期砷的衰减系数K值为0.3082(1/km),而在丰水期为0.0569(1/km);在污染口浓度达到500μg/L时,下游没有其它的砷的污染源(或会影响砷衰减的其它污染源)时,枯水期砷会在下游7.5km之后浓度降到50μg/L,而丰水期则要在下游40km之后才能降到同样的值,所以在丰水期砷污染的影响的流域更广。金矿区的河流中砷主要是以五价砷为主,枯水期占90%以上,丰水其占78%以上,没有发现有机胂。
     潜水含水层的土壤砂样对砷有强烈吸附作用,土壤砂样对五价砷的吸附能力大于三价砷的吸附能力,通过D-R(Dubinin-Radushkevich)方程,我们得到六种配水中土壤砂样对砷的吸附量。三价砷进入实验柱后很快转化成五价砷;在柱子不同的距离,砷的零延迟时间随着距离的增大而增长,砷在土壤砂样中是一次性吸附;其吸附动力学符合零级反应动力学方程。
Mineral bearing arsenic is commonly found in gold mine. Contamination caused by golden mining has been studied for several decades. Water is one of the main mediums and paths for arsenic to produce and release toxic effect on human. The toxicity of arsenic depends on its different species, generally speaking, inorganic states are more toxic than organic species. For inorganic species, As (III) is 50 times toxic than As(V). So researchers are very interested in As species in order to assess the environment quality or toxicity.
     For the contamination from golden mining, this study takes Yangshu Gold Mine as research area. It’s located in Dandong, Liaoning province. In this paper, samples from surface water and groundwater were collected in both dry and wet season. The author conducted batch and column experiments in laboratory for studying the transport and adsorption capacity of different species arsenic, and forecast transport rules of arsenic in surface water.
     Firstly, the method of different species arsenic was studied by IC-HG-AFS(ion chromatography-hydrogen generation-atom fluorescence spectrometer). The detection limits of As(Ⅲ), As(Ⅴ), mono-methyl arsenic (MMA) and di-methyl arsenic (DMA) could be lowed 2.0μg /L,4μg /L,4μg /L and 4μg /L respectively. The relative standard deviation(RSD) of determination(n=7) was less 5%. At the mean time, the preservation experiment was done. The experiment data showed transform between As(Ⅲ) and As(Ⅴ) was effectively reduced when samples filtered by 0.45μm membrane were stored at 4℃because filtration and cold storage reduced amount and activity of microbe. Sorption of arsenic caused by Fe and Mn precipitation was cut down by adding EDTA or acid that makes pH≤2.
     Secondly,based on field survey in dry and wet season, Arsenic in aquatic environment comes from gold mining. The concentration of total arsenic is 3-20 times over surface water quality standard(Ⅲ). Arsenate and arsenite were found in surface water and groundwater, but no organic arsenic was identified.
     Compared to wet season, arsenic is difficult to mobile in dry season. Attenuation constant in dry season is 0.3082(1/km), but it is 0.0569(1/km)in wet season. If initial concentration of As was 500μg/L without other contamination source in down stream, arsenic would deceased to 50μg/L in down stream 7.5km in dry season but 40km in down stream 40km. As(Ⅴ) is dominate species in river running throμgh mining area. 90% of total arsenic is As(Ⅴ) in dry season, 78% in wet season. There were not any organic arsenic was found.
     Arsenic can be adsorped by sand medium form shallow aquifer which has stronger sorption for As(Ⅴ) than As(Ⅲ). Based on D-R(Dubinin-Radushkevich) equation, adsorption energy of 6 kinds of simulated water were obtained by batch eaperiments. As (Ⅲ) was oxidized to As(Ⅴ) quickly in column experiments. Adsorption of As on sand finished instantaneously and zero detention time rose with mobility distance. The sorption kinetic of arsenic on aquifer medium fits zero-order dynamics equation.
引文
A. Black, D. Craw, J.H. Youngson, J. Karubaba. Natural recovery rates of a river system impacted by mine tailing discharge: Shag River, East Otago, New Zealand. Journal of Geochemical Exploration. 2004, 84: 21-34
    A. D. Madsen, W. Goessler, S. N. Pedersen, K. A.Francesconi. J. Anal. Atom. Spectrom.. 2000, 15: 657 Andreae M. O.. Organoarsenic compounds in the environment (in Organometallic compounds in the environment; principles and reactions, Craig,). Longman, England, United Kingdom. 1986: 198-228 Andreae M.O.. Arsenic in rain and the atmospheric mass balance of arsenic. J. Geophys. Res.. 1980, 85: 4512-4518
    Bin He, Gui-bin Jiang, Xiao-bai Xu. Arsenic speciation based on ion exchange high-performance liquid chromatography hyphenated with hydride generation atomic fluorescence and on-line UV photo oxidation. Fresenius J. Anal. Chem.. 2000, 368(8): 803-808
    C. Casiot, S. Lebrun, G. Morin, O. Bruneel, J.C. Personne′, F. Elbaz-Poulichet. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Science of the Total Environment . 2005, 347: 122- 130
    C. K. Jain, I. Ali. Arsenic: occurrence, toxicity and speciation techniques. Water Research. 2000, 34(17): 4304-4312
    D. B. Levy, J. A. Schramke, K. J. Esposito, T. A. Erickson, J. C. Moore. The shallow ground water chemistry of arsenic, fluorine, and major elements: Eastern Owens Lake, California. Applied Geochemistry. 1999, 14: 53-65
    Department of Water Resources. Ministry of Health, China. 2004
    Donald Langmuir, John Mahoney, Aanjali Macdonald and John Rowson. Predicting arsenic concentrations in the porewaters of buried uranium mill tailings. Geochimica et. Cosmochimica Acta. 1999, 63(19): 3379-3394
    F. Bod enan, P. Baranger, P. Piantone, A. Lassin, M. Azaroual, E. Gaucher, G. Braibant, Arsenic behaviour in gold-ore mill tailings, Massif Central, France: hydrogeochemical studyand investigation of in situ redox signatures. Applied Geochemistry. 2004, (19): 1785-1800
    F. Sanchez, A.C. Garrabrants, C. Vandecasteele, P. Moszkowicz, D.S. Kosson. Environmental assessment of waste matrices contaminated with arsenic. Journal of Hazardous Materials. 2003, 96: 229-257
    Y. S. Ho, G. McKay. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34(5): 451-465
    H.K.T. Wong, A. Gauthier, J.O. Nriagu. Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. The Science of the Total Environment. 1999, 228: 35-47
    Harter R. D., Naidu R. Role of metal-organic complexation in metal sorption by soils. Adv. Agron.. 1995, (55): 219-264
    Heidelberg den.. The transport and reaction behavior of arsenic in groundwater: Experiments and case studies. 2005, 5
    J. Feldmann, K. John, P. Pengprecha. Arsenic metabolism in seaweed-eating sheep from Northern Scotland. Fresenius J. Anal. Chem.. 2000, 368(1):116
    Jeffrey David Gamlin. Characterization of arsenic Transport in Northeastern Honey Lake Basin, Lassen Country, California. University of Nevada Reno. 2002
    Ji-Hun Ryu,Suduan Gao, Randy A. Dahlgren and Robert A. Zierenberg. Arsenic distribution, speciation and solubility in shallow groundwater of Owens DryLake, California. Geochimica et.Cosmochimica Acta. 2002, 66(17): 2981-2994
    John E. Thomas. Distribution, movement, and extraction of arsenic in selected Florida soils. University of Florida. 1998
    Jose Luis Gómez-Ariza, Daniel Sánchez-Rodas, Inmaculada Giráldez, Emilio Morales. A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples. Talanta. 2000, 51(2): 257-268
    K. Kalbitz, R. Wennrich. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. The science of the Total Environment. 1998, 209: 27-39 M. S. Chiou, P. Y. Ho and H. Y. Li. J. Chin. Chem. Engrs.. 2003, 34: 625
    M. Angeles Su?er, Vicenta Devesa, Ociel Mu?oz, Dinoraz Vélez, Rosa Montoro. J. Anal. At. Spectrom.. 2001, 16: 390-397
    Marc Vilanó, Antoni Padró, Roser Rubio. Coupled techniques based on liquid chromatography and atomic fluorescence detection for arsenic speciation. Analytical Chimica Acta. 2000, 411:71-79
    Mari Pantsar-Kallio, Pentti K. G. Manninen. Speciation of mobile arsenic in soil samples as a function of pH. The science of the Total Environment. 1997, 204: 193-200
    Marijn Van Hulle, Chao Zhang, Bart Schotte, Louis Mees, Frank Vanhaecke, Raymond Vanholder, Xin Rong Zhang, Rita Cornelis. J. Anal. At. Spectrom.. 2004,19:58-64
    Marta Segura, Juan Mu?oz, Yolanda Madrid, Carmen Cámara. Stability study of As(III), As(V), MMA and DMA by anion exchange chromatography and HG-AFS in wastewater samples Anal. Bioanal. Chem.. 2002, 374(3):513-519
    Myoung-JinKim, Kyu-Hong Ahn, Yejin Jung. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Chemosphere. 2002, 49: 307-312
    N. J. Wilson, D. Craw, K. Hunter. Contributions of discharges from a historic antimony mine to metalloid content of river waters, Marlborough, New Zealand. Journal of Geochemical Exploration. 2004, 84: 127-139
    P. L. Smedley, D. G. Kinniburgh. A review of the source,behaviour and distribution of arsenic in natural waters. Applied Geochemistry. 2002, 17: 517-568
    P. L. Smedley, H. B. Nicolli, D.M.J. Macdonald, A.J. Barros, J. O. Tullio. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from LaPampa, Argentina. Applied Geochemistry. 2002, 17: 259-284
    Pilar Fernandez, Irene Sommer, Silke Cram, Irma Rosas, Margarita Gutie′rrez. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailing. Science of the Total Environment. 2005, 348 : 231- 243
    Purnendu Bose, Archana Sharma. Role of iron in controlling speciation and mobilization of Arsenic in subsurface environment. Water Research. 2002, 36: 4916-4926
    Regina N.Tempel,lisa A. Shevenell, Paul Lechler, Jonathan Price. Geochemical modeling approach to predicting arsenic concentrations in a mine pit lake.Applied Geochemistry. 2000, 15: 475-492
    Ritsema R., Dukan L., Navarro, T. R. I., van Leeuwen W., Oliveira, N., Wolfs P., Lebret E.. Appli. Organomet. Chem.. 1998, 12: 591
    Sadiq M.. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water, Air and Soil Pollution. 1997, 93: 117-136
    Scudlark J. R., and church T. M.. The atmospheric deposition of arsenic and association with acid precipitation. Atmos.Environ. 1988, 22: 937-943
    Stéphane Simon, Huong Tran, Florence Pannier, Martine Potin-Gautier. Simultaneous determination of twelve inorganic and organic arsenic compounds by liquid chromatography–ultraviolet irradiation–hydride generation atomic fluorescence spectrometry. Journal of Chromatography A. 2004, 1024: 105-113
    Suiling Wang, Catherine N.Mulligan. Occurrence of arsenic contamination in Canada: Sources, Behavior and distribution. Science of the Total Environment. 2006, 361: 701-721
    Waychunas G.A., Fuller C.C., Rea B.A., Davis J.A.. Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: Effects fo arsenate sorption and counteraction variation and comparison with EXAFS results. Geochim. Et Cosmochim. Acta. 1996, 60: 1765-1781
    Waychunas G.A., Rea B.A., Fuller C.C., Davis J.A.. Surfacechemistry of ferrihydrite: Part 1. EXAFS study of geometryof coprecipitated and adsorbed arsenate. Geochem. Et Cosmochim, Acta. 1993, 57: 2251-2269
    X. Chris Le, Mingsheng Ma. Anal. Chem., 1998, 70: 1926-1933
    Y. Bohari, A. Astruc, M. Astrucb, J. Cloudc.. J. Anal. At. Spectrom.. 2001, 16: 774-778
    Zdenka ?lejkovec, Johannes T. van Elteren, Anthony R. Byrne. A dual arsenic speciation system combining liquid chromatographic and purge and trap-gas chromatographic separation with atomic fluorescence spectrometric detection. Analytica Chimica Acta. 1998, 358: 51-60
    Zhilong Gong, Xiufen Lu, Mingsheng Ma, Corinna Watt and X. Chris Le. Arsenic speciation analysis. Talanta. 2002, 58: 77-96
    Zoltán Mester, Péter Fodor. High-performance liquid chromatography-hydride generation-atomic fluorescence spectroscopic determination of arsenic species in water. Journal of Chromatography A. 1996, 756: 292-299
    D.J.赫佐格,F.M. 福斯格伦. 如何评价矿山废弃物对地下水和地表水的潜在影响. 国外金属矿山. 1997,(2):57-60
    陈静. 碳酸岩盐红土与针铁矿对砷吸附、解吸的研究及其环境意义. 贵州工业大学学报. 2001
    高存荣. 河套平原地下水砷污染机理的探讨. 中国地质灾害与防治学报. 1999,10(2):25-32
    黄卫,张梅,陈健. 新鲜砷渣与陈渣中 As 溶出比较实验. 贵州环保科技. 1998,4:40-41
    简放陵. 砷的吸附解吸及其与土壤性质的关系. 热带亚热带土壤科学. 1994,3(3):138-145
    金世斌. 难处理金精矿生物氧化预处理工艺的工业应用现状及其工艺因素分析. 黄金. 2001,22(10):28-31
    廖国礼,周音达,吴超. 尾矿区重金属污染浓度预测模型及其应用. 中南大学学报. 2004,35(6):1009-1013
    欧阳津,时彦,张新荣. 液相色谱分离-氢化物发生原子吸收测定血清中不同形态的有机砷化合物. 分析化学研究简报. 1999,27(10):1151-1155
    裴捍华,梁树雄. 大同盆地地下水中砷的富集规律及成因探讨. 水文地质工程地质. 2005,(4):65-69
    尚爱安,刘玉容,梁重山,党志. 土壤中重金属的生物有效性研究进展. 土壤. 2000,32(6):294-301
    苏爱梅,孙翠玲. 小清河流域砷含量及其存在形态的研究. 环境工程. 2002,20(3):60-62
    孙丽娜,孙铁珩,金成洙. 卧龙泉河流域土壤重金属污染的地球化学研究. 水土保持研究. 2004, 11(9): 191-195
    谭凯旋,王岳军,郭 锋,谢焱石. 湘西金矿尾矿2水相互作用:1. 环境地球化学效应. 矿物学报. 2001,21(1):53-58
    汤洁,林年丰,卞建民,刘五洲,张振林. 内蒙古河套平原砷中毒病区砷的环境地球化学研究. 水文地质工程地质. 1996,(1):49-54
    陶溶溶,余定学,王 亮,尹家元. 砷形态水样贮存方法及稳定性研究. 干旱环境监测. 2000,14(4):193-196.
    王华东,郝春曦,王建. 环境中的砷-行为·影响·控制. 中国环境科学出版社. 1992:56.
    王亚平,鲍征宇,侯书恩. 尾矿库周围土壤中重金属存在形态特征研究. 岩矿测试. 2000,19(1):7-13.
    王一先,白正华. 矿山尾砂表生地球化学过程实验研究. 矿物学报. 2003,23(1):51-56
    王周谭. 生物处理技术在我国含砷难浸金矿的研究应用. 陕西地质. 1995,13(2):88-94
    魏显有,王秀敏等. 土壤中砷的吸附行为及其形态分布研究. 河北农业大学学报. 1999,22(3)
    肖唐付,洪 冰,杨中华,杨 帆. 砷的水地球化学及环境效应. 地质科学情报. 2001, 20(1):71-76
    谢正苗,黄昌勇,何振立. 土壤中砷的化学平衡. 环境科学进展. 1998,6(1):22-37
    杨丽洲,陶大均. 土壤和底质中砷形态分析前处理技术. 干旱环境监测. 1999,13(3):147-150
    杨胜科,王文科,张 威,张 燕. 砷污染生态效应及水土体系中砷的治理对策研究. 地球科学与环境学报,2004,26(3):69-73
    易秀,李佩成. 黄土性土壤对砷的净化作用及迁移规律研究. 生态环境. 2005,14(3):336-340
    殷晋铎,么俊东,薛恩树,郭德春. 大沽排污河沉积物重金属和砷污染及生态风险性研究. 环境工程. 2004.2,22(1):70-73
    余国营,吴燕玉. 土壤环境中重金属元素的相互作用及其对吸持特性的影响. 环境化学. 1997,16(1):30-36
    张娟,许金泉. 兰坪沘江中砷污染的化学形态及迁移转化规律. 昆明理工大学学报. 2000,25(2):75-80
    张美云,张玉敏,王春雨,张阁有,岱 沁,梁秀芬,任先云,周振荣,罗振东,P.L.斯梅德利,
    赵炳成. 呼和浩特盆地富砷地下水的分布及砷的迁移与释放. 中国地方病学杂志,2000,19(6):442-444
    张先福,樊立超,宋晓平,史宏弟. Hg、As、Cd、Cr 在食物链中迁移规律的研究. 西北农林科技大学学报. 2001,29(1):103-105
    赵仕林. 土壤中价态砷的浸取方法研究. 四川师范大学学报. 1995,18(6):45-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700