用户名: 密码: 验证码:
小白菊内酯对胃癌细胞增殖抑制和诱导凋亡作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     小白菊内酯(parthenolide,Par)作为一种西方传统药物,除了免疫调节功效,对于来自肝脏,乳腺,前列腺,血液等的多种肿瘤细胞,在其发生发展过程中发挥良好的抑制效应,可以显著抑制多种人类肿瘤细胞生长,诱导肿瘤细胞凋亡。小白菊内酯的抗肿瘤机制与其作为NF-κB通路抑制剂息息相关,通过对NF-κB的阻断,调节细胞周期蛋白,由TNF-a通路调控众多下游基因如Bcl-2,Caspase及影响线粒体功能,显示了其在肿瘤治疗中的应用价值,但目前,国际上对Par在胃癌的研究方面还远不深入,为了探讨Par在胃癌治疗中的应用价值,我们研究了Par对胃癌细胞株SGC7901,BGC823细胞增殖,细胞周期和凋亡的影响;对胃癌细胞体外迁移和侵袭能力的影响,通过检测Par在处理细胞后线粒体膜电位(△Ψm)及凋亡检测蛋白Bcl-2和Caspase基因的改变,探讨在Par诱导胃癌细胞凋亡中线粒体途径和凋亡调节蛋白Bcl-2和Caspase-8的作用,进一步阐明Par抗肿瘤作用的机制。
     方法
     1、MTT法检测不同浓度Par对肿瘤细胞的抑制作用
     取人胃癌细胞株SGC7901、BGC823细胞株,加入96孔板,实验组加入不同浓度的Par,对照组则加等量不含药物的培养液。Par处理24、48、72小时后,MTT法检测各孔吸光度(OD)值,计算细胞生长抑制率。
     2、流式细胞仪分析细胞周期
     消化收集各浓度Par处理24h的细胞,PI复合染液染色后,流式细胞仪检测,分析细胞周期。
     3、流式细胞仪检测细胞凋亡
     消化收集各浓度Par处理24h的细胞,Annexin V/FITC染色后,流式细胞仪检测,分析细胞凋亡百分比。
     4、流式细胞仪检测Par对细胞△Ψm的影响
     消化收集各浓度Par处理24h的细胞,罗丹明123染色后,流式细胞仪检测,分析线粒体膜电位降低细胞所占百分比。
     5、transwell小室检测Par对细胞体外迁移的影响
     以不同浓度Par处理细胞后,加入到transwell小室中,作用48h后计数穿膜细胞数。
     6、被覆Matrigel胶的transwell小室检测Par对细胞体外侵袭的影响
     以不同浓度Par处理细胞后,加入到transwell小室中,小室上层被覆Matrigel胶,作用48h后计数穿膜细胞数。
     7、光镜下细胞形态观察
     细胞接种于6孔板,以不同浓度Par处理细胞24h后,后倒置显微镜下用100×摄片,观察各组细胞形态。
     8、荧光显微镜下观察细胞凋亡
     收集以不同浓度Par处理24h的细胞,吖啶橙溶液染色,在荧光显微镜下用400×摄片,观察凋亡细胞形态。
     9、western blot方法检测Bcl-2蛋白的表达
     收集7.5μmol/L作用24,48,72h后的细胞蛋白,用western blot方法检测Bcl-2蛋白的表达。
     10、RT-PCR方法检测Caspase-8 mRNA的表达
     收集7.5μmol/L作用24,48,72h后的细胞蛋白,用RT-PCR方法检测Caspase-8基因的表达。
     11、统计学处理
     本实验所有数据用均数±标准差表示,利用SPSS11.5分析软件,采用单因素方差分析法进行差异性分析,P<0.05被认为有显著差异。
     结果
     1、Par对胃癌细胞生长的抑制作用
     Par在20μmol/L以下对SGC7901、BGC823细胞生长无显著影响,60μmol/LPar分别处理SGC7901、BGC823细胞48h后对细胞生长有抑制作用(P<0.05),在100~200μmol/L浓度范围内,Par作用24h后,对胃癌细胞增殖有抑制作用。随着浓度的增加,对细胞的抑制率也逐渐增加。同一浓度的Par对胃癌细胞的抑制作用随着时间的延长也逐渐增强。
     2、Par对胃癌细胞周期分布的影响
     对照组SGC7901细胞的G_0/G_1期、S期和G_2/M期比例分别为49.60%±2.45%,30.80%±2.50%,19.6%±1.37%。在经140、160、180、200μmol/L处理24h后,G_0/G_1期比例逐渐增高,分别为63.56%±3.28%(p<0.05),65.88%±1.60%(p<0.01),74.27%±1.13%(p<0.01),79.33%±3.21%(p<0.01),S期比例逐渐下降,分别为21.56%±0.71%,16.81%±1.82%(p<0.01),13.96%±0.35%(p<0.05),6.40%±5.56%(p<0.05),G_2/M期比例分别为14.88%±2.78%,17.31%±0.71%,11.78%±0.97%(p<0.01),16.25%±1.45%。对照组BGC823细胞的G_0/G_1期、S期和G_2/M期比例分别为63.55%±1.03%,24.88%±1.01%,11.57%±0.54%。在经140、160、180、200μmol/L处理24h后,G_2/M期逐渐减少,分别为8.49%±0.12%(p<0.05),8.11%±0.16%(p<0.05),0.17%±0.04%(p<0.01),0.06%±0.02%(p<0.01),G_0/G_1期比例无显著变化,S期比例升高,分别为25.90%±0.70%,28.05%±13.77%,37.48%±0.95%(p<0.01),35.14%±0.88%(p<0.01)。在SGC7901细胞中,160~200μmol/L的Par处理后G_0/G_1期比例增高、S期比例下降有统计学意义。在BGC823细胞中160~200μmol/L的Par处理后G_2/M期比例下降,S期比例升高有统计学意义。
     3、Par对胃癌细胞凋亡的影响
     对照组SGC7901细胞早期凋亡率和晚期凋亡及坏死率分别为3.03%±0.75%和1.37%±0.57%,与对照组比较,经80、100、180μmol/L的Par处理24h后,,SGC7901细胞的早期凋亡率逐渐增加,分别为6.93%±2.55%,25.47%±4.93%(p<0.05),50.16%±2.11%(p<0.01),晚期凋亡和坏死率也逐渐增加,分别为6.26%±4%,11.67%±3.07%,18.95%±1.46%(p<0.01)。对照组BGC823细胞的早期凋亡率和晚期凋亡率及坏死率分别为4.34%±0.73%,3.54%±1.41%,与对照组比较,经80、100、180μmol/L的Par处理24h后,BGC823细胞的早期凋亡率逐渐增加,分别为8.64%±1.52%,19.65%±2.89%(p<0.05),32.78%±3.19(p<0.01),晚期凋亡率及坏死率也逐渐增加,分别为6.78%±1.09%,21.56%±3.19%(p<0.05),31.55%±3.78%(p<0.01),上述结果表明Par以浓度依赖方式诱导胃癌细胞产生明显凋亡,包括早期和晚期凋亡。
     4、Par对胃癌细胞△Ψm的影响
     流式细胞仪结果表明SGC7901细胞正常对照组△Ψm降低的比例为10.38%±0.73%,经80、100、160、200μmol/L的Par处理24h后,△Ψm下降的比例分别为41.33%±11.06%,73.86%±5.66%(p<0.01),98.8%±1.13%(p<0.01),99.13%±0.77%(p<0.01)。BGC823细胞正常对照组△Ψm降低的比例为15.43%±1.24%,经80、100、160、200μmol/L的Par处理24h后,△Ψm下降的比例分别为25.5%±7.56%,75.38%±1.29%(p<0.01),89.23%±2.33%(p<0.01),91.6%±1.74%(p<0.01),结果表明Par以浓度依赖方式引起胃癌细胞发生线粒体膜电位去极化,提示Par可能通过降低线粒体膜电位引起细胞凋亡。
     5、P2ur对胃癌细胞体外迁移的影响
     Transwell结果表明SGC7901细胞正常对照组48h后穿膜细胞数为51±3.61,经30、50、80μmol/L的Par处理48h后,穿膜细胞数逐渐减少,分别为46±5.57,25.67±4.04(p<0.01),9.67±2.08(p<0.01)。BGC823细胞正常对照组48h后穿膜细胞数为116±9,经30、50、80μmol/L的Par处理48h后,穿膜细胞数逐渐减少,分别为95.33±7.02,46±6.56(p<0.01),29±4(p<0.01),结果表明Par以浓度依赖方式抑制胃癌细胞体外迁移活性。
     6、Par对胃癌细胞体外侵袭的影响
     transwell结果表明SGC7901细胞正常对照组48h后穿膜细胞数为95.33±8.74,经30、50、80μmol/L的Par处理48h后,穿膜细胞数逐渐减少,分别为76±6.56,33±6(p<0.01),12.67±3.21(p<0.01)。BGC823细胞正常对照组48h后穿膜细胞数为85.33±11.23,经30、50、80μmol/L的Par处理48h后,穿膜细胞数逐渐减少,分别为69.33±3.06,47.33±5.51(p<0.05),23±6.56(p<0.01),结果表明Par以浓度依赖方式抑制胃癌细胞体外侵袭活性。
     7、光镜下细胞形态观察
     对照组胃癌细胞其贴壁生长良好,细胞轮廓清晰,细胞间结构紧密,细胞生长旺盛,经80、100、200μmol/LPar作用后,逐渐脱落,悬浮于培养液中,贴壁细胞数量减少,细胞形态变圆,体积缩小,核出现固缩。从形态学上证实Par对胃癌细胞的生长抑制。
     8、荧光显微镜下观察细胞凋亡
     对照组的胃癌细胞核染色质着绿色,细胞核完整,经80、100、200μmol/L的Par作用后见凋亡细胞,细胞体积缩小,核染色质着橘黄色,核浓缩,有部分碎裂,呈大小不等、形态不规则的碎片,可找到凋亡小体。从形态学上证实Par诱导胃癌细胞凋亡的作用。
     9、Par对胃癌细胞Bcl-2蛋白表达的影响
     两株细胞的对照组经western blot检测可见明显的Bcl-2蛋白条带,SGC7901细胞对照组蛋白表达强度为2.65±0.08,经7.5μmol/L的Par作用24h、48h、72h后,表达强度逐渐减低,分别为2.57±0.029,2.18±0.95(p<0.05),1.35±0.15(p<0.01)。BGC823细胞对照组蛋白表达强度为2.75±0.08,经7.5μmol/L的Par作用24h、48h、72h后,表达强度逐渐减低,分别为2.44±0.16,2.14±0.1,1.42±0.11(p<0.01)。提示Par在胃癌细胞中引起Bcl-2表达下调。
     10、Par对胃癌细胞Caspase-8 mRNA表达的影响
     SGC7901细胞对照组基因表达强度为0.23±0.046,经7.5μmol/L的Par作用24h、48h、72h后,表达强度逐渐增加,分别为0.36±0.046,0.53±0.035(p<0.01),0.85±0.08(p<0.01)。BGC823细胞对照组基因表达强度为0.23±0.055,经7.5μmol/L的Par作用24h、48h、72h后,表达强度逐渐增加,分别为0.35±0.092,0.55±0.073(p<0.05),0.82±0.035(p<0.01)。提示Par在胃癌细胞中引起Caspase-8表达上调。
     结论
     Par具有抑制SGC7901、BGC823细胞生长,诱导其凋亡的作用,可能是通过以下的机制发挥作用的。
     1、Par能以剂量和时间依赖的方式抑制SGC7901、BGC823细胞生长,以剂量依赖的方式使SGC7901细胞周期阻止在G_0/G_1-S期,使BGC823细胞周期阻止在S-G_2/M期。
     2、Par以剂量依赖方式降低SGC7901、BGC823细胞的线粒体膜电位,从而诱导细胞凋亡。
     3、Par以剂量依赖方式抑制SGC7901、BGC823细胞体外迁移和侵袭活性。
     4、Par以时间依赖方式下调SGC7901、BGC823细胞的Bcl-2蛋白表达水平。
     5、Par以时间依赖方式上调SGC7901、BGC823细胞的Caspase-8 mRNA表达水平。
     6、Bcl-2和Caspase-8两个基因参与了Par对SGC7901、BGC823细胞诱导凋亡的作用。
Objective
     Parthenolide(Par) is a traditional medicine in western world.Besides its immunomodulating effect,it is believed to play a role in the treatment of human cancer,including hepatic cancer,breast cancer,leukemia,et al.Parthenolide regulates multiple cellular and molecular events in order to induce tumor cells apoptosis.
     At the molecular level,these effect corresponded with the inhibition of nuclear factor-kappa B pathway,by which parthenolide regulates cycilns.Through regulation of tumor necrosis factor alpha parthenolide up-regulates or down-regulates downstream genes such as B-cell CLL/Lymphoma 2-associated X(Bcl-2) family of proteins and cysteinyl aspartate specific proteinase(caspase),in addition,parthenolide promotes the loss of mitochondrial lunction.These findings show the value of parthenolide in tumor therapy.However,the effect of parthenolide on gastric cancer is not understood.In order to know the value of parthenolide in treatment on gastric cancer,this study was aimed to gain further sight into the pathways mediating the anticancer proliferation and induction apoptosis of parthenolide.In this study,we examinated the effect of parthenolide on growth and apoptosis of the gastric cancer lines SGC7901,BGC823,the change of cell cycle,mitochondrial potential(ΔΨm),migration and invasion in vitro,and expression of bcl-2 in protein level and caspase-8 in mRNA level.
     Methods
     1.The inhibition of parthenolide on the proliferation of gastric cancer cells was analyzed by MTT assay
     For MTT assay,gastric cancer cells were plated in 96-well plates,cells were treated with parthenolide for various concentration and various time periods.After drug treatment,attached cells were incubated with MTT and subsequely solubilized in DMSO.The absorbency at 490nm was then measured using a micoplate reader.
     2.Cell cycle analysis was performed by flow cytometry
     After parthenolide treatment for 24 hours,cells were collected and labeled with propidium iodide(PI) solution and analyzed by flow cytometry.Cell cycle was analyzed.
     3.Cell apoptosis assays was performed by flow cytometry
     After parthenolide treatment for 24 hours,cells were collected and labeled with annexin and V-FITC,then cells were analyzed by flow cytometry.
     4.Measurement of mitochondrial membrane potential was performed by flow cytometry
     After parthenolide treatment for 24 hours,cells were collected and labeled with rhodamine123 solution,then cells were analyzed by flow cytometry.
     5.Migration capacity in vitro assays was performed by transwell
     Gastric cancer cells were plated in transwell rooms,cells were treated with parthenolide for various concentration,after 48 hours we counted number of cells through the basement membrance.
     6.Invasion capacity in vitro assays was performed by transwell covered with matrigel
     Gastric cancer cells were plated in transwell rooms which covered with matrigel in advance,cells were treated with parthenolide for various concentration,after 48 hours we counted number of cells through the basement membrance.
     7.Cell Morphous was observated with light microscope
     Gastric cancer cells were plated in 6-well plates,cells were treated with parthenolide for various concentration,after 24 hours,we observated cell morphous with light microscope and took pictures with 100 photographic rate.
     8.Apoptotic morphology of cells was observated with fluorescence microscopy
     After parthenolide treatment for 24 hours,cells were collected and labeled with acridine orange,then we observated Apoptotic morphology of cells with 1 fluorescence microscopy and took pictures with 400 photographic rate.
     9.Expression of Bcl-2 protein were detected by Western blot assay
     After treatment with 7.5μmol/L parthenolide for 24,48,72 hours,cell protein was collected for assay.
     10.Reverse transcription-PCR was used to detect transcriptional regulation of Caspase-8
     After treatment with 7.5μmol/L parthenolide for 24,48,72 hours,RNA was collected for assay.
     11.Statistical analysis
     Data was presented as means±SD.Single factor analysis of variance was used for analyzing differences between groups with SPSS11.5,P value<0.05 was considered significant.
     Results
     1.Effect of parthenolide on proliferation of gastric cancer cell lines
     Parthenolide of 60μmol/L inhibited the proliferation of SGC7901 and BGC823 cells after treating cells for 48 hours(P<0.05).After exposed to 100-200μmol/L parthenolide for 24 hours,the growth of two gastric cancer lines were significantly inhibited in dose-dependent manner.When cells were incubated with parthenolide for from 24 hours to 72 hours,cell viability was decreased in a time-dependent manner.
     2.Effect of parthenolide on cell cycle status of gastric cancer cell lines
     The percentage of cells in G_0/G_1,S,G_2/M phases of the cell cycle in untreated SGC7901 cells were 49.60%±2.45%,30.80%±2.50%and19.6%±1.37%.After exposed to 140,160,180,200μmol/L parthenolide for 24 hours,the rates of cells in the G_0/G_1 phase were 63.56%±3.28%(p<0.05),65.88%±1.60%(p<0.01),74.27%±1.13%(p<0.01), and 79.33%±3.21%(p<0.01),respectively,the rates of cells in the S phase were 21.56%±0.71%,16.81%±1.82%(p<0.01),13.96%±0.35%(p<0.05),6.40%±5.56% (p<0.05),the rates of cells in the G_2/M phase were 14.88%±2.78%,17.31%±0.71%, 11.78%±0.97%(p<0.01),16.25%±1.45%,respectively.The percentage of cells in G_0/G_1,S,G_2/M phases of the cell cycle in untreated BGC823 cells were 63.55%±1.03%, 24.88%±1.01%,11.57%±0.54%,respectively..After exposed to 140,160,180,200μmol/L parthenolide for 24 hours,the rates of cells in the G_2/M phase were 8.49%±0.12%(p<0.05),8.11%±0.16%(p<0.05),0.17%±0.04%(p<0.01),0.06%±0.02% (p<0.01),the rates of cells in the S phase were 25.90%±0.70%,28.05%±13.77%, 37.48%±0.95%(p<0.01),35.14%±0.88%(p<0.01),respectively.
     Parthenolide in concentration of 160-200μmol/L induced accumulation in G_0/G_1 phase and attenuation in S phase of the cell cycle in SGC7901 cells.Parthenolide in concentration of 160-200μmol/L induced accumulation in S phase and attenuation in G_2/M phase of the cell cycle in BGC823 cells.
     3.Effect of parthenolide on apoptosis of gastric cancer cell lines
     The percentage of cells undergoing apoptotic cell death and the percentage of cells undergoing necrotic cell death in control SGC7901 cells were 3.03%±0.75%and 1.37%±0.57%.Compared with the control group,after exposed to 80,100,180μmol/L parthenolide for 24hours,the percentage of SGC7901 cells undergoing apoptotic cell death gradually increased,the percentage of cells undergoing apoptotic cell death were 6.93%±2.55%,25.47%±4.93%(p<0.05),50.16%±2.11%(p<0.01),respectively.the percentage of cells undergoing necrotic cell death were 6.26%±4%,11.67%±3.07%, 18.95%±1.46%,respectively.The percentage of cells undergoing apoptotic cell death and the percentage of cells undergoing necrotic cell death in control BGC823 cells were 4.34%±0.73%and3.54%±1.41%.Compared with the control group,after exposed to 80,100,180μmol/L parthenolide for 24hours,the percentage of BGC823 cells undergoing apoptotic cell death gradually increased,the percentage of cells undergoing apoptotic cell death were 8.64%±1.52%,19.65%±2.89%(p<0.05),32.78±3.19(p<0.01), respectively,the percentage of cells undergoing necrotic cell death were 6.78%±1.09%,21.56%±3.19%(p<0.05),31.55%±3.78%(p<0.01),respectively.Results showed that parthenolide induced dose-dependent apoptosis in both cell lines.
     4.Effect of parthenolide on mitochondrial membrane potential(ΔΨm)
     The percentage of cells with reducedΔΨm were 10.38%±0.73%in untreated SGC7901 cells.After exposed to 80,100,160,200μmol/L parthenolide for 24h,the percentage of cells with reducedΔΨm were 41.33%±11.06%,73.86%±5.66%(p<0.01), 98.8%±1.13%(p<0.01),99.13%±0.77%(p<0.01),respectively.The percentage of cells with reducedΔΨm were 15.43%±1.24%in untreated BGC823 cells.After exposed to 80,100,160,200μmol/L parthenolide for 24h,the percentage of cells with reducedΔΨm were 25.5%±7.56%,75.38%±1.29%(p<0.01),89.23%±2.33%(p<0.01), 91.6%±1.74%(p<0.01),respectively.Results showed that parthenolide induced a dose-dependent loss ofΔΨm in both cell lines.
     5.Effect of parthenolide on migration capacity in vitro
     The number of cells through the basement membrance were 51±3.61in untreated SGC7901 cells.After exposed to 30,50,80μmol/L parthenolide for 48h,the number of cells through the basement membrance were 46±5.57,25.67±4.04(p<0.01),9.67±2.08 (p<0.01).The number of cells through the basement membrance were 116±9 in untreated BGC823 cells.After exposed to 30,50,80μmol/L parthenolide for 48h,the number of cells through the basement membrance were 95.33±7.02,46±6.56(p<0.01), 29±4(p<0.01).Results showed that parthenolide induced a dose-dependent loss of migration capacity in both cell lines.
     6.Effect of parthenolide on invasion capacity in vitro
     The number of cells through the basement membrance were 95.33±8.74 in untreated SGC7901 cells.After exposed to 30,50,80μmol/L parthenolide for 48h,the number of cells through the basement membrance were 76±6.56,33±6(p<0.01), 12.67±3.21(p<0.01).The number of cells through the basement membrance were 85.33±11.23 in untreated BGC823 cells.After exposed to 30,50,80μmol/L parthenolide for 48h,the number of cells through the basement membrance were 69.33±3.06, 47.33±5.51(p<0.05),23±6.56(p<0.01).Results showed that parthenolide induced a dose-dependent loss of invasion capacity in both cell lines.
     7.Effect of parthenolide on cell morphous
     Cell adherenting wall growed well,close and strong in untreated cells.After exposed to 80,100,200μmol/L parthenolide for 24h,cell in smaller size exfoliated,then floated in water,decreased in number,karyopyknosis could be found.Results support from the morphology that parthenolide decreased proliferation in both cell lines.
     8.Effect of parthenolide on apoptotic morphology
     Nuclear remained integrity,nuclear chromatin stained green in untreated cells. After exposed to 80,100,200μmol/L parthenolide for 24h,nuclear chromatin stained organge in smaller size cells,karyopyknosis,fragmentation,and apoptotic bodies could be found.Results support from the morphology that apoptosis induction of parthenolide in both cell lines.
     9.Effect of parthenolide on the expression of Bcl-2
     The express intensity of Bcl-2 was 2.65±0.08 in untreated SGC7901 cells.After exposed to 7.5μmol/L parthenolide for 24,48,72 hours,the express intensity of Bcl-2 were 2.57±0.029,2.18±0.95(p<0.05),1.35±0.15(p<0.01).The express intensity of Bcl-2 was 2.75±0.08 in untreated BGC823 cells.After exposed to 7.5μmol/L parthenolide for 24,48,72 hours,the express intensity of Bcl-2 were 2.44±0.16, 2.14±0.1,1.42+0.11(p<0.01).Results showed that parthenolide induced dose-dependent decrease of expression of Bcl-2 in both cell lines.
     10.Effect of parthenolide on the expression of Caspase-8
     The express intensity of caspase-8 was 0.23±0.046 in untreated SGC7901 cells.After exposed to 7.5μmol/L parthenolide for 24,48,72 hours,the express intensity of caspase-8 were 0.36±0.046,0.53±0.035(p<0.01),0.85±0.08(p<0.01).The express intensity of caspase-8 was 0.23±0.055 in untreated BGC823 cells.After exposed to 7.5μmol/L parthenolide for 24,48,72 hours,the express intensity of caspase-8 were 0.35±0.092,0.55±0.073(p<0.05),0.82±0.035(p<0.01).Results showed that parthenolide induced dose-dependent increase of expression of Caspase-8 in both cell lines.
     Conclusions
     1.Parthenolide inhibited proliferation of SGC7901 and BGC823 cells in dose-and time-dependent manners,cell morphous also support these points.
     2.Parthenolide induced accumulation in G_0/G_1 phase and attenuation in S phase of the cell cycle in SGC7901 cells,and induced attenuation in G_2/M phase and accumulation in S phase of the cell cycle in BGC823 cells.
     3.Parthenolide induced dose-dependent apoptosis in SGC7901 and BGC823 cells.,apoptotic morphology also support these points.
     4.Parthenolide induced a dose-dependent loss ofΔΨm in SGC7901 and BGC823 cells.
     5.Parthenolide induced a dose-dependent loss of migration capacity in SGC7901 and BGC823 cells.
     6.Parthenolide induced a dose-dependent loss of invasion capacity in SGC7901 and BGC823 cells.
     7.Parthenolide induced dose-dependent decrease of expression of Bcl-2 in SGC7901 and BGC823 cells.
     8.Parthenolide induced dose-dependent increase of expression of Caspase-8 in SGC7901 and BGC823 cells.
引文
1 Starenki DV,Namba H,Saenko VA,et al.Induction of thyroid cancer cell apoptosis by a novel NF-κB inhibitor,dehydroxymethylepoxyquinomicin.Clin Cancer Res.2004;10(20):6821-6829
    2 LIM J W,KIM H,KIM K H.Nuclear Factor-kappaB Regulates Cyclooxygenase-2 Expression and Cell Proliferation in Human Gastric Cancer Cells.Lab invest.2001;81(3):349-360
    3 Hinz M,Krappmann D,Eichten A,et al.NF-kappa B function in growth control:regulation of cyclin D_1 expression and G_0/G_1-to-S-phase transition.Mol Cell Biol.1999;19:2690-2698.
    4 Witek-awada B,Koj A1 Regulation of expression of Stromyelysin-1 by proinflammatory cytokines in mouse brain astrocytes,physiol Pharm acol.2003,54(4):489-534
    5 Fan X1 Methvlalvoxal-bovine serum album in stimulates tumor necrosis factor alpha secretion.Arch Biochem Biophys.2003,409(2):274-286
    6 B.H.Kwok,B.Koh,M.I.Ndubuisi,M.Elofsson,C.M.Crews,The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase,Chem.Biol.2001,8:759-766.
    7 张雯,宋晓凯.小白菊内酯对人肝癌BEL-7402细胞p53蛋白和增殖细胞核抗原表达的影响.Chinese Traditional and Herbal Drugs(中草药),2005,36(12):1850-1852
    8 Yip-Schneider MT,Nakshatri H,Sweeney CJ et al.Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kappa B pathway in pancreatic carcinoma cells.Mol Cancer Ther.2005 Apr;4(4):587-594.
    9 Wu C,Chen F,Rushing JW et al.Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines.J Med Food.2006 Spring;9(1):55-61
    10 Sweeney CJ,Mehrotra S,Sadaria MR,et al.The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer.Mol Cancer Ther 2005;4:1004-1012
    11 Kim JH,Liu L,Lee SO et al.Susceptibility of cholangiocarcinoma cells to parthenolide-induced apoptosis.Cancer Res.2005 Jul 15;65(14):6312-6320
    12 冯春琼等.细胞凋亡的MTT染色法检测.第一军医大学学报.2002;22(3):262-263.
    13 张胜本等,主编.肿瘤化学治疗敏感性与抗药性.四川:四川科学技术出版社,1995.55
    14 Lopez-saez JF,dela Torre C,Pincheier J,et al.Cell proliferation and cancer.Histol Histopathol.1998;13(4):1197-1214
    15 曾益新主编.肿瘤学.第1版.北京:人民卫生出版社,1999:107-112
    16 Hartwell LH,Kastan MB.Cell cycle control and cancer.Science.1994;266:1821-1828
    17 Nasmyth K.Viewpoint:putting the cell cycle in order.Science.1996;274:1643-1645
    18 Evans DL,Dive C.Effects of cisp latin on the induction of apotosis in proliferating hepatoma cells and non pro-liferating immature thymocytes.Cancer Res.1993,53:2133.
    19 Collins K,Jacks,T,Paveltich NP.The cell cycle and cancer.Proc Natl Acad Sci USA.1997;94:2776-2778
    20 Yoshihito Nakagawa,Yukihiro Akao.Fhit protein inhibits cell growth by attenuating the signaling mediated by nuclear factor-κB in colon cancer cell lines Experimental cell research.2006;312:2433-2442
    21 Witek-awada B,KojA1.Regulation of expression of Stromyelysin-1 by proinflammatory cytokines in mouse brain astrocytes.Physiol Pharmacol,.2003,;54(4):489-534
    22 Fan X1 M.ethvlalvoxal-bovine serum album in stimulates tumor necrosis factor alpha secretion.Arch Biochem Biophys.2003,;409(2):274-286
    23 Li-Weber M.,Palfi K,Giaisi M,et,al.Dual role of the anti-inflammatory sesquiterpene lactone:regulation of life and death by parthenolide.Cell Death Differ.2005;12:408-409;.
    24 Cory AH,Cory JG,Augmentation of apoptosis responses in p53-deficient L1210 cells by compounds directed at blocking NFkappaB activation.Anticancer Res.2001Nov-Dec;21(6A):3807-3811
    25 Wong YF,Wong WSF,Chen XG,et al.Evaluation of trichos anthin agains txenografts of human choriocarcinoma cells.Med Sci Res,.1990;18(1):95-96
    26 Siyuan Zhang,Choon-Nam Ong,Han-Ming Shen,Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells.Cancer Letters.2004;208:143-153
    27 Susan J,Zunino a,Jonathan M.et,al.Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells, Cancer Letters.2007;254:119-127
    
    28 S. Zhang, C.N. Ong, H.M. Shen, Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells, Cancer Lett. 2004 May 28;208(2):143-53.
    
    29 J. Wen, K.R. You, S.Y. Lee, et al, Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide, J. Biol. Chem. 2002 ;277 :38954-38964.
    
    30 Antonella Miglietta, Francesca Bozzo, Ludovica Gabriel,et al. Microtubule-interfering activity of parthenolide. Chemico-Biological Interactions.2004;149 :165-173
    
    31 Siyuan Zhang, Choon-Nam Ong, Han-Ming Shen. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Letters.2004;208:143-153
    
    32 J.J. Hoffmann, SJ. Torrance, R.M. Widehopf, J.R. Cole, Cytotoxic agents from Michelia champaca and Talaumaovata: parthenolide and costunolide, J. Pharm. Sci. 1977 ;66 :883-884
    
    33 N.M. Patel, S. Nozaki, N.H. Shortle, et al. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide, Oncogene .2000;19 :4159-4169
    
    34 Yang SH, Chien CM, LuMC, et al. Cardiotoxin III induces apoptosis in K562 cells through a mitochondrial -mediated pathway. Clin Exp Pharmacol Physiol. 2005;32 (7): 515 - 520
    
    35 Adrain C ,Martin SJ . The mitochondrial apoptosome : a killer unleashed by the cytochrome seas. Trends Biochem .2001;26 (6) :290-297
    
    36 Ambrina E, Alonso R, AlcaldeM, et al. Calcium influx through receptor - operated channel induces mitochondria- triggered paraptotic cell death . J Biol Chem.2003;278 (16) : 14134 -14145
    
    37 Zamzami N ,Marchetti P ,Castedo M ,et al . Sequential reduction of mitochondrialt ransmembrance potential and generation of reactive oxygen species in early programmed cell death. J Exp Med .1995;182 (20) :367-377
    
    38 Bunting J R,Phan TV,Leamali E,et al . Fluorescent cationic probes of mitochondria : metrics and mechanism of interaction. Biophys J.1989;56 (5) :979-993
    39 Rajpurohitr ,Mansfieldk,Ohyamak,et al . Chondrocyte death is linked to development of amitochondriamembrane permeability transition in thegrowth plate. J Cell Physiol .1999; 179 (3) :287 - 296
    
    40 Kurdi M, Bowers MC, Dado J,et al. Parthenolide induces a distinct pattern of oxidative stress in cardiac myocytes. Free Radic Biol Med. 2007 Feb 15;42(4):474-481
    
    41 Zunino SJ, Ducore JM, Storms DH. Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells. Cancer Lett. 2007 Aug 28;254(1):119-127.
    
    42 Adam S,Lech W,et al. Mitochondria as a pharmacological target. Pharmacol Rev.2002; 54(1):101-127
    
    43 GorczycaW,Gong J,et al. The cell cycle related differences in susceptibility of HL260 cells to apoptosis induced by various antitumor agents. Cancer Res,. 1993;53: 3186-3192
    
    44 Dive C, Hickman JA. Drug-target interactions: only the first step in the commitment to aprogrammed cell death. Br J Cancer.1991;64:192-196.
    
    45 Itoha N, Yonehara S, et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell.1991;66:233-243.
    
    46 Shimizu S,Eguchi Y,et al. Prevention of hypoxia induced cell death by Bcl-2 and Bcl-xl. Nature.1995;374: 811-813.
    
    47 Rodriguez-Nieto S,Zhivotovsky B. Role of alterations in the apoptotic machinery in sensitivity of cancer cells to treatment. Curr Pharm Des.2006;12 (34):4411-4425.
    
    48 S.P. Hehner, T.G. Hofmann, W. Droge, et al, The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kB by targeting the IκB kinase complex. J. Immunol. 1999;163 :5617-5623.
    
    49 Y. Nakagawa, M. Iinuma, N. Matsuura, et al. A potent apoptosis-inducing activity of a sesquiterpene lactone, arucanolide, in HL60 cells:a crucial role of apoptosis-inducing factor, J. Pharmacol. Sci.2005; 97:242-252.
    
    50 Ledda Columbano GM, Coni P, Curto M, et a 1. Induction of two different models of cell death, apoptosis and necrosis in rat liver after a single dose of thioacetamide. Am J Pathal.1991; 139 (50):1099-1109
    
    51 Liotta LA. Tumor invasion and metastasis role of the extracellular matrix :Rhoads memorial award lecture. Cancer Res.l986;46 (1) :127
    
    52 Woodhouse EC,Chuanqui RP,Liotta LA. General mechanisms of metastasis. Cancer.1997;80(8 suppl):1529-1537
    
    53 Aznavoorian S,Stetler-Stevevson WG,Liotta LA. Molecular aspects of tumor cell invasion and metastasis. Cancer.1993;71(4):1368-1383
    
    54 Bourguignon LY,Gilad E,Rothman K,et al. Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling,leading to actin binding,Elk-l/estrogen receptor transcriptional activation,and ovarian cancer progression.J Bio Chem.2005;280(12): 11961-11972
    
    55 Briggs MW,Li Z,Sacks DB,et al. IQGAP1-mediated stimulation of transcriptional co-activation by beta-catenin is modulated by calmodulin.J Biol Chem.2002;277(9):7453-7465
    
    56 Mueller L, Goumas FA, Affeldt M,et al. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol. 2007;Nov;171(5):1608-1618
    
    57 Ichiki T, Jougasaki M, Setoguchi M,et al. Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells. Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H750-63
    
    58 Oka D, Nishimura K, Shiba M, et al. Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-kappa B. Int J Cancer. 2007 Jun 15;120(12):2576-2581
    
    59 Udagawa K, Yasumitsu H, Esaki M,et al. Subcellular localization of PP5/TFPI-2 in human placenta: a possible role of PP5/TFPI-2 as an anti-coagulant on the surface of syncytiotrophoblasts. Placenta. 2002 Feb-Mar;23(2-3):145-153
    
    60 Rollin J, Iochmann S, Bléchet C,et al. Expression and methylation status of tissue factor pathway inhibitor-2 gene in non-small-cell lung cancer. Br J Cancer. 2005 Feb 28; 92(4):775-783
    61 Hubé F, Reverdiau P, Iochmann S,et al. Demonstration of a tissue factor pathway inhibitor 2 messenger RNA synthesis by pure villous cytotrophoblast cells isolated from term human placentas. Biol Reprod. 2003 May;68(5):1888-1894
    
    62 Sierko E, Wojtukiewicz MZ, Kisiel W. The role of tissue factor pathway inhibitor-2 in cancer biology. Semin Thromb Hemost. 2007 Oct;33(7):653-659
    
    63 Becker J, Volland S, Noskova I,et al. Keratoepithelin reverts the suppression of tissue factor pathway inhibitor 2 by MYCN in human neuroblastoma: a mechanism to inhibit invasion. Int J Oncol. 2008 Jan;32(1):235-240
    
    64 Sato N, Parker AR, Fukushima N,et al. Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene. 2005 Jan 27;24(5):850-858
    
    65 George J, Gondi CS, Dinh DH,et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis. Clin Cancer Res. 2007 Jun 15;13(12):3507-3517
    
    66 F. Hube, P. Reverdiau, S. Iochmann,et al. Characterization and functional analysis of TFPI-2 gene promoter in a human choriocarcinoma cell line. Thrombosis Research 2003; 109 :207-215
    
    67 Yamamoto Y,Gaynor RB. Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med, 2001;1(3):287-296
    
    68 Chen F, Gastranova V, Shi XL. New insights into the role of nuclear factor kappa B in cell growth regulation. Am J Pathol,2001;159 (2): 387-397
    
    69 Arlt A, Schafer H. NFkappaB and chemoresistance in solid tumors. Int J Clin Pharmacol Ther, 2002,;40 (8): 336-347
    
    70 Lan J, Xiong YY, Lin YX,et al. Helicobacter pylori infection generated gastric cancer through p53-Rb tumor-suppressor system mutation and telomerase reactivation. World J Gastroenterol 2003;9:54-58
    
    71 Liu JR, Chen BQ, Yang YM,et al. Effect of apoptosis on gastric adenocarcinoma cell line SGC-7901 induced by cis-9, trans-11-conjugated linoleic acid. World J Gastroenterol 2002;8:999-1004
    72 Zhao AG, Zhao HL, Jin XJ, et al. Effects of Chinese Jianpi herbs on cell apoptosis and related gene expression in human gastric cancer grafted onto nude mice. World J Gastroenterol 2002;8:792-796
    
    73 Reed JC,Bcl-2 and regulation of programmed cell death. J Cell Biol. 1994 Jan; 124(1-2):1-6.
    
    74 KennedyMM,Lamb D ,King G,et al. Cell proliferation ,cell loss and expression of bcl-2 and p53 in hunman pulmonary neoplasms.Br J Cancer ,1997;75(4) :545-547
    
    75 Kuwana T, Newmeyer DD. Bcl - 2 family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol ,2003;15(6): 691 -699
    
    76 Huang X, Zhai D , Huang Y. Study on the relationship between calcium - induced calcium release from mitochondria and PTP opening. Mol Cell Biochem, 2000;213 (1) :29 -35
    
    77 Kroemer G,Zamzami N ,Susin SA. Mitochondrial control of apoptosis. Immunol Today,1997;18(1) :44-51
    
    78 Oltvai ZN ,Milliman CL ,Konsmeyer SJ .Bcl-2 ,heterodimerizes in vivo with a conserved homolog ,Bax ,that accelerates programmed cell death. Cell ,1993; 74(4) :609-619
    
    79 Itamochi H , Yamasaki F , sudo T, et al. Keduction of radiation-induced apoptosis by specific expression of bcl-2 in normal cells .Cancer Gene Therapy, 2006; 13 :451-459
    
    80 Zamzami N, Brenner C, Marzo I, et al.Subcelluar and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 1998;16:2265-2282
    
    81 Helen L ,Hong Y, George F. Cell proliferation ,Apoptosis , bcl-2 and bax expression in obstructed opossum early metanephroi. J Urol ,2000;164(8) :511-517
    
    82 Reed J C. Double identity for protein of the Bcl- 2 family. Nature, 1997;387 (6635): 773-776
    
    83 Hopkin - Donaldson S, Cathomas R, Simoes -Wust A P, et al.Induction of apop tosis and chemosensitization cells by bcl-2 and bcl- xL antisense treatment.Int J Cancer, 2003; 106 (2): 160-166
    
    84 Nakagawa Y, Iinuma M, Matsuura N, et al. A potent apoptosis-inducing activity of a sesquiterpene lactone, arucanolide, in HL60 cells: a crucial role of apoptosis-inducing factor. J Pharmacol Sci. 2005 Feb;97(2):242-52.
    
    85 Roopashree S. Dwarakanath , Saurabh Sahar , et al. Regulation of monocyte chemoattractant protein-1 by the oxidized lipid,13-hydroperoxyoctadecadienoic acid, in vascular smooth muscle cells via nuclear factor-kappa B (NF-kB). Journal of Molecular and Cellular Cardiology, 2004;36: 585-595
    
    86 Starenki DV , Namba H , Saenko VA , et al. Induction of thyroid cancer cell apoptosis by a novel NF-kB inhibitor ,dehydroxymethylepoxyquinomicin . Clin Cancer Res ,2004; 10(20) : 6821-6829
    
    87 Catz SD , Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene, 2001 ,20(50) :7342-7351.
    
    88 Viatour P , Bentires-Alj M, Chariot A , et al. NF- kappa B2/p100 induces Bcl-2 expression . Leukemia, 2003 ,17 (7):1349-1356
    
    89 DeLuca C, Kwon H, Pelletier N,et al. NF-kappaB protects HIV-1-infected myeloid cells from apoptosis. Virology. 1998 Apr 25;244(1):27-38
    
    90 Herrmann JL, Beham AW, Sarkiss M,et al. Bcl-2 suppresses apoptosis resulting from disruption of the NF-kappaB survival pathway. Exp Cell Res. 1997 Nov 25;237(1):101-109
    
    91 Heon Seo K, Ko HM, Kim HA, et al. Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kappaB activation. Cancer Res. 2006 May 1;66(9):4681-4686
    
    92 Mohamed Bentires-Alj, Emmanuel Dejardin, Patrick Viatourl,et al. Inhibition of the NF-kB transcription factor increases Bax expression in cancer cell lines. Oncogene 2001;20:2805 -2813
    
    93 Akita K, Kawata S , Shimotohno K. p21WAFl modulates NF-kappaB signaling and induces anti-apoptotic protein Bcl-2 in Tax-expressing rat fibroblast. Virology, 2005;332 (1) :249-257
    
    94 R. Sobota, M. Szwed, A. Kasza, et al,Parthenolide inhibits activation of signal transducers and activators of transcription (STATs) induced by cytokines of the IL-6 family, Biochem. Biophys. Res. Commun. 2000;267 :329-333
    
    95 Aggarwal BB,Sethi G,Ahn KS,et al. Targeting signal-transducer-and- activator-of- transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci. 2006 Dec;1091:151-169
    96 Kim JH, Liu L, Lee SO,et al. Susceptibility of cholangiocarcinoma cells to parthenolide- induced apoptosis. Cancer Res. 2005 Jul 15;65(14):6312-6320
    
    97 Chen ZC, Li QB, Shao J,et al. Proliferation inhibiting and apoptosis inducing effects of parthenolide on human multiple myeloma cells. Zhonghua Yi Xue Za Zhi. 2006 Jul 25;86(28):1993-1996
    
    98 Steele AJ, Jones DT, Ganeshaguru K,et al. The sesquiterpene lactone parthenolide induces selective apoptosis of B-chronic lymphocytic leukemia cells in vitro. Leukemia. 2006 Jun;20(6):1073-1079
    
    99 Fulda S , Kufer M U , Meyer E , et al . Sensitization for death receptor- or Drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene , 2001;20(41): 5865-5877
    
    100 Hopkins-Donaldson S , Bodmer J L , Bourloud K B , et al . Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res , 2000;60(16): 4315 -4319
    
    101 Seol D W, Li J , Seol M H , et al. Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand ( TRAIL) : caspase-8 is required for TRAIL-induced apoptosis . Cancer Res , 2001;61 (3) :1138 -1143
    
    102 Chaudhary PM, Eby MT, Jasmin A,et al. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene. 2000 Sep 14;19(39):4451-4460
    
    103 Oskar W. Rokhlin, Natalya V,et al. Caspase- 8Activation IsNecessary ButNot Sufficient forTumorNecrosis Factor-RelatedApoptosis-Inducing Ligand (TRAIL)-Mediated Apoptosis inthe ProstaticCarcinomaCell Line LNCaP. The Prostate 2002;52:1-11
    
    104 Yang Xu, Shani Bialik, Brett E,et al. NF-kB inactivation converts a hepatocyte cell line TNF-a response from proliferation to aoptosis. Am J Physiol Cell Physiol 1998,275:1058-1066
    
    105 Wang CY, Mayo MW, Komeluk RG, et al.NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and C-IAP2 to suppress caspase-8 activation. Science, 1998; 281 (5383):1680-1683
    106 Qin Y, Auh S, Blokh L,et al. TNF-alpha induces transient resistance to Fas-induced apoptosis in eosinophilic acute myeloid leukemia cells. Cell Mol Immunol. 2007 Feb;4(1):43-52.
    
    107 Rath PC, Aggarwal BB. TNF-induced signaling in apoptosis. J Clin Immunol. 1999 Nov;19(6):350-364
    
    108 Bradham CA, Qian T, Streetz K, et al. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 1998;18:6353-6364
    
    109 Xu Y, Bialik S, Jones BE,et al. NF-kB inactivation converts a hepatocyte cell line TNF-a response from proliferation to apoptosis.Am J Physiol Cell Physiol 1998(275): C1058-C1066
    
    110 Chaudhary PM, Eby MT, Jasmin A,et al. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene. 2000 Sep 14;19(39):4451-4460
    
    111 Siyuan Zhang, Choon-Nam Ong, Han-Ming Shen. Involvement of proapoptotic Bcl-2 family members in parthenolide-induced mitochondrial dysfunction and apoptosis. Cancer Letters,2004;211:175-188
    1 Yamamoto Y,Gaynor RB.Role of the NF-kappaB pathway in the pathogenesis of human disease states.Curr Mol Med,2001 Jul;1(3):287-296
    2 吴丽娟,蒋建新,朱佩芳,等.NF-κB信号转导途径研究进展.国外医学临床生物化学与检验学分册,2002,23(5):260-262
    3 Read MA,Whitley MZ,Williams AJ,et al.NF-kappa B and I kappa B alpha:an inducible regulatory system in endothelial activation..J Exp Med,1994,179(2):503-512
    4 涂刚,姚榛祥,董蒲江.核因子κB在人乳腺癌组织中的表达及其意义.中国普通外科杂志,2003,12(5):351-353.
    5 Loercher A,Lee TL,Ricker JL,et al.Nuclear factor-kappaB is an important odulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma.Cancer Res,2004,64(18):6511-6523
    6 Dejardin E,Deregowski V,Chapelier M,et al.Regulation of NF-kappaB activity by I kappaB-related proteins in adenocarcinoma cells.Oncogene,1999,22;18(16):2567-2577
    7 王菊岩,刘舒颖,吴康英,等.人胃癌细胞中NF-κB和VEGF的定量表达.海南医学,2006,17(3):11-13
    8 Lan J,Xiong YY,Lin YX,et al.Helicobacter pylori infection generated gastric cancer through p53-Rb tumor-suppressor system mutation and telomerase reactivation.World J Gastroenterol,2003;9(1):54-58
    9 Liu JR,Chen BQ,Yang YM,et al.Effect of apoptosis on gastric adenocarcinoma cell line SGC-7901 induced by cis-9,trans-11-conjugated linoleic acid.World J Gastroenterol,2002Dec;8(6):999-1004
    10 Zhao AG,Zhao HL,Jin XJ,et al.Effects of Chinese Jianpi herbs on cell apoptosis and related gene expression in human gastric cancer grafted onto nude mice.World J Gastroenterol,2002;8(5):792-796
    11 Zamzami N,Brenner C,Marzo I,et al.Subcelluar and submitochondrial mode of action of Bcl-2-like oncoproteins.Oncogene,1998 Apr 30;16(17):2265-2282
    12 Starenki DV,Namba H,Saenko VA,et al.Induction of thyroid cancer cell apoptosis by a novel nuclear factor kappaB inhibitor ,dehydroxymethylepoxyquinomicin . Clin Cancer Res ,2004 , 10(20) :6821-6829
    
    13 Catz SD , Johnson JL. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene , 2001 ,20(50) :7342-7351
    
    14 Viatour P , Bentires-Alj M, Chariot A , et al. NF- kappa B2/p100 induces Bcl-2 expression . Leukemia, 2003 ,17 (7) :1349-1356
    
    15 Akita K, Kawata S , Shimotohno K. p21WAFl modulates NF-kappaB signaling and induces anti-apoptotic protein Bcl-2 in Tax-expressing rat fibroblast. Virology. 2005 Feb 5;332(1):249-257
    
    16 Ikehara SK, Ikehara Y, Matsuo K,et al. A polymorphism of C-to-T substitution at -31 IL1B is associated with the risk of advanced gastric adenocarcinoma in a Japanese population. J Hum Genet.2006;51(11):927-933
    
    17 Chang MS, Lee HS, Jung EJ,et al. Cell-cycle regulators, bcl-2 and NF-kappaB in Epstein-Barr virus-positive gastric carcinomas. Int J Oncol. 2005 Nov;27(5):1265-1272
    
    18 Luca M , Huang S , Gershenwald J E , et al. Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol. 1997 Oct;151(4):1105-1113
    
    19 Anderson IC ,Mari SE .Broderick RJ . The angiogenic factor interleukin-8 is induced in non-small lung cancer/pulmonary fibroblast cocultures . Cancer Res, 2000 Jan 15;60(2): 269-272
    
    20 Ohyauchi M, Imatani A, Yonechi M. et al. The polymorphism interleukin 8 -251 A/T influences the susceptibility of Helicobacter pylori related gastric diseases in the Japanese population. Gut,2005 Mar;54(3):330-335
    
    21 Savage SA, Abnet CC, Haque K,et al. Polymorphisms in interleukin -2, -6, and -10 are not associated with gastric cardia or esophageal cancer in a high-risk Chinese population. Cancer Epidemiol Biomarkers Prev ,2004 Sep;13(9):1547-1549
    
    22 Lu W, Pan K, Zhang L,et al. Genetic polymorphisms of interleukin (IL)-IB, IL-1RN, IL-8, IL-10 and tumor necrosis factor {alpha} and risk of gastric cancer in a Chinese population. Carcinogenesis, 2005 Mar;26(3):631-636
    
    23 Kato M , Tatsuta H , Okada K, et al. Comparative effect of theophylline and aminophylline on theophylline blood concentrations and peripheral blood eosinophils in patients with asthma . Drugs Exp Clin Res ,2001 ,27 (2) :83-88
    
    24 Hirata Y, Maeda S, Ohmae T,et al. Helicobacter pylori induces IkappaB kinase alpha nuclear translocation and chemokine production in gastric epithelial cells. Infect Immun,2006 Mar;74(3):1452-1461
    
    25 Sano H ,Kawahito Y,Wilder RL ,et al . Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res,1995 Sep 1;55(17):3785-3789
    
    26 Ali-Fehmi R, Morris RT, Bandyopadhyay S, et al. Expression of cyclooxygenase-2 in advanced stage ovarian serous carcinoma: correlation with tumor cell proliferation, apoptosis, angiogenesis, and survival. Am J Obstet Gynecol, 2005 Mar;192(3):819-825
    
    27 Sheehan KM, O'Connell F, O'Grady A, et al. The relationship between cyclooxygenase-2 expression and characteristics of malignant transformation in human colorectal adenomas. Eur J Gastroenterol Hepatol,2004 Jun;16(6):619-625
    
    28 Tatsuguchi A, Matsui K, Shinji Y, et al. Cyclooxygenase-2 expression correlates with angiogenesis and apoptosis in gastric cancer tissue. Hum Pathol, 2004 Apr;35(4):488-495
    
    29 McCarthy C J ,Carofford L J , Greenson J ,et al. Cyclooxygenase-2 expression in gastric antral mucosa before and after eradication of Helicobacter pylori infection. Am J Gastroenterol, 1999 May;94(5):1218-1223
    
    30 Ristimaki A ,Honkanen N ,J ankala H ,et al. Expression of cyclooxygenase-2 in human gastric carcinoma.. Cancer Res, 1997 Apr 1;57(7):1276-1280
    
    31 Van Rees BP, Saukkonen K, Ristimaki A, et al. Cyclooxygenase- 2 expression during carcinogenesis in the human stomach. J Pathol,2002 Feb;196(2):171-179
    
    32 Wu CY, Wang CJ, Tseng CC. et al. Helicobacter pylori promote gastric cancer cells invasion through a NF-kappaB and COX-2-mediated pathway. World J Gastroenterol,2005 Jun 7;11(21):3197-3203
    
    33 Konturek PC, Rembiasz K, Konturek SJ, et al. Gene expression of ornithine decarboxylase, cyclooxygenase- 2, and gastrin in atrophic gastric mucosa infected with Helicobacter pylori before and after eradication therapy. Dig Dis Sci,2003 Jan;48(1):36-46
    
    34 Huang L, Zhang KL, Li H, et al. Infrequent COX-2 expression due to promoter hypermethylation in gastric cancers in Dalian, China. Hum Pathol,2006 Dec;37(12):1557-1567, Epub 2006 Aug 10
    
    35 Uefuji K,Ichikura T ,Mochizuki H. Cyclooxygenzse-2 compression is related to prostaglandin biosynthesis and angiogenasis in human gastric cancer. Clin Cancer Res,2000 Jan;6(1): 135-138
    
    36 Tsujii M ,Kawano S ,DuBois RN ,et al. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential.. Proc Natl Acad Sci U S A, 1997 Apr 1;94(7):3336-3340
    
    37 Lim JW, Kim H, Kim KH.. Expression of Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem, 2002 Nov 29;277(48):46093-46100. Epub 2002 Sep 24
    
    38 Lim JW, Kim H, Kim KH. Nuclear factor-kappa B regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest,2001 Mar;81(3):349-360
    
    39 Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest, 2001 Jan;107(1):7-11
    
    40 Chen ZC, Li QB, Shao J,et al. Proliferation inhibiting and apoptosis inducing effects of parthenolide on human multiple myeloma cells. Zhonghua Yi Xue Za Zhi. 2006 Jul 25;86(28):1993-1996
    
    41 Steele AJ, Jones DT, Ganeshaguru K,et al. The sesquiterpene lactone parthenolide induces selective apoptosis of B-chronic lymphocytic leukemia cells in vitro. Leukemia. 2006 Jun;20(6):1073-1079
    
    42 Fulda S , Kufer M U , Meyer E , et al . Sensitization for death receptor- or Drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene , 2001, 20 (41): 5865-5877.
    
    43 Hopkins-Donaldson S , Bodmer J L , Bourloud K B , et al . Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res , 2000 , 60(16) : 4315 -4319
    
    44 Seol D W, Li J , Seol M H , et al. Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand ( TRAIL) : caspase-8 is required for TRAIL-induced apoptosis . Cancer Res, 2001, 61 (3) :1138-1143
    
    45 Chaudhary PM, Eby MT, Jasmin A,et al. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene. 2000 Sep 14;19(39):4451-4460
    
    46 Oskar W. Rokhlin, Natalya V,et al. Caspase- 8 activation is necessary but not sufficient for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in the prostatic carcinoma cell Line LNCaP. The Prostate 2002,52:1-11
    
    47 Yang Xu, Shani Bialik, Brett E,et al. NF-kB inactivation converts a hepatocyte cell line TNF-a response from proliferation to aoptosis. Am J Physiol Cell Physiol 1998,275:1058-1066
    
    48 Wang CY, Mayo MW, Komeluk RG, et al.NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and C-IAP2 to suppress caspase-8 activation. Science, 1998, 281 (5383) :1680-1683
    
    49 Qin Y, Auh S, Blokh L,et al. TNF-alpha induces transient resistance to Fas-induced apoptosis in eosinophilic acute myeloid leukemia cells. Cell Mol Immunol. 2007 Feb;4(1):43-52
    
    50 Rath PC, Aggarwal BB. TNF-induced signaling in apoptosis. J Clin Immunol. 1999 Nov;19(6):350-364
    
    51 Bradham CA, Qian T, Streetz K, et al. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 1998(18): 6353-6364
    
    52 Xu Y, Bialik S, Jones BE,et al. NF-kB inactivation converts a hepatocyte cell line TNF-a response from proliferation to apoptosis.Am J Physiol Cell Physiol 1998(275): 1058-1066
    
    53 Chaudhary PM, Eby MT, Jasmin A,et al. Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene. 2000 Sep 14; 19(39):4451-4460
    
    54 Siyuan Zhang, Choon-Nam Ong, Han-Ming Shen. Involvement of proapoptotic Bcl-2 family members in parthenolide-induced mitochondrial dysfunction and apoptosis. Cancer Letters,2004(211) 175-188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700