用户名: 密码: 验证码:
X射线脉冲星信号检测及位相测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲星导航概念自提出以来,已经经过了近半个世纪,但直到十多年前利用X射线脉冲星导航定位可行性得到论证后,才逐渐受到重视。得益于其独特的信号辐射方式以及脉冲周期的稳定性,X射线脉冲星已成为目前人们所认识的十分理想的天文导航信源,并在空间航天器自主导航领域表现出了良好的应用前景。目前,国际上已经开展了利用X射线脉冲星的自主导航技术的空间试验研究,但这项新型技术仍处在基础理论研究和可行性验证阶段。特别是在国内,有关脉冲星导航的实质性的研究才刚刚起步,诸如极弱X射线脉冲星信号高精度计时观测、高效高性能位相测量、时间传递误差修正等制约X射线脉冲星导航(XPNAV)精度提高的关键问题仍没有得到很好的决。本文主要围绕XPNAV中的信号检测、累积轮廓建立和位相测量等问题展开研究,主要工作内容包括:
     (1)分析了可用于脉冲星信号检测的多个特征参量,如周期、轮廓和流量强度等。单独利用周期或轮廓频域特征检测和辨识脉冲星信号的方法可行,但对于强度极弱、探测技术较为复杂的X射线脉冲星信号,这些方法并不令人满意。已有研究表明,由于频域方法存在谐波和色噪声等因素的影响,在对X射线脉冲星信号的检测中存在失效的情况,而时域方法有时表现的更好。将累积轮廓、流量和周期三个重要特征应用于X射线脉冲星信号检测中,提出基于Bayesian估计的时域检测方法。利用仿真数据和(?)XTE卫星的实测数据进行实验验证显示,该法性能优于同类的基于高斯分布模型的检测方法,在检测信号的同时能在一定精度下给出信号位相偏移值。
     (2)利用累积轮廓进行位相测量是XPNAV导航信息获取的基本途径,轮廓累积的重要性不言而喻。对转化到SSB原点处的X射线脉冲星光子序列,传统的轮廓累积方法是先识别信号周期,然后再按周期折叠累加得到脉冲轮廓。这种方法依赖于周期识别的准确性,对累积轮廓质量也无评价标准。本文分析了脉冲星累积轮廓和周期的强相关性,提出了周期未知时直接进行轮廓累积的最小熵方法,并对其进行证明,在此基础上,讨论了该方法在周期识别中的作用。利用仿真数据和RXTE卫星的实测数据实验验证了该方法的有效性。脉冲星累积轮廓通常被认为是脉冲星辐射区结构一维分布的反映,人们在对大量累积轮廓统计分析中发现这些轮廓均具有核成分,进而提出利用累积轮廓的高斯成分分离方法分析脉冲星辐射区结构。我们将高斯成分分离方法用于脉冲星累积轮廓建模,发现该模型可以很好地逼近标准轮廓,并将该模型用于累积轮廓位相测量的CRLB分析中,以评价累积轮廓成分对位相测量的影响。结果显示轮廓成分间的相关性和轮廓成分宽度是影响测相精度的两个重要因素。
     (3)考虑到Taylor FFT等频域位相测量的实质是在投影定理下用各次谐波的线性叠加对原函数拟合,提出了基于最小熵准则的位相测量高斯拟合方法。实验说明,所提方法在相对较低信噪比条件下,性能优于Taylor FFT方法。鉴于该方法对轮廓质量要求较高,在实际应用中可能造成困难,本文建立了一种新的脉冲星信号概率模型,用于描述在观测时间内光子到达频度随采样时间的分布。分析表明该模型可以很好的刻画轮廓形变与周期误差间的关系。进而本文提出基于该模型的位相和位相速率联合测量方法,将多普勒效应视为参量,利用所提概率模型描述信号的直接累积轮廓,然后利用优化方法求。仿真实验说明该方法对累积轮廓质量要求较低,能进行位相和位相速率联合测量,且位相测量精度优于Taylor FFT方法。
     (4)从XPNAV的性能来看,其定位误差不到最小模糊距离的十分之一,因此连续正常工作时,可以不考虑整周期模糊问题。而对于初始位置未知或者因系统故障导致位置记忆丧失的情况,模糊问题是不可避免的。穷举搜索法是XPNAV常用且有效的模糊方法,其不足之处在于复杂度高。本文提出一种快速空间搜索方法。该方法依据脉冲星的特征周期将搜索空间划分为多个子空间,利用相位投影增量建立基于满二叉树的快速搜索算法遍历子空间模糊。仿真实验说明,得益于搜索空间约束和快速二叉树搜索,该方法能有效提高模糊空间搜索速率。
     (5)尽管XPNAV相对于其它天文导航方法优势明显,但目前为止,它并不算一个成熟的导航方法。传统的天文自主导航方法利用地球等对星光掩蔽作用进行轨道航天器定轨,利用星敏感器观测恒星和地球问的角距等作为信息输入,与XPNAV机理完全不同。为提高导航精度,增强自主性,提出一种将脉冲星位相测量和星敏感器星光角距测量结合的信息融合天文自主导航方法,并基于UKF (Unscented Kalman Filter)使用真轨道参数做了仿真实验,结果表明组合两种导航方法能有效提高位置和速度估计精度。进而我们也对XPNAV与其它导航系统组合的可能性和有效性做了分析讨论。
     (6)地面仿真系统研制在导航系统研究中具有重要意义,由于在地面上无法接收脉冲星的空间辐射X射线信号,对XPNAV而言地面仿真尤其重要。本文设计了一种X射线脉冲星导航信号仿真方案,重点讨论了虚拟参考系建立、信号建模以及硬件系统构成。
Since proposal of pulsar navigation, about half a century elapses. But it does not attract much attention until the feasibility was confirmed ten years ago. Due to its special radiation characteristics and periodic stability, X-ray pulsar has been considered as an ideal navigation source, and shows its great application potential in spacecraft autonomous navigation. By now, space experiments have be carried out for autonomous navigation using X-ray pulsars. But this new technology is still on stage of theory exploration and feasibility validation。 Especially, the substantive research about pulsar navigation is infancy, the key issues limited the precision of X-ray Pulsar NAVigation (XPNAV), such as high precision observation for extremely weak signals, high efficiency and performance phase measurement and error correction of time transfer have not been solved well. This dissertation focus on the problems of signals detecting, integrated profile establishing and phase measurement, and the main content can be summarized as:
     (1) Several characteristic parameters which can be used in signal detection, such as periodic, profile and flux intensity, have been analyzed. It is feasible to detect or identify the pulsar signal using the periodic or the profile characteristics in frequency domain respectively. But for extremely weak signal which is complex to detect, these methods are not satisfactory. Studies have shown that, due to influence of harmonic and color noise, there are insufficient situations for the frequency domain method in X-ray pulsar signal detecting, and sometimes, the time domain method do better. In this paper, characteristics of integrated profile, flux intensity and periodic are used in X-ray pulsar detecting, and a time domain method based on Bayesian estimation is proposed. The experiments employing simulation data and RXTE data show that this method does better than the same kind of Gaussian distribution model based method, and the phase offset can be estimated simultaneously.
     (2) The basic approach to get navigation information of XPNAV is to measure the phase of integrated profile. For the photons series whose arrival time has been transferred to SSB, the traditional method is to fold the data into one period which should be solved firstly. This method depends on the precision of the period, and has not evaluation criterion. The correlation between period and integrated profile is analyzed in this paper. A minimum entropy method for direct profile folding without period is proposed and proved. Consequently, its ability of solving period is discussed. The efficiency is verified experimentally using simulated and RXTE data. The pulsar integrated profile commonly is considered as one dimensional distribution of the radiation region. The statistical analysis of great integrated profiles shows there are kernel components in these profiles, and then the Gaussian component decomposition method (GFSAP) is proposed to explain the radiation region of pulsar. We use the GFSAP to model pulsar integrated profiles. Since it approximates the profiles well, we apply this model to analyze the CRLB of integrated profile phase measurement to evaluate the effect of integrated profile components in phase measurement. The results show that the correlation among the components and width are two important factors relate to precision of phase measurement. In view of that, the frequency phase measurement method as Taylor FFT is essentially fitting of original function using addition of several harmonics. Keep which in mind, this paper propose the Gaussian fitting method based on minimum entropy criterion. The experiments show that the proposed method does better than Taylor FFT method in relatively low SNR condition.
     (3) The phase measurement using integrated profile requires high quality of profile, which lead to difficulty in application. This paper establishes a new probability model for pulsar signal to describe distribution of arrival photon frequency with respect to sampling time in observation duration. The analysis shows the good ability of this model in expressing relation between profile deformation and period error. Based on this model, this paper proposed a joint measurement method for phase and phase rate which takes Doppler as a parameter to formulate the directly folded profile. Then, the optimization method is used to resolve the two variables. Simulation experiments show that this method can estimate phase and phase rate without folding out undistorted profile, and its precision is better than Taylor FFT method.
     (4) From the performance of XPNAV, its position error is less than one tenth of the minimum ambiguity distance, so the ambiguity problem can be ignored when the system is working normally and continuously. But for the situations without initial position or the position record losing due to system fault, the ambiguity must be handled. The exhaustive search method is an effective method commonly used, whose shortage is high complexity. This paper proposed a kind of fast space search method which divides the ambiguity space to multiple subspaces. Then, the phase project increment is used to establish fast searching method based on full binary tree. Simulation experiments show that benefiting from the diminution of space scale and fast binary tree, the proposed method promoted the space search efficiency a lot.
     (5) By now, although the superiority of XPNAV is obvious comparing with other celestial navigation method, it is not a mature method. The traditional method which uses the star occultation of earth to determinate the spacecraft orbit and takes the angle between star and earth as information input is total different from XPNAV. Aiming at increasing navigation precision and autonomy, an information fusion method combined pulsar phase and star angel measurement is proposed. Based on Unscented Kalman Filter (UKF), real orbit parameters are used in experiment, and the results show than position and velocity estimation precision can be enhance efficiency. Further, the feasibility and possibility for the combination with other navigation method are discussed.
     (6) The simulation system on ground is very important for navigation system. It is especially significance for XPNAV due to impossibility to receive the X-ray pulsar signal in space. This paper preliminary designs a kind of signal simulation scheme, which focus on the establishing virtual reference frame, signal modeling and main hardware units.
引文
[1]Kaplan Elliott D.,编Christopher J. Hegarty,寇艳译.GPS原理与应用[G].北京:电子工业出版社,2010.
    [2]新华网http://www.ce.cn/cysc/jtys/hangkong/200710/24/t20071024_13355199. shtml
    [3]邓雪梅.实现人类重返月球的“星座”计划[J].世界科学,2009,1(08):7-8.
    [4]VISSER P, vAN DEN IJSSEL J. GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE[J]. JOURNAL OF GEODESY, 2000,74(7-8):590-602.
    [5]L. A E, P. A A, V. B K R, et al. Autonomous navigation system of near-Earth spacecraft J]. Journal of computer & systems sciences international 2009,48(2):295-312.
    [6]舒逢春.利用国内VLBI网跟踪大椭圆轨道卫星[J].天文学报2007,48(2):9-13.
    [7]张乃通,李晖,张钦宇.深空探测通信技术发展趋势及思考[J].宇航学报,2007,28(4):786-793.
    [8]S. M D, C. M. VLBI measurements of Caribbean and South American motion[J]. Geophysical research letters,1999,26(7):919-922.
    [9]Psiaki, M.L., and Martel, F. Autonomous Magnetic Navigation for Earth Orbiting Spacecraft[C], Proceedings of the Third Annual AIAA/USU conference on Small Satellites, Sept.1989, Logan, UT, pp. unnumbered.
    [10]Psiaki M L, Fox S M, Huang L. Ground tests of magnetometer-based autonomous navigation (MAGNAV) for low-earth-orbiting spacecraft[J]. Journal of Guidance, Control, and Dynamics.1991,16(1):206-214.
    [11]Psiaki M L. Autonomous orbit and magnetic field determination using magnetometer and star sensor data[J]. Journal of Guidance, Control, and Dynamics.1995,18(3):584-592.
    [12]Shorshi G, Bar-Itzhack I Y. Satellite autonomous navigation based on magnetic field measurements. [J]. Journal of Guidance Control Dynamics, 1995,18:843-850.
    [13]Psiaki M L. Autonomous orbit and magnetic field determination using magnetometer and star sensor data[J]. Journal of Guidance Control Dynamics, 1995,18:584-592.
    [14]田玉龙,房建成,宁晓琳.航天器自主天文导航原理与方法[M].北京:国防工业出版社,2006.
    [15]刘安.淮南子.原道训[M].广州:广州出版社,2004.
    [16]Chubei M S, Koval'Chuk L V, Kholodova S I, et al. Star sensor for independent navigation in deep space[J]. J. Opt. Technol.,2007,74(2):107-114.
    [17]MA Jianbo X J C. A method of autonomous orbit determination for satellite using star sensor [J]. Science in china Ser.G Physics, Mechanics & Astronomy, 2005,48(3):268-281.
    [18]Ali J, Zhang C, Fang J. An algorithm for astro-inertial navigation using CCD star sensors[J]. Aerospace Science and Technology,2006,10(5):449-454.
    [19]Ning X, Fang J. A new autonomous celestial navigation method for the lunar rover[J]. Robotics and Autonomous Systems,2009,57(1):48-54.
    [20]Ning X, Fang J. An autonomous celestial navigation method for LEO satellite based on unscented Kalman filter and information fusion[J]. Aerospace Science and Technology,2007,11(2):222-228.
    [21]JIANCHENG F, XIAOLIN N. Installation direction analysis of star sensors by hybrid condition number[J]. IEEE Transactions on Instrumentation and Measurement, 2009,58(10):3576-3582.
    [22]Bian Hong Wei, Jin Zhi Hua, Wang Jun Pu. Innovation-based estimation adaptive Kalman filter algorithm for INS/GPS integrated navigation system [J]. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2006,40(6):1000-1003.
    [23]Sala J, Urruela A, Villares X. Feasibility study for a spacecraft navigation system relying on pulsar timing information[R]. European Space AgencyAdvanced Concepts Team ARIADNA Study 03/4202,23 June 2004.
    [24]帅平,陈忠贵,曲广吉.关于X射线脉冲星导航的轨道力学问题[J].中国科学(E辑:技术科学),2009,39(03):556-561.
    [25]Ray P S, Sheikh S I, Graven P H, et al. Deep Space Navigation Using Celestial X-ray Sources, In Institute of Navigation National Technical Meeting[C].2008.
    [26]Matsakis D N, Taylor J H, Eubanks T M. A statistic for describing pulsar and clock stabilities.[J]. Astronomy and Astrophysics,1997,326:924-928.
    [27]Woodfork D W. The Use of X-Ray Pulsars for Aiding GPS Satellite Orbit Determination[D]. Department of the Air Force, Air Force Institute of Technology, Ohio,2005.
    [28]Sheikh S I. the use of variable celestial x-ray sources for spacecraft navigation[D]. Doctoral DIssertation,University of maryland,2005.
    [29]Emadzadeh A A, Speyer J L. On Modeling and Pulse Phase Estimation of X-Ray Pulsars[J]. IEEE Transactions on Signal Processing,2010,58(9):4484-4495.
    [30]谢振华,许录平,倪广仁.基于双谱的脉冲星累积脉冲轮廓时间延迟测量[J].物理学报,2008(10):6683-6688.
    [31]Graven P, Collins J, Sheikh S, et al. XNAV beyond the moon[C], ION 63rdAnnual Meeting, April 23-25,2007, Cambridge, Massachusetts.
    [32]Emadzadeh A A, Speyer J L. Relative Navigation Between Two Spacecraft Using X-ray Pulsars[J]. IEEE Transactions on Control Systems Technology, 2011,19(99):1021-1035.
    [33]Sheikh S I, Pines D J. Recursive estimation of spacecraft position and velocity using X-ray pulsar time of arrival measurements [J]. Navigation, Journal of the Institute of Navigation,2006,53(3):149-166.
    [34]Kai X, Liangdong W C A L. The use of X-ray pulsars for aiding navigation of satellites in constellations[J]. Acta Astronautica,2008,14(2):1-10.
    [35]Friedman H, Lichtman S W, Byram E T. Photon counter measurements of solar X-rays and extreme ultraviolet light[J]. Physical Review,1951,83(5):1025.
    [36]Giacconi R, Gursky H, Paolini F R, et al. Evidence for x rays from sources outside the Solar system[J]. Physical Review Letters,1962,9(11):439-443.
    [37]Smith J F, Courtier G M. The Ariel 5 Programme[C]. Proceedings of the Royal Society of London.1976,350(1663):421.
    [38]Mayer W F. The SAS-3 X-ray observatory[R]. Johns Hopkins APL Technical Digest,1975,14:14-22.
    [39]Peterson L E. Instrumental technique in X-ray astronomy[J]. Annual Review of Astronomy and Astrophysics,1975,13:423-509.
    [40]Caballero I. X-ray observations of the accreting X-ray binary pulsar 0535+26 in outburst[D]. IAAT University of Tuebingen,2009.
    [41]帅平,李明,陈绍龙,等.X射线脉冲星导航系统原理与方法[M].北京:中国宇航出版社,2009.
    [42]Remillard R A. X-ray detectors for astrophysics:Nuclear Instruments and Methods in Physics Research, Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, Riga, Latvia,2004 [C].
    [43]Chadwick J. Possible existence of a neutron[J]. Nature,1932,129(312):692-708.
    [44]Baade W, Zwicky F. Supernovae and cosmic rays[J]. Phys. Rev,1934,45:138.
    [45]Hewish A, Bell S J, Pilkington J, et al. Observation of a rapidly pulsating radio source[J]. Nature,1968,217(5130):709-713.
    [46]Reichley P, Downs G, Morris G. Use of pulsar signals as clocks.[J]. JPL Quart. Tech. Rev.1,1971,2:80-86.
    [47]Downs G S. Interplanetary navigation using pulsating radio sources, N/4-34150[R].NASATechnical Reports N/4-34150,1974.
    [48]Wallace K. Radio stars, what they are and the prospects for their use in navigational systems[J]. Journal of Navigation,1988,41:358-373.
    [49]Chester T J, Butman S A. Navigation Using X-ray Pulsars[R]. NASA, The Telecommunications and Data Acquisition Progress Report, TDA PR 42-63, March and April 1981, pp:22-25.
    [50]J H. Principles of x-ray navigation[D]. Stanford:Stanford University,1996.
    [51]Wood, K. S. Navigation Studies Utilizing The NRL-801 Experiment and the ARGOS Satellite[C]. Small Satellite Technology and Applications Ⅲ, Ed. B. J. Horais, International Society of OpticalEngineering (SPIE) Proceedings. 1993,1940:105-116
    [52]Ray, P. S., et al., iAbsolute Timing of the USA Experiment Using Pulsar Observations[C]. American Astronomical Society, HEAD Meeting, March 2003
    [53]Hanson J, Sheikh S, Graven P, et al. Noise analysis for X-ray navigation systems: Position, Location and Navigation Symposium[C],2008 IEEE/ION, Proceedings of IEEE/ION PLANS 2008, Monterey, CA, May 2008, pp.704-713.
    [54]Sheikh S I, Hanson J E, Collins J, et al. Deep Space Navigation Augmentation Using Variable Celestial X-Ray Sources[C]. Proceedings of the 2009 International Technical Meeting of The Institute of Navigation, Anaheim, CA, January 2009, pp.34-48.
    [55]Sheikh S I, Pines D J. Recursive estimation of spacecraft position using X-ray pulsar time of arrival measurements[C], Proceedings of the 61st Annual Meeting of The Institute of Navigation, Cambridge, MA, June 2005, pp.464-475.
    [56]Ray P S, Wood K S, Wolff M T, et al. Absolute Timing of the Crab Pulsar:X-ray, Radio, and Optical Observations[C].2002.
    [57]Sheikh S I, Pines D J, Ray P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance Control and Dynamics,2006,29(1):49-63.
    [58]Sheikh S I, Pines D J, Ray P S, et al. The use of X-ray pulsars for spacecraft navigation[J]. Advances in the Astronautical Science,2005,119(1):105-119.
    [59]Sheikh S I, Ray P S, Weiner K, et al. Relative Navigation of Spacecraft Utilizing Bright, Aperiodic Celestial Sources[C]. Institute of Navigation 63rd Annual Meeting, Cambridge, MA, April 23-25,2007.
    [60]Sheikh S I, Golshan A R, Pines D J. Absolute and relative position determination using variable celestial x-ray sources[C].30th Annual AAS Guidance and Control Conference, American Astronautical Society, Breckenridge, CO,3-7 February 2007.
    [61]Sheikh S I, Hellings R W, Matzner R A. High-order pulsar timing for navigation[C], Proceedings of the 63rd Annual Meeting of The Institute of Navigation, Cambridge, MA, April 2007, pp.432-443.
    [62]Ashby N, Golshan A R. Minimum Uncertainties in Position and Velocity Determination Using X-ray Photons From Millisecond Pulsars[C]. Institute of Navigation National Technical Meeting, San Diego, CA,28-30 January,2008.
    [63]Graven P, Collins J, Sheikh S, et al. XNAV for deep space navigation[C].31st Annual AAS Guidance and Control Conference, Breckenridge, Colorado, February 1-6,2008.
    [64]Ray P S, Wood K S, Phlips B F. Spacecraft navigation using X-ray pulsars[R].Naval Research Lab Washington Dc Eo Hulburt Center For Space Research,2006.
    [65]Emadzadeh A A, Speyer J L, Hadaegh F Y. A parametric study of relative navigation using pulsars:Institute of Navigation 63rd Annual Meeting, Cambridge, MA,23-25 April 2007.
    [66]李建勋.基于X射线脉冲星的定时与自主定位理论研究[D].西安理工大学,2009.
    [67]帅平,陈绍龙,吴一帆,等.X射线脉冲星导航原理[J].宇航学报.2007,28(6):1538-1543.
    [68]赵铭,黄天衣.脉冲星计时数据的天体测量析[J].中国科学(G辑:物理学力学天文学),2009,39(11):1671-1677.
    [69]李建勋,柯熙政.基于脉冲星定时模型的自主导航定位方法[J].中国科学G辑:物理学力学天文学,2008,38(1):1-11.
    [70]李建勋,柯熙政.基于小波模极大值相关信息的脉冲星标准脉冲轮廓累积方法[J].天文学报,2008(04):394-402.
    [71]李建勋,柯熙政.基于循环平稳信号相干统计量的脉冲星周期估计新方法[J].物理学报,2010 59(11):8304-8310.
    [72]毛悦,冯来平,宋小勇.X射线脉冲星导航可见性分析[J].武汉大学学报(信息科学版),2009(02):222-225.
    [73]毛悦,宋小勇.X射线脉冲星相位模糊度算[J].宇航学报, 2009,30(2):510-514.
    [74]毛悦,宋小勇.X射线脉冲星导航几何法确定航天器位置[J].武汉大学学报(信息科学版),2009,34(6):790-793.
    [75]毛悦,宋小勇.脉冲星时间模型精化及延迟修正分析[J].武汉大学学报(信息科学版),2009(05):581-584.
    [76]毛悦,宋小勇,吴显兵.基于X射线脉冲星的航天器动力学定轨[J].武汉大学学报(信息科学版),2010(04):500-503.
    [77]谢振华,许录平,倪广仁.基于一维选择线谱的脉冲星辐射脉冲信号辨识[J].红外与毫米波学报,2008,26(3):187-195.
    [78]谢振华,许录平,倪广仁.基于双谱的脉冲星累积脉冲轮廓时间延迟测量[J].物理学报,2008(10):6683-6688.
    [79]苏哲,许录平,王婷,张华。一种新的脉冲星累积脉冲轮廓时间延迟测量算法[J].宇航学报,2011,32(06):1256-1261.
    [80]谢振华,许录平,郭伟,等.基于整数周期关系的TDOA周期模糊求算法[J].仪器仪表学报,2008,29(6):1134-1138.
    [81]Zhang Huang, Li M, Shuai P. On time transfer in X-ray pulsar navigation[J]. Science in China, Series E:Technological Sciences,2009,52(5):1413-1419.
    [82]胡慧君,赵宝升,盛立志,等.基于X射线脉冲星导航的地面模拟系统研究[J].物理学报,2011(2):853-861.
    [83]卢方军.我国开始建造空间硬X射线调制望远镜[J].CHINESE SCIENCE BULLETIN,2007,52(6):645.
    [84]帅平,陈绍龙,吴一帆,等.X射线脉冲星导航技术及应用前景分析[J].中国航天,2006(10):27-32.
    [85]Pines D J, Others. X-ray Source-based Navigation for Autonomous Position Determination Program[R].DARPA/TTO,2004.
    [86]Folta, D. C., Gramling, C. J., Long, A. C., Leung, D. S. P., and Belur, S.V. Autonomous Navigation Using Celestial Objects[C]. Proceedings of the AAS/AIAA Astrodynamics Conference, Girdwood, AK; UNITED STATES; 16-19 Aug.1999. pp.2161-2177.
    [87]吴鑫基,康连生,金声震,等.四颗脉冲星在327 MHz频率上的观测[J].天体物理学报,1997(01):37-42.
    [88]康连生.在乌鲁木齐天文站25米天线上进行的脉冲星观测[J].天文学进展,1997(2):169-172.
    [89]王娜,吴鑫基.射电脉冲星周期跃变研究的进展[J].天文学进展,2000(3):229-237.
    [90]吴鑫基,张晋,王娜,等.乌鲁木齐25m射电望远镜脉冲星观测研究[J].天文学进展,2001(2):216-226.
    [91]张晋,张晋,吴鑫基,等.乌鲁木齐天文站25m天线18cm脉冲星脉冲到达时间观测系统[J].天体物理学报,1999(4):447-450.
    [92]吴鑫基,张晋,王娜,等.乌鲁木齐天文站脉冲星观测研究新进展[J].紫金山天文台台刊,2003,22(1):13-16.
    [93]康连生.用50m射电望远镜作脉冲星观测与研究[J].天文研究与技术.国家天文台台刊,2004(3):176-187.
    [94]康连生.中国脉冲星观测研究进展和展望[J].科学通报,2001(22):1849-1851.
    [95]倪广仁,杨廷高,和康元,等.毫秒脉冲星计时观测的研究进展[J].陕西天文台台刊,1998(2):32-39.
    [96]Nan R. Five hundred meter aperture spherical radio telescope (FAST)[J]. Science in China Series G,2006,49(2):129-148.
    [97]张承模,马宇倩,王焕玉,等.神舟二号飞船船-载X射线探测器标定及在轨性能[J].核电子学与探测技术,2005,25(1):1-7.
    [98]杭恒荣,张南,于敏.搭载在神州二号飞船留轨舱上的超软X射线探测器——观测结果简介[J].天文学报,2003,44(3):270-278.
    [99]张华,许录平,谢强,等.基于Bayesian估计的X射线脉冲星微弱信号检测[J].物理学报,2011,60(04):829-835.
    [100]Smith F G. Pulsars. [M]. Cambridge University Press,1977.
    [101]Gold T. Rotating neutron stars as the origin of the pulsating radio sources[J]. Nature,1968,218(5143):731-732.
    [102]张军,王兆军,吕国梁.中子星中简并电子气体的临界磁化[J].物理学报,2011(04):836-842.
    [103]Becker W, Tr U Mper J. The X-ray luminosity of rotation-powered neutron stars[R]. Arxiv preprint astro-ph/9708169,1997.
    [104]Lazio T J W. Genetic algorithms, pulsar planets, and ionized interstellar microturbulence[D]. Cornell University,1997.
    [105]王洪光.脉冲星多波段辐射模型的研究[D].北京:北京大学,2003.
    [106]汪华祥.脉冲星平均脉冲轮廓观测与研究[D].北京:北京大学,2003.
    [107]Woods P M, Kouveliotou C, van Paradijs J, et al. Properties of the Second Outburst of the Bursting Pulsar (GRO J1744--28) as Observed with BATSE[J]. The Astrophysical Journal,1999,517:431.
    [108]Israel G L, Campana S, Dall Osso S, et al. The post-burst awakening of the anomalous X-ray pulsar in Westerlund 1[J]. The Astrophysical Journal, 2007,664:448.
    [109]Kramer M, Xilouris K M, Camilo F, et al. Profile instabilities of the millisecond pulsar PSR J1022+1001 [J]. The Astrophysical Journal,1999,520:324.
    [110]徐轩彬,吴鑫基.脉冲星PSR2111+46平均脉冲分析和谱特性[J].中国科学(A辑),2002(12):1134-1141.
    [111]Blandford R, Narayan R, Romani R. Arrival-time analysis for a millisecond pulsar[J]. Journal of Astrophysics and Astronomy,1984,5(4):369.
    [112]Taylor Jr. J H. Millisecond pulsars:Nature's most stable clocks[J]. Proceedings of the IEEE,1991,79(7):1054-1062.
    [113]Young M D, Manchester R N, Johnston S. A radio pulsar with an 8.5-second period that challenges emission models[J]. Nature,1999,400(6747):848.
    [114]Manchester R N. Probing with Pulsars[J]. Annals of the New York Academy of Sciences,1993,688(1):331-343.
    [115]Toscano M, Sandhu J S, Bailes M, et al. Millisecond pulsar velocities[J]. Monthly Notices of the Royal Astronomical Society,1999,307(4):925-933.
    [116]Allan D W, Weiss M A, Peppler T K. In search of the best clock[J]. Instrumentation and Measurement, IEEE Transactions on,1989,38(2):624-630.
    [117]Hankins T H, Stinebring D R, Rawley L A. Improved timing of the millisecond pulsar PSR 1937+21 using real-time coherent dedispersion[J]. The Astrophysical Journal,1987,315:149-153.
    [118]Smith F G. Pulsars[M]. Cambridge University Press,1977.
    [119]Cognard I, Backer D C. A Microglitch in the Millisecond Pulsar PSR B1821--24 in M28[J]. The Astrophysical Journal Letters,2004,612:L125.
    [120]Wang N, Wu X J, Manchester R N, et al. A large glitch in the Crab pulsar[J]. Chinese Journal of Astronomy and Astrophysics,2001,1 (3):195.
    [121]J L, S Z. Glitches;Link between typical radio pulsars and anomalous X-ray Pulsars[R].Physics department&Center for Astrophysics in Tsinghua University, 2003.
    [122]Seward F D, Harnden F R, Helfand D J. Discovery of a 50 millisecond pulsar in the Large Magellanic Cloud[J]. Astrophysical Journal,1984,287(1):19-22.
    [123]Gregory P C. Bayesian Periodic Signal Detection:Analysis Of Rosat Observations Of Psr 0540-693[J]. Astrophysical Journal,1996,473:1059-1066.
    [124]Currie L A.1.Limits for qualitative detection and quantitative determination. Application to radiochemistry[J]. Analytical Chemistry,1968,40(3):586-593.
    [125]Gregory P. Bayesian Logical Data Analysis for the Physical Sciences[M]. Cambridge, U.K.:Cambridge Univ,2003.
    [126]Young J M K A. Poisson Statistical Methods for the Analysis of Low-Count Gamma Spectra[J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009,56(3):1278-1282.
    [127]EPN. http://www.jb.man.ac.uk/research/pulsar/resources/epn/browser.html [EB/OL].
    [128]RXTE. FTP:legacy.gsfc.nasa.gov.[EB/OL].
    [129]张华,许录平.脉冲星脉冲轮廓累积的最小熵方法[J].物理学报,2011,60(03):822-828.
    [130]Zhang Hua, Xu Luping. An Improved Phase Measurement Method of Integrated Pulse Profile for Pulsar[J]. SCIENCE CHINA (Technological Sciences),2011, 54(9):2263-2270.
    [131]伊·艾力,吴鑫基,王维侠.脉冲星PSR B0329+54的多波段观测[J].天体物理学报,2000(03):259-264.
    [132]Hobson M P, Jones A W, Lasenby A N, et al. Foreground separation methods for satellite observations of the cosmic microwave background[J].1998,300(1):1-29.
    [133]徐轩彬,吴鑫基.脉冲星PSR2111+46平均脉冲分析和谱特性[J].中国科学(A辑),2002(12):1134-1141.
    [134]仲崇霞,杨廷高.小波域中的维纳滤波在综合脉冲星时算法中的应用[J].物理学报,2007(10):6157-6163.
    [135]Taylor J H. Pulsar Timing and Relativistic Gravity[J]. Phil. Trans R. Soc. Lond, 1992,341:117-134.
    [136]Hanson J, Sheikh S, Graven P, et al. Noise analysis for X-ray navigation systems[C], Position, Location and Navigation Symposium,2008, pp.704-713
    [137]Rankin J M. Toward an empirical theory of pulsar emission. IV-Geometry of the core emission region[J]. The Astrophysical Journal,1990,352(3):247-257.
    [138]Zhang Hua, Xu Luping, Xie Qiang. Modeling and Doppler measurement of X-ray pulsar[J]. Science China(Physics,Mechanics & Astronomy), 2011,54(06):1068-1076.
    [139]Taylor J H. Pulsar timing and relativistic gravity[J]. Philosophical Transactions of the Royal Society of London. Series A:Physical and Engineering Sciences, 1992,341(1660):117.
    [140]冯象初,甘小冰,宋国乡.数值泛函与小波理论[M].西安电子科技大学出版社,2003.
    [141]Santamaria I, Erdogmus D, Principe J C. Entropy minimization for supervised digital communications channel equalization[J]. Signal Processing, IEEE Transactions on,2002,50(5):1184-1192.
    [142]张华,许录平,谢强.一种新的XPNAV系统整周模糊度搜索算法[J].武汉大学学报(信息科学版),2011,36(01):39-43.
    [143]Zhenkun L, Shunji H. Research on ambiguity resolution aided with triple difference[J]. Journal of Systems Engineering and Electronics, 2008,19(6):1090-1096.
    [144]宋成,王飞雪,庄钊文.微弱信号下基于模糊度算的辅助式GPS接收机定位算法研究[J].通信学报,2009,30(9):89-94.
    [145]曾涛,龙腾.一种脉冲多普勒雷达模糊新算法[J].电子学报,2000,28(12):99-101.
    [146]谢振华,许录平,郭伟,等.一种新的XPNAV系统脉冲周期模糊算法[J].电子与信息学报,2008,30(09):2124-2127.
    [147]乔黎,刘建业,郑广楼,等.)NAV算法及其整周模糊度确定方法研究[J].宇航学报,2009,30(4):1460-1465.
    [148]苏哲,许录平,张华,谢强.基于XPNAV和SINS的容错组合导航系统[J].华科技大学学报(自然科学版).2011,39(06):19-23
    [149]苏哲,许录平,刘勃,王勇.一种利用三阶互小波累积量的脉冲星累积脉冲轮廓时间延迟测量算法.2011,36(1):14-17
    [150]Lee D J. Nonlinear Bayesian filtering with applications to estimation and navigation[D]. Texas:Texas A\&M University,2005.
    [151]王鹏,张迎春.基于星敏感器/红外地平仪的自主导航算法研究[J].系统工程与电子技术,2008,30(8):1514-1518.
    [152]Li W, Leung H, Zhou Y. Space-time registration of radar and ESM using unscented Kalman filter[J]. Transactions on Aerospace and Electronic Systems, IEEE,2004,40(3):824-836.
    [153]Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation[C], Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000,2000,pp.153-158.
    [154]Hoots F R, Roehrich R L. SPACETRACK REPORT NO.3 Models for Propagation of NORAD Element Sets[R]. Department of Defense,Defense Documentation Center,1980.
    [155]Davies K. Ionospheric radio[M]. Peter Peregrinus Ltd, London, United Kingdom, 1969.
    [156]张华,许录平.基于光量子探测的XPNAV半物理仿真及建模[J].光电子.激 光,2011,22(06):905-910.
    [157]Haugan M P. Post-Newtonian arrival-time analysis for a pulsar in a binary system[J]. The Astrophysical Journal,1985,296:1-12.
    [158]D Moyer T. Formulation for observed and computed values of deep space networkFormulation for observed and computed values of deep space network data types for navigation.刘迎春(译).深空网导航数据的测量和计算公式.[M].北京:北京:清华大学出版社,2006.
    [159]Hellings R W. Relativistic effects in astronomical timing measurements[J]. The Astronomical Journal,1986,91:650-659.
    [160]Backer D C, Hellings R W. Pulsar timing and general relativity[J]. Annual review of astronomy and astrophysics,1986,24:537-575.
    [161]Ashby N. Relativity in the global positioning system[J]. Living Reviews in Relativity,2003,6:1-42.
    [162]谢振华.X射线脉冲星空间导航定位的脉冲到达时间差测量技术研究[D].西安:西安电子科技大学,2008.
    [163]G. L A, F. G. Pulsar Astronomy[M]. Cambridge UK:Cambridge University, 1998.
    [164]Lyne A G, Jordan C, Roberts M E. Jodrell Bank Crab Pulsar Timing Results[EB/OL]. URL:http://www.jb.man.ac.uk/-pulsar/crab.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700