用户名: 密码: 验证码:
不同氮源配比对小麦生长发育及籽粒产量和品质的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以强筋小麦豫麦34为供试品种,2005-2008年先后采用根室、根箱和大田种植方式,在等养分条件下研究不同氮源配比对小麦根系生长与消亡、根系空间分布、土壤生物活性、冠层光分布特性、叶片光合特性、氮肥利用效率以及产量和品质的影响,以期为应用不同氮源配比调控专用小麦产量和蛋白质含量与组分提供理论和实践依据。
     1、采用根系分析技术,研究了小麦根系参数在0-140cm土层中的分布状况,并利用大田随机区组设计研究了等养分条件下尿素、鸡粪及其不同配施比例(75∶25,50∶50,25∶75)对小麦根系参数空间分布特性及地上部绿叶面积的影响。结果表明,小麦的根长密度,在0-60cm土层中随着距麦行位置的外移而逐渐减小,60-140cm的土层中,随着距麦行距离的增大,根长密度先降后升,在0-50cm土层中冬小麦的根长密度均随生育时期的后移而逐渐升高,50-140cm土层中,随生育时期的推进根长密度的变化趋势因土层不同而有差异;根直径均随土层的加深而呈现出先减小后增大的趋势,整个生育时期的根直径在80-90cm土层中出现一个峰值;根系生长量和死亡量均随土层的加深而呈逐渐下降的趋势;根系周期生长量周转和死亡量周转随土层深度的加大均先升高后降低。
     不同氮源配比能增大小麦不同土层中的根长密度,并以尿素和鸡粪等量配施处理最大且均显著高于其它处理;不同氮源配比有利于小麦根系直径的增粗;不同氮源等量配施处理下根系生长量与死亡量均较对照和尿素处理显著增大;不同氮源等量配施处理还显著提高周期平均根长密度、生长量和死亡量周转。
     2、采用根箱方法,研究了尿素、鸡粪及其等量配施(50∶50)对小麦根系生长与衰老进程及土壤硝态氮含量的影响。结果表明,施用鸡粪能显著提高小麦的根重密度和根体积密度,各处理的根重密度和根体积密度在麦行内与麦行间均表现出随土层的加深而显著降低,随生育时期的后移先增大后减小,并于开花期达最大;随施用鸡粪比例的增加,根条数先升高后降低,多以鸡粪与尿素等量配施处理为最高;根系活力在孕穗期达到最大值,并均随土层的加深而逐渐降低,处理之间相比多以鸡粪与尿素等量配施处理为最高;各土层中根系SOD活性在整个生育时期均表现为:鸡粪与尿素等量配施处理>鸡粪处理>尿素处理;根系MDA含量在整个生育时期均表现为:尿素处理>鸡粪处理>鸡粪与尿素等量配施处理。
     土壤硝态氮含量在0-20cm土层中以鸡粪与尿素等量配施处理最高,鸡粪处理次之,尿素处理最小,在20-60cm土层中,鸡粪处理及配施处理在冬前均比尿素处理高,从孕穗期开始,鸡粪与尿素等量配施处理在20-60cm土层中的硝态氮含量均低于尿素处理和鸡粪处理,特别是在40-60cm的土层中均显著或极显著地低于尿素处理和鸡粪处理。
     3、通过大田随机区组试验,研究了尿素、鸡粪及其不同配施比例(75∶25,50∶50,25∶75)对麦田土壤呼吸速率及根际土壤生物活性的影响。结果表明,随鸡粪施用比例的增加,土壤呼吸速率在冬前和返青期逐渐升高,以鸡粪处理最大,拔节至成熟期土壤呼吸速率先升高后降低,并以鸡粪与尿素等量配施处理为最高,在开花至成熟期,鸡粪与尿素等量配施处理均较对照和尿素处理呈差异显著性增加;土壤含水量和土壤温度均随鸡粪施用比例的增大呈先升后降趋势,且以鸡粪与尿素等量配施处理为最高;真菌数量在冬前与返青期以鸡粪与尿素配施比例为75∶25的处理最大,孕穗至成熟期均以鸡粪与尿素等量配施最高;在拔节、灌浆和成熟期,鸡粪与尿素等量配施的细菌数量均极显著地高于其它处理;放线菌数量随鸡粪施用比例的增加在冬前与返青期逐渐增大,拔节至成熟均先升后降;土壤脲酶活性在冬前至拔节期鸡粪与尿素按75∶25配施处理呈极显著增强,孕穗至成熟期均以鸡粪与尿素等量配施处理最高;转化酶活性冬前至孕穗期和灌浆期均以鸡粪与尿素配施比例为75∶25的处理最高,且与其它处理间差异极显著;多酚氧化酶活性除开花期以鸡粪与尿素按75∶25配施的处理最强外,其它时期均以鸡粪与尿素等量配施处理最高;土壤呼吸强度与其它土壤指标之间的相关分析结果显示,土壤呼吸速率与土壤温度的相关性最强,在各处理下均达显著或极显著正相关关系,而施肥处理下土壤呼吸速率与土壤放线菌数量之间均呈极显著正相关关系。
     4、采用大田试验,研究了尿素、鸡粪及其不同配施比例(75∶25,50∶50,25∶75)对小麦氮效率的影响。结果表明,随着鸡粪施用比例的增加,小麦植株氮及籽粒氮含量均呈先升后降的趋势,均以鸡粪与尿素按25∶75配施的处理在冬前最高,其它生育时期,以鸡粪与尿素等量配施(50∶50)最高;不同氮源配比能提高氮肥表观利用率和氮肥农学利用率,却不利于提高氮素生产效率;不同氮源配比能显著提高开花期植株氮积累量和成熟期秸秆氮积累量,并显著提高氮转运效率,且均以A_3处理为最大。
     5、为揭示不同氮源配比对豫麦34冠层光分布特征、产量和蛋白质含量的影响。本文采用大田切片法,研究了尿素、鸡粪及鸡粪和尿素配施方式下,豫麦34的冠层结构、产量构成及籽粒蛋白质含量的变化。结果表明:施用鸡粪有利于提高豫麦34旗叶的叶绿素含量(SPAD值),促进群体光合有效辐射(PAR)的提高,增大小麦群体的平均叶倾角(MLA),降低群体的冠层开度(DIFN),提高光能利用效率和小麦群体的叶面积指数(LAI),有利于经济系数和籽粒蛋白质含量的改善。
     6、在大田条件下,研究了尿素、鸡粪及其不同配施比例(75∶25,50∶50,25∶75)对小麦不同叶位叶片光合特性的影响。结果表明,施肥能显著提高小麦各生育时期单株绿叶面积、SPAD值、净光合速率、气孔导度、蒸腾速率、气孔限制值和水分利用率,降低胞间CO_2的浓度,并随鸡粪施用比例的增加,除胞间CO_2浓度呈先降低后升高以外,其它指标均呈先升后降的趋势,多以鸡粪与尿素等量配施处理为最高。
     7、通过大田试验,研究了尿素、鸡粪及其不同配施比例(75∶25,50∶50,25∶75)对籽粒产量与品质的影响。结果表明,与不施肥处理和尿素处理分别相比,不同氮源配比能显著提高小麦的根条数、有效分蘖数、穗粒数、穗粒重、经济产量、经济系数和蛋白质含量,且经济产量、经济系数、谷/醇蛋白比及清蛋白与谷蛋白含量均以鸡粪与尿素等量配施处理(A_3)为最高,多显著或极显著高于对照与尿素处理。综合考虑小麦产量、经济系数、蛋白组分等因素,各种施肥处理以鸡粪与尿素等量配施处理(A_3)最佳,配施处理的小麦籽粒产量最高,蛋白组分合理,品质最好。
Improving grain yield and quality of wheat cultivars is now one of the key subjects. Applying organic manure has the dual role in improving soil structure and providing nutrients to plant and has been one of important methods to regulate the growth and development of crop. Thus, root room experiments, root box experiments and field experiments were completed on a sandy loam at Henan Agricultural University Experimental Station during 2005-2008, respectively. A strong gluten wheat cultivar-Yumai 34 was used in experiments. Equal amounts of nutrient in different fertilizer types were urea, chicken manure or in mixed forms where the ratio of urea to chicken manure was 75:25, 50:50, 25:75, respectively. Effects were studied of different(or mixed) types of fertilizer on the growth and demise of wheat root, root spacial distribution, on rhizospheric microbial population and activity of soil enzymes, on light distribution characteristics of the canopy and leaf photosynthetic characteristics, on nitrogen utilization efficiency, on the grain yield and quality, in the hopes of providing academic and practical basis for application of different ratios of nitrogen source in controlling wheat yield, protein content and the composition of grain protein. Details are as follows:
     1, In use of the minirhizotron root monitor system, root parameters(root length density, root increment, root mortality and turnover) were studied in 0-140 cm soil layers, under different fertilizer treatments(urea, chicken manure, and their applying ratio 75:25, 50:50, 25:75). The result showed that root length density decreased gradually with the out shift of the location relative to wheat row, but in 0-60cm soil layers root length density declined firstly and ascended afterwards in 60-140cm layers, and in 0-50cm soil layers, the root length density gradually increased with the advance of growth stage, but in 50-140cm soil layers, root length density changes varied with the advance of Growing stages; root diameter showed an increasing trend with the decrease of the soil depth, and reached a peak value in the entire reproductive period in 80-90cm soil layer; root increment and mortality showed a trend of gradual decrease with the increase of the soil depth; the root periodic turnover of both increment and mortality became lower firstly and then increased with the increase of soil depth.
     Different ratios of nitrogen source can increase root length density in different soil layers, and the effect of different nitrogen source equivalent ratio treatment was the largest and significantly higher than other treatments; different ratios of nitrogen source was conducive to the enlargement of the diameter of wheat root; comparing with the contrast(A_0) and urea treatment(A_1), the equivalent ratio treatment of different nitrogen source had a significant increase in root incement and mortality; equivalent ratio treatment of different nitrogen source can also significantly increase the average root length density, and the turnover of root increment and mortality.
     2, With root box method, we had studied the effects of urea and chicken manure, and their equivalent fertilization(50:50) on wheat root growth, the aging course and nitrate content of soil. The results showed that application of chicken manure significantly increased the density of wheat root weight and root volume density, the root weight density and root volume density both in row and between the rows decreased significantly with the deepening of the soil, but decreased after an increase with the out shift of birth period, and became the largest in anthesis stage; with the increase of the proportion of organic manure application, root number increased firstly and decreased afterwards, the equivalent ratio treatment of different nitrogen source was the largest; root activity reached maximum value in booting stage, and gradually decreased with the increase of the soil depth, equivalent ratio treatment of different nitrogen source also produces the highest in comparison of other treatments; in different soil depth, changes of SOD activity of root in entire reproductive periods showed as follows: equivalent different ratios of nitrogen source > organic manure> urea; MDA content of root in the entire reproductive period showed as follows: urea > organic manure> equivalent different ratios of nitrogen source. Nitrate content of soil in the 0-20cm layers was the highest under the equivalent ratio treatment of different nitrogen source . In the 20-60cm soil layers, nitrate content was higher in the organic manure treatment or different ratios of nitrogen source treatments than urea treatment before winter. However, from the beginning of booting stage, nitrate-N content in the 20-60cm soil layers became lower in dealing with fertilization of equivalent different ratios of nitrogen source than urea treatment, especially significant lower in 40-60cm soil layers.
     3, Through field experiments in randomized block design, the effects of urea, chicken manure and the different fertilizers proportion(the ratio of urea to chicken manure was75:25,50:50,25:75 respectively) on soil respiration rate in wheat field and biological activity of rhizosphere soil were studied in this paper. The results showed that soil respiration rate gradually increased with the ratio increase of organic fertilization in Before wintering and returning green stages, and highest uder organic fertilization treatment, but first rised and reduced afterwards from jointing period to mature period, highest under equivalent ratio treatment of different nitrogen source . From anthesis stage to mature stage, the soil respiration rate increased significantly under equivalent ratio treatment of different nitrogen source in comparison with urea treatment; soil moisture and soil temperature increased firstly and decreased afterwards with the proportion increase of the organic manure application, highest uder under equivalent ratio treatment of different nitrogen source ; the number of fungi was largest under the treatment of proportion of 75:25 Before wintering stage and during the period of returning green, and largest under under equivalent ratio treatment of different nitrogen source in the period from booting to mature stage; in jointing stage, grain filling and mature period, the number of bacteria wass significant larger under under equivalent ratio treatment of different nitrogen source than other treatments; the number of actinomycetes gradually increased with the increased application of organic manure in before wintering and returning green stages, increased firstly and then decreased from jointing period to maturity period; soil urease activity significantly increased under the treatment of 75:25(urea to organic manure) ratio and stronger than other treatments; Zymose activity was strongest under the treatment of 75:25(urea to organic manure) ratio from Before wintering to grain filling stages, and the difference with other treatment was significant; with the same portion of fertilization, polyphenol oxidase activity was strongest in anthesis stage, but in other periods, strongest polyphenol oxidase activity under equivalent ratio treatment of different nitrogen source ; results of correlation analysis between soil respiration rate and other soil indicators showed that the relation of soil respiration rate and soil temperature was the strongest, showing significant or highly significant positive correlation, and soil respiration rate was significantly and positively correlated with the number of actinomycetes.
     4, In the use of field experiments, effects of urea, chicken manure and different ratios of urea to chicken manure (75:25,50:50,25:75) on nitrogen efficiency of wheat were studied in this paper. The results showed that grain nitrogen and nitrogen content increased firstly and then decreased with the increase of organic fertilizer application, highest value appeared under the treatment of 75:25(urea to organic manure) ratio in Before wintering stage, in the other Growing stages, highest value appeared uder the treatment of equivalent proportion (50:50); different ratios of nitrogen source treatments can increase nitrogen fertilizer use efficiency and agronomic nitrogen use efficiency, but not conducive to improving nitrogen use efficiency; the equivalent ratio treatment of different nitrogen source can significantly increase nitrogen accumulation in the Stalk during the anthesis and mature stages, and significantly improve the efficiency of nitrogen transfer, and under equivalent ratio treatment of different nitrogen source , the nitrogen transfer efficiency was highest.
     5, The study was conducted to reveal the effects of different ratios of nitrogen source on canopy architecture of Yumai34. Field experiments with the conventional "Layer upon layer cut method" were carried out to study the dynamics of canopy architecture characters of Yumai34 after application of urea, urea and chicken manure mixed ,and chicken manure alone. The results showed that chlorophyll content (SPAD value) in flag leaves, photosynthetically active radiation (PAR), mean leaf angle(MLA), and leaf area index( LAI) increased under chicken manure applied, while canopy openness(DIFN) behaved oppositely, and these were all helpful to improve the light utilizing efficiency. The mixed fertilizer treatment had a reasonable canopy architecture than others, which accounted for they had intercepted more solar radiation.
     6, Field experiments were conducted to clearify the effects of urea, chicken manure and different ratios of urea to chicken manure (75:25,50:50,25:75) on photosynthetic characteristics of different wheat leaves.This study indicated fertilization can significantly improve the leaf area per plant, SPAD value, net photosynthetic rate, stomatal conductance, transpiration rate, stomatal limitation value and water use efficiency in every reproductive period of wheat, and reduce intercellular CO_2 concentration, and with the increase of organic manure in application proportion, with the exception of intercellular CO_2 concentration which decreased firstly and then increased, other indicators all showed an inverse trend, and the effects of equivalent ratio treatment of different nitrogen source was most significantly.
     7, Field experiments were conducted to study the effects of urea, chicken manure and different ratios of urea to chicken manure (75:25,50:50,25:75) on wheat grain yield and quality. The results showed that in contrast to no fertilizer treatment and urea treatment respectively, different ratios of nitrogen source treatments can significantly increase the number of wheat root, the number of effective tillers, grains per spike, grain weight per spik, economic yield, Harvest index and protein content, furthermore, the economic yield, Harvest index, glutenin/gliadin ratio and albumin protein and glutenin content all reached the highest value under the equivalent ratio treatment of different nitrogen source , and more significantly or extremly significantly higher than treatments. Considering the general factors such as wheat grain yield, Harvest index, protein components, the equivalent ratio treatment of different nitrogen source was the best, and it had the highest wheat grain yield, a reasonable protein components and the best quality.
引文
[1]Bolan N S,Adriano D C.Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil[J].Journal of Environmental Quality,2003,32(1):120-128.
    [2]金维续,赵学蕴,王小平,等.厩肥与氮肥配合对蔬菜品质影响的研究[J].中国农业科 学,1985,(3):52-56.
    [3]韩秉进,陈渊,乔云发,等.连年施用有机肥料对土壤理化性状的影响[J].农业系统科学与综合开发,2004,20(4):294-296.
    [4]田蕴德.有机肥与氮磷化肥配施对豌豆长势及根腐病的影响[J].中国农业科学,1994,27(3):56-62.
    [5]赵满兴,周建斌,陈竹君,等.有机肥中可溶性有机碳、氮含量及其特性[J].生态学报,2007,27(1):397-403.
    [6]王旭东,张一平,吕家珑.不同施肥条件对土壤有机质及胡敏酸特性的影响[J].中国农业科学,2000,33(2):75-81.
    [7]张继宏,汪景宽,须湘成,等.覆膜栽培条件下有机肥对土壤氮和玉米生物量的影响[J].土壤通报,1990,21(4):162-166.
    [8]周建斌,李昌纬,赵伯善,等.长期施肥对娄土底土养分含量的影响[J].土壤通报,1993,24(1):21-23.
    [9]苏娜,杨丽娟,周崇俊,等.有机肥与氮肥配施对设施土壤中碱解氮含量的影响[J].安徽农业科学,2006,34(24):6542-6543.
    [10]张璐,沈善敏,廉鸿志,等.有机物料中有机碳、氮矿化进程及土壤供氮力研究[J].土壤通报,1997,28(2):71-73.
    [11]向春阳,马艳梅,田秀平.长期耕作培肥对白浆土磷组分及其有效性的影响[J].作物学报,2005,31(1):48-52.
    [12]李法运,高子勤.白浆土植物系统中营养元素的转移机制和有效性.Ⅱ.无机磷在白浆土中的转移[J].应用生态学报,1999,10(4):419-422.
    [13]张亚丽,沈其荣,曹翠玉.有机肥料对土壤有机磷组分及生物有效性的影响[J].南京农业大学学报,1998,21(3):59-63.
    [14]王林权,周春菊,王俊儒,等.鸡粪中的有机酸及其对土壤速效养分的影响[J].土壤学报,2002,39(2):268-275.
    [15]倪仲吾,孙羲,杨肖娥,等.不同氮源配比对土壤中磷的有效性和水稻生长及产量的影响[J].土壤通报,1990,21(4):167-169.
    [16]张继宏,汪景宽,须湘成,等.覆膜栽培条件下有机肥对玉米植株吸磷量和土壤磷组分的影响[J].土壤通报,1990,21(5):211-215.
    [17]王兴仁,毛达如,陈伦寿,等.我国北方石灰性潮土养分变化趋势和施肥对策[A].见:张福锁主编.养分资源综合管理[C].北京:中国农业大学出版社,2003,222-236.
    [18]周晓芬,张彦才,李巧云.有机肥料对土壤钾素供应能力及其特点研究[J].中国农业生态学报,2003,11(2):61-63.
    [19]刘义新,韩移旺,唐绅,等.结晶有机肥对土壤供钾能力及钾在烟株的分布特点[J].植 物营养与肥料学报,2004,10(1):107-109.
    [20]杨玉爱,何念祖,叶正铵.有机肥料对土壤锌、锰有效性的影响[J].土壤学报,1990,27(2):196-201.
    [21]宋光煜,赵红霞.有机肥对水稻根层生态的效应[J].土壤学报,1993,30(2):131-136.
    [22]魏朝富,陈世正,谢得体.长期施用有机肥对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995,32(2):159-166.
    [23]汪寅虎.长期定位条件下秸秆还田的综合效应研究[J].土壤通报,1994,25(7):53-56.
    [24]徐阳春,沈其荣.长期施用不同有机肥对土壤各粒级复合体中碳、氮、磷含量与分配的影响[J].中国农业科学,2000,33(5):65-71.
    [25]窦森,华士英.施用有机肥料对胡敏酸结构特征的影响—胡敏酸的1H-核磁共振波谱[J].土壤学报,1997,34(3):225-234.
    [26]林毅,梁颁捷,朱其清.三明烟区土壤pH值与土壤有效养分的相关性[J].烟草科技,2006,(3):35-37.
    [27]杨丽娟,李天来,刘妤,等.长期施用有机肥和化肥对菜田土壤锌有效性的影响[J].土壤通报,2005,36(3):395-397.
    [28]张恩平,张淑红,李天来,等.有机肥与无机肥配施对菜田土壤氮磷钾养分含量的影响[J].黑龙江农业科学,2001,(2):5-7.
    [29]Doran J W,Jones A J,Arshad M A,et al.Determ inants of soil quality and health[A].Soil Quality and Soil Erosion[C].CRC Press,1999,17-36.
    [30]倪进治,徐建民,谢正苗,等.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报,2001,7(4):374-378.
    [31]徐阳春,沈其荣,茆泽圣.长期施用有机肥对土壤及不同粒级中酸解有机氮含量与分配的影响[J].中国农业科学,2002,35(4):403-409.
    [32]Witter E,Kanal A.Characteristics of the soil microbial biomass in soils from a long-term field experiment with different levels of C input[J].Applied Soil Ecology,1998,(10):37-49.
    [33]Coote D R,Ramsey J F.Quantification of the effects of over 35 years of intensive cultivation of fore soils[J].Chart J Soil Sci,1986,(63):1-4.
    [34]Christensen B T,Olesen J E.Nitrogen mineralization potential of organomineral size separates from soils with annual Stalk in corporation[J].European Journal of Soil Sci,1998,(49):25-36.
    [35]李蕙岚.浅析土壤酶活性与土壤肥力的关系[A].见:宋光煜,谢得体,孙彭寿主编.迈向21世纪的土壤科学—提高土壤质量促进农业持续发展.中国土壤学会第九次全国代表大会论文集(重庆卷)[C].重庆:重庆土壤学会,1999,69-71.
    [36]赵兰波.施用作物秸秆对土壤的培肥作用[J].土壤通报,1996,27(2):76-78.
    [37]Wang Ke,Yang Yu'ai,Yuan Keneng.Effects of Manure on the Enzyme Activities in the Rhizosphere of Wheat[J].Journal of Zhejiang Agricultural University,1995,21(2):111-115.
    [38]罗安程,T B Subedi,章永松,等.有机肥对水稻根际土壤中微生物核酶活性的影响[J].植物营养与肥料学报,1999,5(4):321-327.
    [39]邱莉萍,刘军,和文祥,等.长期培肥对土壤酶活性的影响[J].干旱地区农业研究,2003,21(4):44-47.
    [40]周焱,罗安程.有机肥处理对小麦根系生长、活力和磷吸收的影响[J].植物营养与肥料学报,1997,3(3):243-248.
    [41]蔡志远.保护地土壤次生盐渍化的形成与防治[J].天津农林科技,2005,(1):24-26.
    [42]高强,李亚峰,刘振刚,等.有机复合肥对土壤及甜椒产量和品质的影响[J].吉林农业大学学报,2001,23(4):75-78.
    [43]姬兴杰,杨颖颖,熊淑萍,等.不同肥料对土壤微生物数量及全氮时空变化的影响[J].中国生态农业学报,2008,16(3):576-582.
    [44]Shen Qirong,Xu Shouming,Shi Rihe.Effect of incorporation of wheat Stalk and urea into soil on biomass nitrogen and nitrogen-supplying characteristics of paddy soil[J].Pedosphere,1993,3(3):201-205.
    [45]沈其荣,沈振国,史瑞和.有机肥氮素的矿化特征及其与化学组成的关系[J].南京农业大学学报,1992,15(1):59-64.
    [46]Vance E D,Brookes P C,Jenkinson D C.An extration method for measuring soil microbial biomass C[J].Soil Biol.& Biochem.,1987,19:703-707.
    [47]Brookes P C,Powlson D S,Jenkinson D S.Measurement of microbial biomass phosphorus in soil[J].Soil Biol.& Biochem.,1982,14:319-329.
    [48]Ocio J A,Martinez J,Brookes P C.Contribution of Stalk-derived N to total microbial biomass N following incorporation of cereal Stalk to soil[J].Soil Biol.& Biochem.,1991,23:655-659.
    [49]王岩,沈其荣,史瑞和,等.有机、无机肥料施用后土壤生物量C、N、P的变化及N素转化[J].土壤学报,1998,35(2):227-234.
    [50]曹志平,胡诚,叶钟年,等.不培肥措施对华北高产农田土壤微生物生物量碳的影响[J].生态学报,2006,26(5):1486-1493.
    [51]Gunapala N,Scow KM.Dynamics of soil microbial biomass and activity in conventional and organic farming systems[J].Soil Biology &Biochemistry,1998,30:805-816.
    [52]Kanchikerimath M,Singh D.Soil organic matter and biological properties after 26 years of maize2wheat2cowpea cropping as affected by manure and fertilization in a Cambisol in semiarid region of India[J].Agriculture,Ecosystem & Environment,2001,86:155-162.
    [53]庞欣,张福锁,王敬国.不同供氮水平对根际土壤微生物量氮及微生物活度的影响[J].植物营养与肥料学报,2000,6(4):476-480.
    [54]Aoyam M K,Nozawa J.Microbial biomass nit rogen and mineralization immobilization processes of nit rogen in soils incubated with various organic materials[J].Soil Sci Plant Nutr,1993,39:23-32.
    [55]仇少君,彭佩饮,刘强,等.土壤微生物量氮及其在氮素循环中作用[J].生物杂志,2006,25(4):443-448.
    [56]王霖晓,沈阿林,寇长林,等.小麦-玉米轮作下有机肥与氮肥配施对土壤微生物量氮及作物氮利用的影响[J].河南农业科学,2007,(6):96-99.
    [57]姜东,于振文,许玉敏,等.有机无机肥料配合施用对冬小麦根系和旗叶衰老的影响[J].土壤学报,1999,36(4):440-447.
    [58]杨玉爱,叶正铵,陈峰,等.有机肥料延缓日本黄瓜早衰作用的研究[J].土壤学报,1992,29(4):447-4591
    [59]赖涛,沈其荣,茆泽圣,等.几种有机和无机氮肥对草莓生长及其氮素吸收分配影响的差异[J].植物营养与肥料学报,2006,12(6):850-857.
    [60]王伯仁,徐明岗,文石林.长期不同施肥对旱地红壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100.
    [61]章永松,林咸永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究—Ⅰ.有机肥(物)对土壤不同形态无机磷的活化作用[J].植物营养与肥料学报,1998,4(2):145-150.
    [62]章永松,林咸永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究—Ⅱ.有机肥(物)分解产生的有机酸及其对不同形态磷的活化作用[J].植物营养与肥料学报,1998,4(2):151-155.
    [63]王珂,杨玉爱,袁可能.有机肥对小麦根际磷有效性影响及机制[J].土壤通报,1994,25(7):49-50.
    [64]潘大伟,周春燕,杜立宇,等.施用有机肥对小麦吸钾量及生物量的影响[J].沈阳农业大学学报,2005,36(1):49-52.
    [65]李絮花,杨守祥,于振文,等.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-472.
    [66]王法宏,任德昌,王旭清,等.施肥对小麦根系活性、延缓旗叶衰老及产量的效应[J].麦类作物学报,2001,21(3):51-54.
    [67]张永清,苗果园.水分胁迫条件下有机肥对小麦根苗生长的影响[J].作物学报,2006,32(6):811-816.
    [68]张睿,刘党校.氮磷与有机肥配施对小麦光合作用及产量和品质的影响[J].植物营养与肥料学报,2007,13(4):543-547.
    [69]陈学留,王志芬,余美炎,等.有机肥与无机肥配施对高产小麦光合产物运转分配及对磷的吸收利用影响[J].土壤肥料,1993,(5):8-11.
    [70]李秀云,孙本普,李风云,等.增施有机肥对薄地小麦的增产效果[J].小麦研究,2002,23(2):24-26.
    [71]方日尧,同延安,耿增超,等.黄土高原区长期施用有机肥对土壤肥力及小麦产量的影响[J].中国生态农业学报,2003,11(2):47-49.
    [72]姜东,戴廷波,荆奇,等.有机无机肥长期配合施用对冬小麦籽粒品质的影响[J].生态学报,2004,24(7):1548-1555.
    [73]樊虎玲,郝明德,李志西,等.黄土高原旱地化肥和有机肥配施对小麦品质的影响[J].干旱地区农业研究,2005,23(5):72-76.
    [74]李丙奇,孙克刚,金辉,等.有机无机肥配合施用对小麦、玉米等作物品质改善的试验研究[J].磷肥与复肥,2009,24(1):87-88.
    [75]吕凤荣,刘康峰,刘媛媛,等.有机肥对小麦产量及品质的影响fJ].中国农学通报,2000,16(3):39-40.
    [76]董桂春,王余龙,吴华,等.水稻主要根系性状对施氮时期反应的品种间差异[J].作物学报,2003,29(6):871-877.
    [77]Asady G H,Smucker A J,Adams M W.Seedling test for the quantitative measurement of root tolerances to compacted soil[J].Crop Science,1985,25:802-806.
    [78]Entz M.H.Root growth and soil water extraction by winter and spring wheat[J].Canadian Journal of plant science,1992,72(42):1109-1120.
    [79]Poni S,Tagliavini M.Influence of root pruning and water stress on growth and physiological factors of potted apple grape peach and pear trees[J].Sci Hortic,1992,52:223-226.
    [80]Hasenstein K H.Comparative effectiveness of metal ions in inducing curvature of primary toots of Zea mays[J].Plant Physiol,1988,86:885-889.
    [81]马元喜,王晨阳,贺德先,等.小麦的根[M].北京:中国农业出版社,1999,25-100.
    [82]李友军.旱地小麦根系生育与调控效应的研究[J].干早地区农业研究,1997,15(3):6-16.
    [83]张和平,刘晓楠,华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系[J].华北农学报,1993,8(4):76-82.
    [84]刘为红,孙黛珍,隋方功,等.谷子根系生长发育规律及环境条件对其影响的研究[J].旱作地区农业研究,1996,14(2):20-25.
    [85]王树安.作物栽培学各论[M].北京:中国农业出版社,1995.
    [86]陈培元,詹谷宇,谢伯泰.冬小麦根系的研究[J].陕西农业科学,1980,(6):1-6.
    [87]王绍中,茹天祥.丘陵红粘土旱地小麦根系生长规律的研究[J].植物生态学报,1997,21(2):175-190.
    [88]杨兆生,阎素红,王俊娟,等.不同类型小麦根系生长发育及分布规律的研究[J].麦类作物学报,2000,20(1):47-50.
    [89]苗果园,尹钧,张云亭,等.中国北方主要作物根系生长的研究[J].作物学报,1998,24(1):1-6.
    [90]董桂春,王余龙,吴华,等.水稻主要根系性状对施氮时期反应的品种间差异[J].作物学报,2003,29(6):871-877.
    [91]马元喜.不同土壤小麦根系生长动态的研究[J].作物学报,1987,13(1):37-44.
    [92]彭水欣,严六零,郭文善,等.小麦根系生长发育规律的研究[J].江西农学院学报,1992,13(4):1-5.
    [93]马元喜.冬小麦根系生长发育的初步研究[J].河南农业科学,1981,(2):17-20.
    [94]苗果园,张云亭,尹钧,等.黄土高原早地冬小麦根系生长发育规律的研究[J].作物学报,1989,15(2):104-115.
    [95]王法宏,王旭清,李松坚.高产小麦生育后期不同层次土壤中根系活性的研究[J].作物学报,2001,27(6):891-895.
    [96]朱晓衡.春小麦根系生长规律及促根措施的研究[J].宁夏农林科技,1979,(6):12-18.
    [97]王法宏,王旭清,刘素英,等.根系分布与作物产量的关系研究进展[J].山东农业科学,1997,(4):48-51.
    [98]Nstsysn D.Root growth and productivity of wheat cultivars under different soil moisture condition[J].International Journal of Ecology and environmental sciences.1991,17(1):19-26.
    [99]Karrou M.Response of wheat cultivars to different soil nitrogen and moisture regions:I Dry matter partitioning and root growth[J].Journal of Plant Nutrition.1994,17(5):729-744.
    [100]刘殿英.土壤水分对冬小麦根系的影响[J].山东农业大学学报,1991,22(2):103-110.
    [101]刘殿英.栽培措施对冬小麦根系及其活力和植株性状的影响[J].中国农业科学,1993,26(5):51-56.
    [102]Barractough P B.Factors affecting the growth and distribution of winter wheat roots under field conditions plant roots and their environment[J].Uppsala.Sweden.1991,410-417.
    [103]Chan K Y Tillage induces differences in the growth and distribution of wheat roots[J].Australian Journal of Agricultural Research.1992,43(1):283-286.
    [104]Atsushi Oyanagi,Tomomi Nakamoto,Michihiro.Relationship between root growth angle of seedlings and vertical distribution of roots in the field in wheat cultivars[J].Jpn..J.Crop Sci.1993,62(4):565-570.
    [105]孙海国,张福锁.缺磷条件下的小麦根系酸性磷酸酶活性研究[J].应用生态学报,2002,13(3):379-381.
    [106]姜东,于振文,苏波,等.不同施氮时期对冬小麦根系衰老的影响[J].作物学报,1997,23(2):181-190.
    [107]王志芬,陈学留,余美炎,等.冬小麦根系活力变化动态的研究[J].华北农学报,1993,8(增刊):70-73.
    [108]Tamer N C.Plant-water relations and adaptation to drought[J].Plant Soil,1981,58:97-113.
    [109]Bray E.A.Plant response to water deficit[J].Trend in plant Sci,1997,2(2):48-54.
    [110]冯广龙,刘吕明.土壤水分对作物根系生长及其调控作用[J].生态农业研究,1996,(3):5-9.
    [111]张岁岐,山仑,邓西平.小麦进化中水分利用效率的变化及其与根系生长的关系[J].科学通报,2002,47(17):1327-1331.
    [112]郭安红,刘庚山,安顺清,等.有限供水对冬小麦根系生长发育的影响及其对底墒的利用特征[J].应用气象学报,2002,13(5):621-624.
    [113]Nour A E.,Wiebel D E.Evaluation of root characteristics in grain sorghum[J].Argon J,1987,70:217-219.
    [114]Lorens G F,Kennet J M.Differences in drought res hybistance between two comrids,I Water relations and root-length density[J].Agron J,1987,79:802-807.
    [115]景蕊莲,胡荣海.冬小麦不同基因型幼苗形态性状遗传和抗早性的研究[J].西北植物学报,1997,8(3):67-72.
    [116]Smucker A J M,Alken R M.Dynamic root response to water deficits[J].Soul Science,1992,154(4):281-289.
    [117]冯广龙,罗远培,刘建利,等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系[J].干早地区农业研究,1997,15(2):73-79.
    [118]张国盛,张仁陟.水分胁迫下氮磷营养对小麦根系发育的影响[J].甘肃农业大学学报,2001,36(2):163-167.
    [119]马瑞昆,贾秀领.供水深度与冬小麦根系发育的关系[J].干旱地区农业研究.1991,(3):1-9.
    [120]王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1-8.
    [121]张德富,王书丽,马新明,等.不同类型氮素对不同筋力型小麦品种根系的影响[J].河南农业科学,2004,(10):50-53.
    [122]孙敏,郭文善,孙陶芳,等.氮素形态对小麦根系特性影响的初步研究[J].扬州大学学报(农业与生命科学版),2007,28(1):54-58.
    [123]孙海国,张福锁,杨军芳.不同供磷水平小麦苗期根系特征与其相对产量的关系[J].华北农学报,2001,16(3):98-104.
    [124]孙海国,张福锁.缺磷条件下的小麦根系形态特征研究[J].应用生态学报,2002,13(3):295-299.
    [125]孙海国,张福锁.小麦根系生长对缺磷胁迫的反应[J].植物学报,2000,42(9):913-919.
    [126]孙海国,张福锁,杨军芳.缺磷胁迫对小麦根细胞周期蛋白基因cyc1At表达的影响[J].植物生理学报,2000,26(5):441-445.
    [127]田桂萍,康双阳.盐碱对小麦生理的影响[J].中国农村水利水电(农田水利与小水电),1998,(1):26-28.
    [128]张永清,庞春花,裴红宾,等.水分胁迫条件下化控物质浸种对小麦根苗生长的影响[J].农业系统科学与综合研究,2007,23(2):201-211.
    [129]Green S R,Clothier B E.Root water uptake by kiwifruit vines following partial wetting of the root[J].Plant and Soil,1995,173:317-328.
    [130]Jodarikarimi F.Root distribution and water use efficiency of alfalfa as influenced by depth of irrigation[J].Agro J,1983,75:207-211.
    [131]Asady G H,Smucker A J M.Compaction and root modifications of soil aeration[J].Soil Science Society of America Journal,1989,53:251-254.
    [132]Johnson J F,Vance C P,Allan D L.Phosphorus deficiency in Lupinus albrs,altered lateral root development and enhanced expression of phosphoenolpyru-vate carboxylase[J].Plant Physiol,1996,112:31-41.
    [133]杜建军,王朝辉.施肥对作物吸取、转运、利用土壤水分的影响[M].汪德水主编,早地农田肥水关系原理与调控技术[A].北京:中国农业科技出版社,1995,182-186.
    [134]Comfort S D,Maler G L.Nitrogen fertilizer of spring wheat genotypes influence on root growth and soil water depletion[J].Agron.J.,1990,80:114-120.
    [135]曹爱琴,廖红,严小龙.低磷条件下菜豆根构型的适应性变化与磷效应[J].土壤学报,2002,39(2):276-281.
    [136]Cakmak I hengeler C.Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus,potassium and magnesium deficiency[J].J.Exp Bot,1994,45:1245-1250.
    [137]王绍辉.局部施肥对植株生及根系形态的影响[J].土壤通报,2002,33(2):153-155.
    [138]Durieux R.P.Root distribution of corn:the effect of nitrogen fertilization[J].Agronomy Journal,1994,86(6):958-962.
    [139]Smith G.E.Soil fertility-the basis higher crop production[J].Bulletin Crops.1954,38:22-30.
    [140]Russell J S.Nitrogen fertilizer and wheat in semiarid environment[J].Aust.J.Exp Agric.and An.Husb.,1967,7:453-462.
    [141]翟丙年,孙春梅,王俊儒,等.氮素亏缺对冬小麦根系生长发育的影响[J].作物学报,2003,29(6):913-918.
    [142]李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应[J].植物营养与肥料学报,2000,6(4):383-388.
    [143]戴敬.不同施肥水平的棉花根系生长及生理活性[J].上海农业学报,1998,14(2):56-60.
    [144]唐才贤.磷对棉花根系生育的影响[J].浙江农业大学学报,1987,13(1):45-50.
    [145]Chapin F.S.I.The mineral nutrition of wild plants[J].Annu.Rev.Ecol.Syst.,1980,11:233-260.
    [146]刘殿英,石立岩,董庆裕.不同时期追施肥水对冬小麦根系、根系活性和植株性状的影响[J].作物学报,1993,19(2):149-156.
    [147]潘庆民,于振文,田奇卓,等.追氮时期对超高产冬小麦旗叶和根系衰老的影响[J].作物学报,1998,24(6):924-929.
    [148]赵广才,刘利华,杨玉双,等.施肥及光合调节剂对小麦根系及籽粒产量和蛋白质含量的影响[J].作物学报,2004,30(7):708-713.
    [149]Weaver JE.Root development of field crops[M].McGraw-Hill,New York,1926.
    [150]闻玉,赵翔,张骁.水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响[J].作物学报,2008,34(2):344-348.
    [151]马宗斌,王小纯,何建国,等.氮素形态对小麦花后不同器官内源激素含量的影响[J].植物生态学报,2006,30(6):991-997.
    [152]崔四平,刘子会,李运朝,等.冬小麦根系干重对水分的反应类型[J].华北农学报,2006,21(4):55-57.
    [153]吴永成,周顺利,王志敏,等.节水栽培冬小麦对下层土壤残留氮素的利用[J].生态学报,2005,25(8):1869-1873.
    [154]刘怀攀,於丙军,纪秀娥,等.小麦幼苗根系核蛋白体上结合态多胺与渗透胁迫关系[J].中国科学:C辑,2005,35(4):304-309.
    [155]张永清,苗果园,张定一.污灌胁迫对春小麦抗氧化酶活性及根系与幼苗生长的影响[J].农业环境科学学报,2005,24(4):662-665.
    [156]Chaudhuri U.N.Root growth of winter wheat under elevated carbon dioxide and drought[J].Crop Sci,1990,30:853-857.
    [157]Huang B.Root and shoot growth of wheat genotypes in response to hypoxia and subsequent resumption of aeration[J].Crop Sci,1994,34:1538-1544.
    [158]Vanessa M Dunbabin,Sean McDermott,A Glyn Bengough.Upscaling from Rhizosphere to Whole Root System:Modelling the Effects of Phospholipid Surfactants on Water and Nutrient Uptake[J]. Plant and Soil, 2006, 283, 57-72.
    [159]Matamala R, Gonzalez-MelerM A, Jastrow J D, et al. Impacts of fine root turnover on forest N P and soil C sequestration potential[J]. Science, 2003, 21: 1385-1387.
    [160]Weaver J W. Investigations on the root habits of plants[J]. America Journal Botany, 1925, 12: 502-509.
    [161]Bohm W. Methods of studying root system[M]. Berlin Heidelberg New York: Springer Verlag, 1979.
    [162]Persson H. Fine root production, mortality and decomposition in forest ecosystems[J]. Vegetation, 1980,41: 101-109.
    [163]Steen E. Usefulness of the mesh bag method in quantitative root studies[J]. Sweden Journal Agricultural Research, 1991,14: 93-97.
    [164]Ludovici K H,Morris L A. Responses of loblolly pine,sweet gum and grass roots to localized increases in nitrogen in two watering regimes[J]. Tree Physiology, 1996, 16: 933-939.
    [165]Son Y, Hwang J H. Fine root biomass, production and turnover in a fertilized Larixlep tolepis plantation in central Korea[J]. Ecological Research, 2003, 18: 339-346.
    [166]West J B, Espeletaa J F, Donovana L A. Fine root production and turnover across a complex edaphic gradient of a Pinuspalustris A ristidastricta savanna ecosystem[J]. Forest Ecology and Management, 2004,189: 397-406.
    [167]Upchurch D R, Ritchie J R. Root observations using a video recording system in minirhizotrons[J]. Agronomy Journal, 1983, 75: 1009-1015.
    [168]Cheng W, Coleman D C, Box J E. Root dynamics, production and distribution in agroecosystems on the Georgia Piedmont using minirhizotrons[J]. Journal of Applied Ecology, 1990, 27: 592-604.
    [169]Crocker T L, Hendrick R L, Ruess R W, et al. Substituting root numbers for length: improving the use of minirhizotrons to study fine root dynamics[J]. Applied Soil Ecology, 2003, 23: 127-135.
    [170]Hendrick R L, Pregitzer K S. The dynamics of fine root length, and nitrogen in two northern hardwood ecosystems [J]. Canadian Journal of Forest Research, 1993, 23: 2507-2520.
    [171]Joslin J D, Wolfe M H. Disturbances during minirhizotron installation can affect root observation data[J]. Soil Sci. Soc. Am. J., 1999, 63: 218-221.
    [172]Wells C E, Eissenstat D M. Marked differences in survivorship among apple roots of different diameters[J]. Ecology, 2001, 82: 882-892.
    [173]van Noordwijk M, de Jager A, Floris J, 1985. A new dimension to observations in minirhizotrons:a stereoscopic view on root photographs[J]. Plant Soil. 1985, 86: 447-453.
    [174]Phillips D L,Johnson M G,Tingey D T,et al.Minirhizotron installation in sandy,rocky soils with minimal soil disturbance[J].Soil Sci.Soc.Am.J.,2000,64:761-764.
    [175]Samson B K,Sinclair T R.Soil core and minirhizotron comparison for the determination of root length density[J].Plant Soil.,1994,161:225-232.
    [176]Volkmar K M.A comparison of minrhizotron techniques for estimating root length density in soils of different bulk densities[J].Plant Soil.,1993,157:239-245.
    [177]Markus L,Alberto S,and Peter S,et al.Root Development of Maize(Zea mays L.) as Observed with Minirhizotrons in Lysimeters[J].Crop Science,2000,40:1665-1672.
    [178]Markus L,and Walter R.Minirhizotron Observations of the Spatial Distribution of the Maize Root System[J].Agronomy Journal,2001,93:1097-1104.
    [179]Markus L,and Walter R.Relation between maize(Zea mays L.) leaf area and root density observed with minirhizotrons[J].European Journal of Agronomy,2001,15:131-141
    [180]Machado Rui M A,Rosario Maria do,Oliveira G.Tomato root distribution,yield and fruit quality under different subsurface drip irrigation regimes and depths[J].Irrig Sci,2005,24:15-24.
    [181]Machado Rui M A,Rosario Maria do,Oliveira G,et al.Tomato root distribution,yield and fruit quality under subsurface drip irrigation[J].Plant and Soil,2003,255:333-341.
    [182]Machado Rui M A,Rosario Maria do,and Oliveira G.Comparison of tomato root distributions by minirhizotron and destructive sampling[J].Plant and Soil,2003,255:375-385.
    [183]周本智,Mary Anne Sword,Jim L Chambers,等.利用Minirhizotron技术监测火炬松新根生长动态[J].林业科学研究,2002,15(3):276-284.
    [184]史建伟,王政权,于水强,等.落叶松和水曲柳人工林细根生长、死亡和周转[J].植物生态学报,2007,31(2):333-342.
    [185]张志山,李新荣,张景光,等.用Minirhizotrons观测柠条根系生长动态[J].植物生态学报,2006,30(3):457-464.
    [186]黄刚,赵学勇,苏延桂.科尔沁沙地3种草本植物根系生长动态[J].植物生态学报,2007,31(6):1161-1167.
    [187]Bates G H.Adevice for the observation of root growth in the soil[J].Nature,1937,139:966-967.
    [188]Brown D A,Upchuech D R.Minirhizotrons:a summary of methods and instruments in current use[C].In:Taylor,H.M.Eds.Minirhizotron Observation Tubes:Methods and Applications For Measuring Rhizosphere Dynamics[A].ASA Special Publication Number 50.American Society of Agronomy,Madison,W I,1987,15-30.
    [189]Richards J H. Root growth response to defoliation in two Agropyron bunchgrasses: field observations with an improved root periscope[J]. Oecologia, 1984, 64: 21-25.
    [190]Itoh S. In situ measurement of rooting density by microrhizotron[J]. Soil Science and Plant Nutrition, 1985, 31: 653-656.
    [191]Withington E M, Elkin A D, Bulaj B, et al. The impact of material used for minirhizotron tubes for root research[J]. New Phytologist, 2003, 160: 533-544.
    [192]Sanders J L, Brown D A. A new fiber optic technique for measuring root growth of soybeans under field conditions[J]. Agronomy Journal, 1978, 70: 1073-1076.
    [193]Bragg P L, Govi G, Cannell R Q. A comparison of methods,including angled and vertical minirhizotrons,for studying root growth and distribution in a spring oat crop[J]. Plant and Soil, 1983, 73: 435-440.
    [194]Kosola K R. Laparascopic sampling of roots of known age from an expandable wall minirhizotron system[J]. Agronomy Journal, 1999, 91: 876-879.
    [195]Hendrick R L, Pregitzer K S. Patterns of fine root mortality in two sugar maple forests[J]. Nature, 1993, 361: 59-61.
    [196]Vamerali T, Ganis A, Bona S, et al. An approach to minirhizotron root image analysis[J]. Plant and Soil, 1999, 217: 183-193.
    [197]Johnson M G, Tingey D T, Phillip S D L, et al. Advancing fine root research with minirhizotrons[J]. Environmental and Experimental Botany, 2001, 45: 263-289.
    [198]Gijsman A J, Floris J, Van Noordwijk M, et al. An inflatable minirhizotron system for root observation with improved soil tube contact[J]. Plant and Soil, 1991,134: 261-269.
    [199]Hurd E A. Phenotype and drought tolerance in wheat[J]. Agric Meteor, 1974, 14: 39-45.
    [200]Merrill S D. Pressurized wall minirhizotron for field observation of root growth dynamics[J]. Agronomy Journal, 1992, 84: 755-758.
    [201]Tierney G L, Fahey T J. Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest[J]. Plant and Soil, 2001, 229: 167-176.
    [202]Katterer T, Fabiao A, Madeira M, et al. Fine root dynamics,soil moisture and soil carbon content in a Euclyptus globules plantation under different irrigation and fertilization regimes[J]. Forest Ecology and Management, 1995, 74: 1-12.
    [203]Weber E P, Day F P. The effect of nitrogen fertilization on the phenology of roots in a barrier island sand dune community[J]. Plant and Soil, 1996, 182:139-148.
    [204]Wilcox C S, Ferguson J W, Fernandez G C J, et al. Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite[J]. Journal of Arid Environments, 2004, 56: 129-148.
    [205]Hendrick R L, Pregitzer K S. The demography of fine roots in a northern hardwood forest[J]. Ecology, 1992, 73: 1094-1104.
    [206]Box J E, Smucker A J M, Ritchie J T. Minirhizotron installation techniques for investigation root responses to drough t and oxygen stresses[J]. Soil Science Society of America Journal, 1989,53:115-118.
    [207]Kloeppel B D, Gower S T. Construction and installation of acrylic minirhizotron tubes in forest ecosystems [J]. Soil Science Society of America Journal, 1995, 59: 241-243.
    [208]Burton A J, Pregitzer K S, Herdrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000, 125: 389-399.
    [209]Rytter R M, Rytter L. Growth,decay,and turnover rates of fine root of basket willows[J]. Canada Journal Forest Research, 1998, 28: 893-902.
    [210]Taylor H M, HuckM G, Klepper B, et al. Measurement of soil grown roots in a rhizotron[J]. Agronomy Journal, 1970, 62: 807-809.
    [211]Steele S J, Gower S T, Vogel J G, et al. Root production,net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada[J]. Tree Physiology, 1997, 17: 577-587.
    [212]Hansson A G, Zhao A F, Andren O. Fine root growth dynamics of two shrubs in semiarid rangeland in InnerMongolia, China[J]. Ambio, 1994, 23: 225-228.
    [213]Thomas S M, Whitehead D, Reid J B, et al. Growth,loss,and vertical distribution of pinus radiata fine roots growing at ambient and elevated CO_2 concentration[J]. Global Change Biology, 1999, 5: 107-121.
    [214]Forbes P J, Black K E, Hooker J E. Temperature induced alteration to root longevity in Loliumperenne[J]. Plant and Soil, 1997, 190: 87-90.
    [215]Lopez B, SabateS, Gracia C A. Fine root longevity of Quercusilex[J]. New Phytologist, 2001, 151:437-441.
    [216]Majdi H, Ohrvik J. Interactive effect of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden[J]. Global Change Biology, 2004,10: 182-188.
    [217]Arnone J A, Zaller J G, Spehn E M, et al. Dynamics of root systems in native grasslands: effects of elevated at mospheric CO_2[J]. New Phytologist, 2000,147: 73-85.
    [218]Dilustro J J, Day F P, D rake B G, et al. A bundance,production and mortality of fine roots under elevated atmospheric CO_2 in an oak scrub ecosystem[J]. Environmental and Experimental Botany,2002,48:149-159.
    [219]Reynolds J F,Virginia R A,Kemp P R,et al.Impact of drought on desert shrubs:effects of seasonality and degree of resource island development[J].Ecology Monograph,1999,69:69-106.
    [220]Fitter A H,Graves J D,Self G K,et al.Root production,turnover and respiration under two grassland types along an altitudinal gradient:influence of temperature and solar radiation[J].Oecologia,1998,114:20-30.
    [221]Merrill S D,Upchurch D R.Converting root numbers observed at minirhizotrons to equivalent root length density[J].Soil Science Society of America Journal,1994,58:1061-1067.
    [222]白文明,程维信,李凌浩.微根窗技术及其在植物根系研究中的应用[J].生态学报,2005,25(11):3076-3081.
    [223]廖荣伟,刘晶淼.作物根系形态观测方法研究进展讨论[J].气象科技,2008,36(4):429-435.
    [224]金先奎,于水强,史建伟,等.微根管法和同位素法在细根寿命研究中的应用及比较[J].生态学杂志,2007,26(3):428-434.
    [225]刘九庆.植物根系图像监测分析系统的设计[J].东北林业大学学报,2004,32(4):105-109.
    [1]Son Y,Hwang J H.Fine root biomass,production and turnover in a fertilized Larixlep tolepis plantation in central Korea[J].Ecological Research,2003,18:339-346.
    [2]West J B,Espeletaa J F,Donovana L A.Fine root production and turnover across a complex edaphic gradient of a Pinuspalustris A ristidastricta savanna ecosystem[J].Forest Ecology and Management,2004,189:397-406.
    [3]闻玉,赵翔,张骁.水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响[J].作物学报,2008,34(2):344-348.
    [4]马宗斌,王小纯,何建国,等.氮素形态对小麦花后不同器官内源激素含量的影响[J].植物生态学报,2006,30(6):991-997.
    [5]崔四平,刘子会,李运朝,等.冬小麦根系干重对水分的反应类型[J].华北农学报,2006,21(4):55-57.
    [6]吴永成,周顺利,王志敏,等.节水栽培冬小麦对下层土壤残留氮素的利用[J].生态学报,2005,25(8):1869-1873.
    [7]刘怀攀,於丙军,纪秀娥,等.小麦幼苗根系核蛋白体上结合态多胺与渗透胁迫关系[J].中国科学:C辑,2005,35(4):304-309.
    [8]张永清,苗果园,张定一.污灌胁迫对春小麦抗氧化酶活性及根系与幼苗生长的影响[J].农业环境科学学报,2005,24(4):662-665.
    [9]Chaudhuri U.N.Root growth of winter wheat under elevated carbon dioxide and drought[J].Crop Sci.,1990,30:853-857.
    [10]Huang B.Root and shoot growth of wheat genotypes in response to hypoxia and subsequent resumption of aeration[J].Crop Sci.,1994,34:1538-1544.
    [11]Vanessa M Dunbabin,Sean McDermott,A Glyn Bengough.Upscaling from Rhizosphere to Whole Root System:Modelling the Effects of Phospholipid Surfactants on Water and Nutrient Uptake[J].Plant and Soil.2006,283:57-72.
    [12]Matamala R,Gonzalez-MelerM A,Jastrow J D,et al.Impacts of fine root turnover on forest N P and soil C sequestration potential[J]. Science, 2003, 21: 1385-1387.
    [13]Weaver J W. Investigations on the root habits of plants[J]. America Journal Botany, 1925, 12: 502-509.
    [14]Bohm W. Methods of studying root system[M]. Berlin Heidelberg New York: Sp ringer Verlag, 1979.
    [15]Persson H. Fine root production,mortality and decomposition in forest ecosystems[J]. Vegetation, 1980, 41: 101-109.
    [16]Steen E. Usefulness of the mesh bag method in quantitative root studies[J]. Sweden Journal Agricultural Research, 1991,14: 93-97.
    [17]Ludovici K H, Morris L. A. Responses of loblolly pine,sweet gum and grass roots to localized increases in nitrogen in two watering regimes[J]. Tree Physiology, 1996, 16: 933-939.
    [18]Upchurch D R, Ritchie J R. Root observations using a video recording system in minirhizotrons[J]. Agronomy Journal, 1983, 75: 1009-1015.
    [19]Cheng W, Coleman D C, Box J E. Root dynamics, production and distribution in agroecosystems on the Georgia Piedmont using minirhizotrons[J]. Journal of Applied Ecology, 1990, 27: 592-604.
    [20]Crocker T L, Hendrick R L, Ruess R W, et al. Substituting root numbers for length: improving the use of minirhizotrons to study fine root dynamics[J]. Applied Soil Ecology,2003, 23: 127-135.
    [21]Hendrick R L, Pregitzer K S. The dynamics of fine root length,and nitrogen in two northern hardwood ecosystems [J]. Canadian Journal of Forest Research, 1993, 23: 2507-2520.
    [22]Joslin J D, Wolfe M H. Disturbances during minirhizotron installation can affect root observation data[J]. Soil Sci. Soc. Am. J. 1999, 63: 218-221.
    [23]Wells C E, Eissenstat D M. Marked differences in survivorship among apple roots of different diameters[J]. Ecology. 2001, 82: 882-892.
    [24]van Noordwijk M, de Jager A, Floris J. A new dimension to observations in minirhizotrons:a stereoscopic view on root photographs[J]. Plant Soil. 1985, 86: 447-453.
    [25]Phillips D L, Johnson M G, Tingey D T, et al. Minirhizotron installation in sandy, rocky soils with minimal soil disturbance[J]. Soil Sci. Soc. Am. J. 2000, 64: 761-764.
    [26]Samson B K, Sinclair T R. Soil core and minirhizotron comparison for the determination of root length density[J]. Plant Soil. 1994,161: 225-232.
    [27]Volkmar K M. A comparison of minrhizotron techniques for estimating root length density in soils of different bulk densities[J]. Plant Soil. 1993,157: 239-245.
    [28] 周本智, Mary Anne Sword, Jim L Chambers, 等. 利用Minirhizotron技术监测火炬松新根 生长动态[J].林业科学研究,2002,15(3):276-284.
    [29]史建伟,王政权,于水强,等.落叶松利水曲柳人工林细根生长、死亡和周转[J].植物生态学报,2007,31(2):333-342.
    [30]张志山,李新荣,张景光,等.用Minirhizotrons观测柠条根系生长动态[J].植物生态学报,2006,30(3):457-464.
    [31]Burton A J,Pregitzer K S,Hendrick R L.Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forest[J].Oecologia,2000,125:389-399.
    [32]马元喜,王晨阳,贺德先,等.小麦的根[M].北京:中国农业出版社,1999,25-100.
    [33]李友军.旱地小麦根系生育与调控效应的研究[J].干早地区农业研究,1997,15(3):6-16.
    [34]张和平,刘晓楠,华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系[J].华北农学报,1993,8(4):76-82.
    [35]刘为红,孙黛珍,隋方功,等.谷子根系生长发育规律及环境条件对其影响的研究[J].旱作地区农业研究,1996,14(2):20-25.
    [36]王树安.作物栽培学各论[M].北京:中国农业出版社,1995.
    [37]陈培元,詹谷宁,谢伯泰.冬小麦根系的研究[J].陕西农业科学,1980,(6):1-6.
    [38]王绍中,茹天祥.丘陵红粘土旱地小麦根系生长规律的研究[J].植物生态学报,1997,21(2):175-190.
    [39]杨兆生,阎素红,王俊娟,等.不同类型小麦根系生长发育及分布规律的研究[J].麦类作物学报,2000,20(1):47-50.
    [40]苗果园,尹钧,张云亭,等.中国北方主要作物根系生长的研究[J].作物学报,1998,24(1):1-6.
    [1]梁银丽.有机肥对旱地农业持续发展的重要性及机理探讨[J].水土保持通报,1998,18(7):67-70.
    [2]姜东,于振文,许玉敏,余松烈.有机无机肥料配合施用对冬小麦根系和旗叶衰老的影响[J].土壤学报,1999,36(4):440-447.
    [3]赖涛,沈其荣,茆泽圣,等.几种有机和无机氮肥对草莓生长及其氮素吸收分配影响的差异[J].植物营养与肥料学报,2006,12(6):850-857.
    [4]李絮花,杨守祥,于振文,等.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-472.
    [5]王伯仁,徐明岗,文石林.长期不同施肥对旱地红壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100.
    [6]章永松,林咸永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究—Ⅰ.有机肥(物)对土壤不同形态无机磷的活化作用[J].植物营养与肥料学报,1998,4(2):145-150.
    [7]章永松,林咸永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究—Ⅱ.有机肥(物)分解产生的有机酸及其对不同形态磷的活化作用[J].植物营养与肥料学报,1998,4(2):151-155.
    [8]王珂,杨玉爱,袁可能.有机肥对小麦根际磷有效性影响及机制[J].土壤通报,1994,25(7):49-50.
    [9]潘大伟,周春燕,杜立宇,等.施用有机肥对小麦吸钾量及生物量的影响[J].沈阳农业大学学报,2005,36(1):49-52.
    [10]王法宏,任德昌,王旭清,等.施肥对小麦根系活性、延缓旗叶衰老及产量的效应[J].麦 类作物学报,2001,21(3):51-54.
    [11]张永清,苗果园.水分胁迫条件下有机肥对小麦根苗生长的影响[J].作物学报,2006,32(6):811-816.
    [12]白宝璋,金锦子,白崧,等.玉米根系活力TIC测定法的改良[J].玉米科学,1994,2(4):44-47.
    [13]王爱国,罗广华,邵从本,等.大豆种子超氧物歧化酶的研究[J].植物生理学报,1983,9(1):77-84.
    [14]林植芳.水稻叶片的衰老与超氧化物歧化酶活性及膜质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    [15]张璐,沈善敏,廉鸿志,等.有机物料中有机碳、氮矿化进程及土壤供氮力研究[J].土壤通报,1997,28(2):71-73.
    [16]Johnson J F,Vance C P,Allan D L Phosphorus deficiency in Lupinus albrs,altered lateral root development and enhanced expression of phosphoenolpyru-vate carboxylase[J].Plant Physiol,1996,112:31-41.
    [17]Comfort S D,Maler G L.Nitrogen fertilizer of spring wheat genotypes influence on root growth and soil water depletion[J].Agron.J.,1990,80:114-120.
    [18]曹爱琴,廖红,严小龙.低磷条件下菜豆根构型的适应性变化与磷效应[J].土壤学报,2002,39(2):276-281.
    [19]Cakmak I hengeler C.Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus,potassium and magnesium deficiency[J].J Exp Bot,1994,45:1245-1250.
    [20]王绍辉.局部施肥对植株生及根系形态的影响[J].土壤通报,2002,33(2):153-155.
    [21]马元喜,王晨阳,贺德先,等.小麦的根[M].北京:中国农业出版社,1999,25-100.
    [22]苗果园,尹钧,张云亭,等.中国北方主要作物根系生长的研究[J].作物学报,1998,24(1):1-6.
    [23]刘宏斌,李志宏,张云贵,等.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,2004,37(5):692-698.
    [24]李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土壤中硝态氮累积的影响[J].干旱地区农业研究,2003,21(3):38-41.
    [25]黄满湘,章申,张国梁.应用大型原状土柱渗漏计测定冬小麦-夏玉米轮作期硝态氮淋失[J].环境科学学报,2003,23(1):11-16.
    [26]Hutson J L.A retentivity function for use in soil water simulation models[J].Soil Sci.,1987,38:105-113.
    [27]KinghtOra R E.Simulation of solute transport using a CTMP[J].Water Resort.Re Res,1987, 28(10):1917-1925.
    [28]Jabro J D,Lotse E G,Simmons K E,et al.A field study of macrospore flow under saturated conditions using a bromide tracer[J].Journal of Soil and Water Conservation,1991,46(5):376-380.
    [29]Strebel O,Duynisveld W H M,Bottcher J.Nitrate pollution of groundwater in western Europe[J].Agriculture Ecosystem and Environment,1989,26(4):189-214.
    [30]崔剑波,庄季.田间非饱和流条件下土壤硝态氮运移的模拟[J].应用生态学报,1997,8(1):49-54.
    [31]邓建才,陈效民,柯用春,等.土壤水分对土壤中硝态氮水平运移的影响[J].中国环境科学,2004,24(3):280-28
    [32]张庆忠,陈欣,沈善敏.农田土壤硝酸盐累积与淋失研究进展[J].应用生态学报,2002,13(2):233-238.
    [33]熊淑萍,姬兴杰,赵巧梅,等.不同肥料对土壤微生物数量及全氮时空变化的影响[J].中国生态农业学报,2008,16(3):576-582.
    [1]Schimel D S.Terrestrial ecosystem and carbon-cycle[J].Global Change Biology,1995,1,7-99.
    [2]Raich J W,Schlesinger W H.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus,1992,44B,81-99.
    [3]Fang C,Moncrieff J B.The dependence of soil CO_2 efflux on temperature[J].Soil Biology and Biochemistry,2001,33,155-165.
    [4]Sanchez M L,Ozores M I,Lopez M J,et al.Soil CO_2 fluxes beneath barley on the central Spanish plateau[J].Agricultural and Forest Meteo- rology,2003,118,85-95.
    [5]Dilustro J J,Collins B,Duncan L,et al.Moisture and soil texture effects on soil CO_2 efflux components in southeastern mixed pine forests[J].Forest Ecology and Management,2005,204,85-95.
    [6]Boone R D,Nadelhoer K J,Canary J D,et al.Roots exert a strong influence on the temperature sensitivity of soil respiration[J].Nature,1998,396,570-572.
    [7]Buchmann N.Biotic and abiotic factors controlling soil respiration rates in Picea abies stands[J].Soil Biology and Biochemistry,2000,32,1625-1635.
    [8]Jung k A.Soil root interaetions in the rhizosphere affecting plant availability of phosphorus[J].Journal of Plant Nutrition,1987,10:1197-1204.
    [9]Tiwaki S C,Tiwari B K,Mishra R R.Enzyme activities in soil:Effects of leeching,ignition,autoclaving and fumigation[J].Soil Biology and Biochemisty,1988,4:583-585.
    [10]姚槐应,黄昌勇,吕镇梅,等.土壤微生物生态学及其实验技术[M].科学出版社,2006,62-66.
    [11]Vaughan D.Soil organic matter and bilogical activity[M].Dordrecht:Marrinnus Nijholff Publishers,1985,176-200.
    [12]Burns R.G.Enzyme activity in soil:location and a possible role in microbial ecology[J].Soil Biol.Biochem.,1982,12:423-427.
    [13]HeW.X.,Lai H.X.,Wu Y.J.,et al.Study on soil enzyme activities affected by fertilizing cultivation[J].Plant and soil,2001,27(3):265-268.
    [14]Srivastava S.C.,Singh J.S.,Microbial C.N and P in dry tropical forest soils:Effects of alternate land uses and nutrient flux[J].Soil Biol.Biochem.,1991,23(2):117-124.
    [15]Singb J.S.,Raghubanshi A.S.,Srivastava S.C.Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J].Nature,1989,338:499-500.
    [16]任祖淦,陈玉水,唐福钦,等.有机肥无机肥配施对土壤微生物和酶活性的影响[J].植物营养与肥料学报,1996,2(3):279-283.
    [17]俞慎,李振高.薰蒸提取法测定土壤微生物量研究进展[J].土壤学进展,1994,22(6):42-50.
    [18]姚槐应,何振立,黄昌勇.提高氮肥利用率的微生物量机制探讨[J].农业环境保护,1999,18(2):54-56.
    [19]Shen S.M.,Pruden G.,Jenkinson D.S.Mineralization and immobilization of microbial biomass nitrogen[J].Soil Boil.Boichem.,1984,16:437-444.
    [20]Brookes P.C.,Landman A.,Pruden G.,et al Chloroform fumigation and the release of soil nitrogen:A rapid direct extraction method to measure microbial biomass nitrogen in soil[J].Soil Biol.Boichem.,1985,17:837-842.
    [21]Voroney R.P.,Paul E.A.Determination of k sub(c) and k sub(n) in situ for calibration of the chloroform fumigation-incubation method[J].Soil Biol.Biochem.,1984,16(1):9-14.
    [22]Witter E.,Martensson A.M.,Garciu F.V.Size of the soilmicrobial biomass in a long term field experiment as affected by differentN fertilizers and organic manure[J].Soil Biol.Biochem.,1993,25:659-669.
    [23]隋跃宇,张兴义,焦晓光.不同施肥制度对玉米生育期土壤微生物量的影响[J].中国生态农业学报,2007,15(3):55-57.
    [24]李世清,李生秀,邵明安,等.半干旱农田生态系统作物根系和施肥对土壤微生物体氮的影响[J].植物营养与肥料学报,2004,10(6):613-619.
    [25]罗明,文启凯,陈全家,等.不同用量的氮磷化肥对棉田土壤微生物区系及活性的影响[J].土壤通报,2000,31(2):66-69.
    [26]韩广轩,周广胜.土壤呼吸作用时空动态变化及其影响机制研究与展望.植物生态学报,2009,33(1):197-205.
    [27]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [28]姚占芳,吴云汉.微生物学实验技术[M].北京:气象出版社,1998.
    [29]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [30]沈萍.微生物学[M].北京:高等教育出版社,2001.
    [31]Raich J W,Tufekcioglu A.Vegetation and soil res-piration:correlations and controls.Biogeochemistry,2000,48,71-90
    [32]H(o|¨)gberg P,Nordgren A.Carbon allocation between tree root growth and root respiration in boreal pine forest.Oecologia,2002,132,579-581.
    [33]Lohila A,Aurela M,Regina K,et al.Soil and total ecosystem respiration in agricultural fields:effect of soil and crop type.Plant and Soil,2003,251,303-317.
    [34]Atkin O K,Edwards E J,Loveys B R.Response of root respiration to changes in temperature and its relevance to global warming.New Phytologist,2000,147,141-154.
    [35]Yuste J C,Janssens I A,Carrara A,et al.Annual Q_(10) of soil respiration reflects plant phonological patterns as well as temperature sensitivity.Global Change Biology,2004,10,161-169.
    [36]杨兰芳,蔡祖聪,祁士华.玉米生长和光合作用对土壤呼吸d~(13)C的影响[J].生态学报,2007,27,1072-1078.
    [37]王孝娣,王海波,翟衡.高效有机肥对设施栽培土壤温度及桃生长发育的影响[J].北方园艺,2005,(6):18-20.
    [38]宋永林,姚造华,袁锋明,等.氮磷钾化肥与不同有机物料配施对夏玉米生育性状及产量的影响[J].土壤肥料,2000,(6):44-45.
    [39]冯锐,毕江涛,王晓.不同培肥措施对壤土酶活性的影响[J].土壤通报,1999,30(5):212-213,220.
    [40]高明,周宝同,魏朝福,等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报,2004,15(7):1177-1181.
    [41]阳承胜,蓝崇钰,束文圣.矿业废弃地生态恢复的土壤生物肥力[J].生态科学,2000,19(3):73-78.
    [42]王珂,杨玉爱,袁可能.有机肥对小麦根际土壤酶活性的影响(英文).浙江大学学报(农业与生命科学版),1995,21(2):111-115..
    [43]郭天财,宋晓,马冬云,等.氮素水平对小麦根际微生物及土壤酶活性的影响[J].水土保持学报,2006,20(3):129-131,140.
    [1]Gabelman,W.H.Genetic potentials in nitrogen,phosphorus,and potassium efficiency[M].In M.J.Wright(ed.),Plant Adaption to Mineral Stress in Problem Soils.Cornell Univ.Press,Ithaca,New York,1976,205-202.
    [2]Moll,R.H.,E.J.Kamprath,and W.A.Jackson.Development of nitrogen-efficient prolific hybrids of maize[J].Crop Sci.,1987,27:181-186.
    [3]Moll,R.H.,E.J.Kamprath,and W.A.Jackson.Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J].Agron.J.,1982,74:562.
    [4]刘建安.玉米氮效率基因型分析及遗传差异[D].中国农业大学博士论文,2005.
    [5]Muruli B I,Paulasen G M.Improvement of nitrogen use efficiency and its relationship to other traits in maize[J].Maydica,1981,(26):63-73.
    ]6]Lafitte H R,Edmeades G O.Improvement for tolerance to low soil nitrogen in tropical maize selection criteria[J].Field Crop Research,1994,(39):1-14.
    [7]Alagarswemy G,Tharama W S.In genetic aspect of plant nutrition[M].Martinus Nijhoff Publishers,1983,423-427.
    [8]Blixt P B G.Crop Breeding,A Contemporary Basis[M].Oxford:Pergamon Press,1984,67-114.
    [9]李韵珠,王凤仙,黄元仿.土壤水分和养分利用效率几种定义的比较[J].土壤通报,2000,31(4):150-155.
    [10]Whitfield D M,Smith CJ,Gyles O A.Effects of irrigation,nitrogen and gyp sum on yield nitrogen accumulation and water use by wheat[J].Field Crop Res.,1989,20:261-277.
    [11]Isfen D.Nitrogen physiological efficiency index in selected spring barely cultivars[J].J.Plant Nutrition,1990,13:907-914.
    [12]赵鹏,陈阜.秸秆还田配施化学氮肥对冬小麦氮效率和产量的影响[J].作物学报,2008,34(6):1014-1018.
    [13]Ntanos D A,Koutroubas S D.Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions[J].Field Crops Res,2002,74:93-101.
    [14]李世清,王瑞军,张兴昌,等.小麦氮素营养与籽粒灌浆期氮素转移的研究进展[J].水土保持学报,2004,18(3):106-111.
    [15]赵俊晔,于振文.不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响[J].生态学报,2006,26(3):815-822.
    [16]王霖晓,沈阿林,寇长林,等.小麦-玉米轮作下有机肥与氮肥配施对土壤微生物量氮及作物氮利用的影响[J].河南农业科学,2007,(6):96-99.
    [17]苏娜,杨丽娟,周崇俊,等.有机肥与氮肥配施对设施土壤中碱解氮含草的影响[J].安徽农业科学,2006,34(24):6542-6543.
    [18]向春阳,马艳梅,田秀平.长期耕作培肥对白浆土磷组分及其有效性的影响[J].作物学 报,2005,31(1):48-52.
    [19]王林权,周春菊,王俊儒,等.鸡粪中的有机酸及其对土壤速效养分的影响[J].土壤学报,2002,39(2):268-275.
    [20]周晓芬,张彦才,李巧云.有机肥料对土壤钾素供应能力及其特点研究[J].中国农业生态学报,2003,11(2):61-63.
    [21]刘义新,韩移旺,唐绅,等.结晶有机肥对土壤供钾能力及钾在烟株的分布特点[J].植物营养与肥料学报,2004,10(1):107-109.
    [22]Aude B,Christophe L,Christine B,et al.Nitrogen remobilization during grain filling in wheat:Genotypic and environmental effects[J].Crop Sci.,2005,45(3):1141-1150.
    [23]周顺利,张福锁,王兴仁,等.高产条件下不同品种冬小麦氮素吸收与利用特性的比较研究[J].土壤肥料,2000,(6):20-24.
    [1]梁银丽.有机肥对旱地农业持续发展的重要性及机理探讨[J].水土保持通报,1998,18(7):67-70.
    [2]姜东,于振文,许玉敏,等.有机无机肥料配合施用对冬小麦根系和旗叶衰老的影响[J].土壤学报,1999,36(4):440-447.
    [3]王谦,陈景玲,孙治强.LAI-2000冠层分析仪在不同植物群体光分布特征研究中的应用[J].中国农业科学,2006,39(5):922-927.
    [4]McIntyre B D,Riha S J,Ong C K.Light interception and evapotranspiration in hedgerow agroforestry systems[J].Agricultural and Forest Meteorology,1996,81:31-40.
    [5]Sinoquet H,Thanisawanyangkura S,Mabrouk H,et al.Characterization of the light environment in canopies using 3D digitizing and image processing[J].Annals of Botany,1998,82:203-212.
    [6]Vesala T,Markkanen T,Palva L,et al.Effect of variations of PAR on CO_2 exchange estimation for Scots pine[J].Agricultural Forest Meteorology,2000,100:337-347.
    [7]Choudhury Bhaskar J.Modeling radiation -and carbon- use efficiencies of maize,sorghum and rice[J].Agricultural and Forest Meteorology,2001,106:317-330.
    [8]田蕴德.有机肥与氮磷化肥配施对豌豆长势及根腐病的影响[J].中国农业科学,1994,27(3):56-62.
    [9]王志芬,范仲学,张凤云,等.鸡粪对高产冬小麦根系活力和光合性能的影响[J].核农学报,2003,17(5):379-382.
    [10]李絮花,杨守祥,于振文,等.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-472.
    [11]邹国元,刘宝存,王美菊,等.施肥对蕹菜生长及品质的影响[J].华北农学报,2002,17(2):97-101.
    [12]赖涛,沈其荣,茆泽圣,等.几种有机和无机氮肥对草莓生长及其氮素吸收分配影响的差异[J].植物营养与肥料学报,2006,12(6):850-857.
    [13]王昌全,谢德体,李冰,等.不同有机肥种类及用量对芹菜产量和品质的影响[J].中国农学通报,2005,21(1):192-195.
    [14]韩晓日,郑国砥,刘晓燕,等.有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征[J].中国农业科学,2007,40(4):765-772.
    [15]王林权,周春菊,王俊儒,等.鸡粪中的有机酸及其对土壤速效养分的影响[J].土壤学报,2002,39(2):268-275.
    [16]罗安程,T.B.Subedi,章永松,等.有机肥对水稻根际土壤中微生物和酶活性的影响[J].植物营养与肥料学报,1999,5(4):321-327.
    [17]周卫军,王凯荣,张光远,等.有机与无机肥配合对红壤稻田系统生产力及其土壤肥力的影响[J].中国农业科学,2002,35(9):1109-1113.
    [18]王旭东,张一平,吕家珑.不同施肥条件对土壤有机质及胡敏酸特性的影响[J].中国农业科学,2000,33(2):75-81.
    [19]王之杰,郭d财,朱云集,等.超高产小麦冠层光辐射特征的研究[J].西北植物学报,2003,23(10):1657-1662.
    [20]林忠辉,周允华,王辉民,等.青藏高原冬小麦冠层几何结构、光截获及其对光合潜能的影响[J].生态学报,1998,18(4):392-398.
    [21]胡延吉,兰进好,赵坦方,等.不同穗型的两个冬小麦品种冠层结构及光合特性的研究[J].作物学报,2000,26(6):905-912.
    [22]史泽艳,高晓飞,谢云.SUNSCAN冠层分析系统在农田生态系统观测中的应用[J].干旱地区农业研究,2005,23(4):78-82.
    [23]姜丽芬,石福臣,王化田,等.叶绿素计SPAD-502在林业上应用[J].生态学杂志,2005,24(12):1543-1548.
    [24]Nichiporovich AA.Properties of plant crops as optical system[J].Plant Physiology,1961,8:428-435.
    [25]Medlyn B.Physiological basis of the light use efficiency model[J].Tree Physiology,1998,18:167-176.
    [26]Goudriaan J and Monteith J L.A mathematical function for crop growth based on light interception and leaf area expansion[J].Annals of Botany,1990,66:695-701.
    [27]Brooks T J,Wall G W,Pinter Jr P J,et al.Acclimation response of spring wheat in a free-air CO_2 enrichment(FACE) atmosphere with variable soil nitrogen regimes.3.Canopy architecture and gas exchange[J].Photosynthesis Research,2000,66:97-108.
    [28]Mc Intyre B D,Riha S J,Ong C K.Light interception and evapotranspiration in hedgerow agroforestry systems[J].Agricultural and Forest Meteorology,1996,81:31-40.
    [29]董树亭.高产冬小麦群体光合能力与产量关系的研究[J].作物学报,1991,17(6):461-468.
    [30]曾浙荣,赵双宁,李青.北京地区高产小麦品种的冠层形成、光截获和产量[J].作物学报,1991,17(3):161-170.
    [1]赵忠宝,王福绪,刘奕琳,等.杨粮复合系统内生态因子的变化及对小麦产量的影响[J].南京林业大学学报:自然科学版,2008,2(1):36-38.
    [2]叶优良,王桂良,陈伟强,等.豫北高产灌区小麦生产与肥料施用状况研究[J].河南农业科学,2008,(1):53-57.
    [3]黄振喜,王永军.产量15000 kg/ha以上夏玉米灌浆期间的光合特性[J].中国农业科学,2007,40(9):1898-1906.
    [4]马东辉,赵长星,王月福,等.施氮量和花后土壤含水量对小麦旗叶光合特性和产量的影响[J].生态学报,2008,28(10):4896-4901.
    [5]郭天财;宋晓;马冬云;等.施氮水平对冬小麦旗叶光合特性的调控效应[J].作物学报,2007,33(12):1977-1981.
    [6]肖凯,张树华,邹定辉,等.不同形态氮素营养对小麦光合特性的影响[J].作物学报,2000,26(1):53-58.
    [7]康国章,郭天财,朱云集,等.不同生育时期追氮对超高产小麦生育后期光合特性及产量的影响[J].河南农业大学学报,2000,34(2):103-106.
    [8]邹铁祥,戴廷波,姜东,等.氮、钾水平对小麦花后旗叶光合特性的影响[J].作物学报,2007,33(10):1667-1673.
    [9]朱云集,谢迎新,郭天财,等.硫肥对两个不同穗型冬小麦品种光合特性及产量的影响[J].作物学报,2006,32(3):436-441.
    [10]朱云集,李国强,郭天财,等.不同供氮条件下施硫对冬小麦光合特性及籽粒产量的影响[J].水土保持学报,2007,21(2):142-146.
    [11]王法宏,任德昌,王旭清,等.施肥对小麦根系活性、延缓旗叶衰老及产量的效应[J].麦类作物学报,2001,21(3):51-54.
    [12]张睿,刘党校.氮磷与有机肥配施对小麦光合作用及产量和品质的影响[J].植物营养与肥料学报,2007,13(4):543-547.
    [13]陈学留,王志芬,余美炎,等.有机肥与无机肥配施对高产小麦光合产物运转分配及对磷的吸收利用影响[J].土壤肥料,1993,(5):8-11.
    [14]刘全吉,孙学成,胡承孝,等.砷对小麦生长和光合作用特性的影响[J].生态学报,2009,29(2):854-859.
    [15]许大全,李德耀,沈允钢,等.田间小麦叶片光合效率日变化与光合“午睡”的关系[J].植物生理学报,1992,10(3):269-275.
    [16]Gummuluru S,Hobbss L A,Jana S.Physiological responses of drought tolerant and drought susceptible durum wheat genotypes[J].Photosynthetica,1989,23:479-485.
    [17]Baker D N,Musgrave K B.The effects of two level moisture stresses on the rate of apparent photosynthesis in corn[J].Crop Science,1964,4:249-253.
    [18]赵致,陈坤玲,张军.不同类型小麦品种抽穗后光合生理性状的变化[J].西南农业学报,1997,10(4):20-26.
    [19]许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246-252.
    [20]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [21]Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis[J].Ann Rev Plant Physiol,1982,33:317-323.
    [1]徐兆飞,张惠叶,张定一.小麦品质及其改良[M].北京:气象出版社,1999.
    [2]马宗斌,熊淑萍,马新明,等.施氮对小麦品质的影响研究进展[J].河南农业大学学报,2007,41(1):117-122.
    [3]Mary J G,Reuben M L,Jeffrey C S,et al.Managing irrigation and nitrogen fertility of hard spring wheats for optimum bread and noodle quality[J].Crop Science,2005,45(5):2049-2059.
    [4]Boehm D J,Berzonsky W A,Bhattacharya M.Influence of nitrogen fertilizer treatments on spring wheat(Triticum aestivum L.) flour characteristics and effect on fresh and frozen dough quality[J].Ccrcal chemistry.2004,81(1):51-54.
    [5]Robert J K,Michael R H,Justin T P,et al.Nitrogen management for mid-atlantic hard red winter wheat production[J].Agronomy.J.,2005,97(1):257-264.
    [6]朱红勋,张翔,孙春河.不同施肥结构的增产效应和对小麦籽粒品质的影响[J].华北农学报,1995,10(2):100-105.
    [7]张翔,朱洪勋,孙春河,等.轮作制下长期施肥对小麦籽粒品质的影响[J].干旱地区农业研究,1997,15(4):26-29,65.
    [8]吕凤荣,刘康峰,等.有机肥对小麦产量及品质的影响[J].中国农学通报,2000,16(3):39-40.
    [9]姜东,戴廷波,荆奇,等.有机无机肥长期配合施用对冬小麦籽粒品质的影响[J].生态学报,2004,24(7):1548-1555.
    [10]樊虎玲,郝明德,李志西,等.黄土高原旱地化肥和有机肥配施对小麦品质的影响[J].干旱地区农业研究,2005,23(5):72-76.
    [11]赵广才,何中虎,田奇卓,等.农艺措施对中优9507小麦蛋白组分和加工品质的调节效应[J].作物学报,2003,29(3):408-412.
    [12]许振柱,于振文,王东,等.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响[J].作物学报,2003,29(5):682-687.
    [13]刘尊英,郭天财,朱云集,等.氮素供应对小麦子粒蛋白质组分及积累动态的影响[J].河南农业大学学报,1999,33(4):317-320.
    [14]张保军,李硕碧,王银银,等.两地小麦籽粒蛋白质品质的特点表现[J].水土保持研究,2002,9(2):124-127.
    [15]张翼涛,李硕碧,张联会.不同栽培条件与小麦籽粒品质的关系[J].干旱地区农业研究,1991,9(2):16-21.
    [16]荆奇,曹卫星,戴廷波.小麦籽粒品质形成及其调控研究进展[J].麦类作物,1999,19(4):46-50
    [17]Kosmolak F G.A relationship between durum wheat qtiality and glidin electrophorgrams[J].Can.J.Sci.,1980,60:427-432.
    [18]Lagudah E S.The influence of high-molecular-weightlsubunitslof glutenin from triticum tuschii on flour qaulity of synthetic hexaploid wheat[J].J.Ceaerl Sci.1987,5:129-138.
    [19]李絮花,杨守祥,于振文,等.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营 养与肥料学报,2005,11(4):467-472.
    [20]罗安程,ZB.Subedi,章永松,等.有机肥对水稻根际土壤中微生物和酶活性的影响[J].植物营养与肥料学报,1999,5(4):321-327.
    [21]周焱,罗安程.有机肥处理对小麦根系生长、活力和磷吸收的影响[J].植物营养与肥料学报,1997,3(3):243-248.
    [22]徐阳春,沈其荣.有机肥和化肥长期配合施用对土壤及不同粒级供氮特性的影响[J].土壤学报,2004,41(1):87-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700