用户名: 密码: 验证码:
换热装备污垢特性规律预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热器污垢的形成是在影响因素众多,动量、能量、质量传递甚至有生物活动同时存在的多相、多组分流动过程中进行的,其理论基础除传热传质学外,还涉及到化学动力学、流体力学、胶体化学、热力学与统计物理、微生物学、非线性科学以及界面科学等相关知识,是一个典型的多学科交叉的高度复杂问题。作为20世纪80年代以来污垢研究的基础和三个主要方向之一的污垢预测,旨在通过对污垢形成过程的理论分析和实验研究,建立一个通用、准确而又便于应用的预测模型,为换热设备的设计和运行提供指导。传统的预测研究方法虽取得了一些可喜的进展,但由于污垢的形成过程影响因素众多,加之多学科交叉带来的重重困难,其进展仍是缓慢,离预期目标依然十分遥远。本文基于所搭建的实验系统以及期间所积累的大量污垢数据,尝试利用支持向量机、偏最小二乘算法、模糊数学等智能预测理论与方法,对换热器污垢特性进行建模与预测研究,具体的研究内容如下:
     作为建模工具,将支持向量机算法引入换热器污垢特性的建模中,并研究了在径向基函数作为核函数的情况下,参数变化对支持向量机模型预测能力的影响,针对传统惩罚系数和核系数寻优过程中所呈现出来的问题,首次提出了“显微镜”理论,实例检验证明,该方法提高了寻优的速度和准确率,加上模拟退火算法的有效配合,为后续的建模和优化工作奠定了基础。
     以松花江水为冷却介质,实验研究了板式换热器污垢特性,通过所搭建的实验系统有选择性的测量了对污垢形成影响较大的几个水质参数:pH值、电导率、溶解氧、浊度、硬度、碱度、氯离子、化学需氧量、铁离子浓度、细菌总数,以及运行工况、污垢热阻等参数,获得一组典型水质的污垢数据。以该水质参数为自变量,以污垢热阻为因变量,分别基于偏最小二乘算法、支持向量回归机,对板式换热器污垢特性进行了预测建模,并分析了各水质参数对模型预测精度的影响。研究结果表明:两种方法预测精度都能控制在10%以内,满足工程要求,由此证明,从循环冷却水水质角度来预测换热器污垢特性是合理可行的,从而也为今后在已知水质条件下设计冷却水系统提前预知污垢特性提供了一种有效的新方法;预测结果的对比表明,SVR (support vector machine)方法优于PLS (partial least squares algorithm)方法,建议采用SVR方法对板式换热器污垢特性建模和预测研究;通过逐一删除水质参数项的方式,讨论了各水质参数对预测模型的影响,结果表明,部分水质参数的删除既在一定程度上提高了模型预测精度,也降低了测量成本。
     以人工配置的硬水为冷却介质,来模拟析晶垢,实验研究了光管换热器析晶污垢特性,测得温度、污垢热阻等参数,获得了一组同一实验管的两个运行周期的污垢数据。以出、入口温度,壁温等为自变量,以污垢热阻为因变量,分别搭建了PLS预测方程和SVR预测模型。预测结果表明:两种方法预测精度皆满足工程要求,皆可用于光管析晶垢的预测研究;相对来说,环境温度等参数的获得比较容易,而且节省人力和物力,由温度等参数推测污垢热阻值可实现换热设备污垢热阻的在线监测。同时,采用完全相同的两根不锈钢弧线管,通过向工质中加入MgO微粒的方式来模拟颗粒污垢,分流速恒定、可变两种情况,实验研究了弧线管换热器颗粒污垢特性,并分别搭建了SVR预测模型。通过对比,结果表明:当流速等影响换热器污垢热阻的主要因素由常量变成变量,随时间而变化时,应该对预测模型做出修改,以提高模型的预测精度。
     将类心向量理论引入燃煤结渣特性预测研究,该方法在准确预测混煤的结渣倾向性的同时,还可以有效解决了混煤掺烧比例的问题;基于模糊集理论,提出了模糊关联系数,构造了模糊相对权重,在此基础上提出了换热设备结渣特性模式识别算法,预测结果表明,所提出的方法是可行的、有效的,为换热设备结渣特性模式识别理论提供了一种新的研究方法,是对传统模式识别理论的发展与完善;将Vague集理论引入燃煤锅炉结渣评判中,同时,采用一种新的计算相似度的方法—距离意义下相似度量—计算Vague集的相似度,评判结果表明此方法是可行的,不但如此,此方法所得数据结果能够使现场运行人员比较容易地得出当前运行锅炉的结渣状况,从而消除了干扰因素的影响;基于RBF (radial basis function)网络建立了锅炉结渣预测模型,预测结果表明,所建RBF模型的评判准确率高于常规的BP网络,而且避免了局部极小点问题;利用非线性支持向量回归机方法对燃煤结渣特性进行了有效预测,该方法不但预测精度高,而且该方法最为突出的优点是能够利用小样本进行训练学习,解决了多维向量空间下的模式识别问题。为了对各种预测方法进行比较,在采用相同的已知样本训练后,对同组测试样本进行预测,结果表明:评判准确率最高的是RBF、SVR、FRW (fuzzy relative weight)及Vague集模型,其次是PLS方法,准确率最低的为类心向量法。
     基于煤灰的化学分析成分及Elman网络搭建了煤灰软化温度预测模型,所搭建的Elman灰熔点预测模型能够较好的完成对某热电厂煤灰熔点的预测,而且较BP (Back-Propagation network)网络方法,精确度更高。通过对模型进行分析,找到对煤灰灰熔点起主要作用的八种灰成分
The formation of heat exchanger fouling is a multiphase, multi-component flow process affected by many factors, momentum, energy, and mass transfer, even the existence of biological activities. Its theoretical basis involves not only heat and mass transfer, but chemical kinetics, fluid mechanics, colloid chemistry, thermodynamics and statistical physics, microbiology, nonlinear science and interface science, etc. It is a typical multi-disciplinary highly complex problem. Fouling prediction, as the foundation of fouling study since the1980s and the three main directions, is aiming at establishing a common, accurate, and easily applied prediction models though theoretical analysis and experimental study of the formation of fouling, to provide guidance for the design and operation of the heat exchanger. The traditional prediction methods have made some encouraging progress, however, because of the impact of many factors on fouling formation process and difficulties brought by multidisciplinary, research progress is still slow, even far away from the target. Based on the experimental system built and fouling data accumulated during the PhD, this paper attempts to model construction and prediction of the heat exchanger fouling characteristics, by using intelligent forecasting theory and methods, such as support vector machines, partial least squares algorithm, fuzzy mathematics, etc. The specific contents are as follows:
     As a tool for model building, support vector machine (SVR) was introduced into modeling of the heat exchanger fouling characteristics. The affection of the parameters on the SVM model was studied under the condition that RBF function was selected as kernel function. To solve the problem encountered in the optimization process of penalty coefficient and nuclear factor, the "microscope" theory was put forward for the first time. It was proved by practice tests that the method could improve the speed and accuracy of the optimization and became the basis of subsequent works coupled with effective co-ordination of the simulated annealing algorithm.
     Fouling characteristic of plate heat exchanger was studied through the experimental system, with the Songhua River water as working fluid. Several water quality parameters: pH value, conductivity, dissolved oxygen, turbidity, hardness, alkalinity, chloride ion, iron ion concentration, chemical oxygen demand, total bacterial count, which had great influence on the formation of fouling, as well as running condition, fouling resistance and other parameters were measured through the experimental system built. A group of fouling data of the typical water quality was obtained. Two prediction models of fouling characteristics of the plate heat exchanger were built based on partial least squares algorithm (PLS) and support vector regression machine (SVR) with water quality parameters as independent variables and fouling resistance as dependent variable, and the impact of water quality parameter on predicting accuracy was analyzed. Research results showed that:the prediction accuracy of two methods could be controlled within10%and meet the requirements of the project, which proved that it was feasible to predict heat exchanger fouling characteristics by water quality of circulating cooling water, and put forward an effective new method to forecast fouling characteristic under the condition of known water quality parameters in the process of designing the cooling water system. Through the comparison of the prediction results, it was proved that the SVR method was better than the method of PLS, and it was recommended modeling and predicting of the fouling characteristic of plate heat exchanger based on SVR. The impact of the water quality parameters on prediction model was discussed by the means of removing the water quality parameters one by one. The results showed that deletion of part of water quality parameters could both improve the prediction accuracy of the model to some extent, but also reduce the cost of measurement.
     Fouling characteristic of plain tube was studied through the experimental system with the man-made hardness water as cooling medium to simulate the crystallization fouling. The parameters of temperature, fouling resistance et al. were measured and a group of fouling data of the same test tube was obtained, which was across the two operation cycle. Two predicting models of fouling characteristics of the tube were built based on PLS and SVR with outlet temperature, inlet temperature, wall temperature et al. as independent variables and fouling resistance as dependent variable. Research results showed that:the prediction accuracy of two methods could meet the requirements of the project and be used to predict the crystallization fouling characteristic of plain tube. Relatively speaking, environment temperature et al. gets easier, and saves manpower and material resources, so, it could realize on-line monitoring of fouling resistance of heat exchangers to predict the fouling resistance by temperature et al. At the same time, fouling characteristic of arc tube was studied through the experimental system, in which there were the same two stainless steel test tube, with the MgO particle being added into working liquid to simulate particle solution. The SVR model was selected to predict the fouling characteristics of arc tube. By comparison, the results showed that:the predicting model should be modified to improve the precision of the model, when the flow velocity or other main parameters were no longer constant, changing along with time.
     The theory of class centroid vector was introduced into predicting the slagging characteristics of coal-fired. The method could not only accurately predict the slagging tendency of mixed coal, but also effectively solve the problem of mixing ratio of the coals. It was based on fuzzy theory that the fuzzy correlation coefficient was put forward, fuzzy relative weight was constructed, and the pattern recognition algorithm of slagging characteristics of heat exchanger was proposed. The predicting results showed that the method proposed was feasible and effective. It provided a new research method of predicting the slagging characteristics of heat exchanger, which was a development and perfection of traditional pattern recognition theory. Vague sets theory was introduced into the prediction of the slagging characteristics of coal-fired boilers, and at the same time, a new formula of similarity degree, which was based on the sense of distance, was proposed to calculate the similarity between vague sets. The results showed that not only this method was feasible, but also the operators could easily predict the slagging state of the coal-fired boilers based on this method, and thus eliminate the influence of interference factors. The prediction model of slagging state of coal-fired boilers was built based on RBF network. The prediction results showed that, the RBF model was higher in prediction accuracy than that of the conventional BP network, and avoided the local minima problem. The slagging characteristics of coal-fired boilers were predicted effectively based on nonlinear support vector machine for regression. The method was not only high in prediction accuracy, but also had the most prominent advantage of small samples learning, which solved the problem of pattern recognition in multi-dimensional vector space. In order to compare the predicting methods above, the same known samples were used for training and testing, the comparing results showed that:RBF method, SVR method, FRW method and Vague sets method had the highest predicting accuracy rate, followed by PLS method, and the lowest was the method of class centroid vector.
     The prediction model of softening temperature of coal ash was built based on the chemical analysis component and Elman network. The model could not only be able to accurately predict the softening temperature of coal ash from the thermal power plan, but also was higher in prediction accuracy than that of traditional BP network. Through analysis of the model, the eight kinds of ash composition were found out, which played the major role in softening temperature of coal ash.
引文
[1]余建祖.换热器原理与设计[M].北京:北京航空航天大学出版社,2006.
    [2]吴金星,韩东方,曹海亮,等.高效换热器及其节能应用[M].北京:化学工业出版社,2009.
    [3]杨善让,徐志明,孙灵芳.换热设备污垢与对策[M].北京:科学出版社,2004.
    [4]岑可法,樊建人,池作和,等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1998.
    [5]Xu Z M, Yang S R. Costs due to Utility Boiler Fouling in China[J]. Heat Transfer-Asian Research,2005,34(2):53-63; http://www.askci.com/news/ 201202/01/163547 94.shtml
    [6]王家诚.中国能源发展的战略重点.能源政策研究,2003,1:28-34
    [7]徐志明,杨善让,郭淑清,等.电站凝汽器污垢费用估算.动力工程,2005,25(1): 102-106
    [8]徐志明,杨善让,郭淑清,等.电站锅炉污垢费用估算.中国电机工程学报,2004,24(2):196-200
    [9]Xu Z M, Zhang Z B, Yang S R. Costs Due to Utility Fouling in China. ECI International Conference on Heat Exchanger Fouling and Cleaning-VII. Tomar, Portugal, July 1-7,2007
    [10]岑可法.锅炉燃烧实验研究方法及测量技术[M].北京:水利电力出版社,1987
    [11]Hatt R M, Rimmer S M. A classification of coal-fired boiler deposits.197th ACS Natrn Meet(Priprints). Dallas. TX,1993,34(2):330-339
    [12]Epstein N. Thinking about heat transfer fouling:A 5×5 Matrix. Heat Transfer Engineering,1983,4(1):43-56
    [13]Pinhero J D. Fouling of heat transfer surface. In:Kakac S, et al. eds. Heat exchangers:Thermal-Hydraulic fundamentals and design. New York:Hemisphere publishing Corp,1981.1013-1035
    [14]Melo L F, Bott T R, Bernardo C A, et al. Fouling science and technology. NATO ASI series E:Applied science. Dordrecht:Kluwer Academic publishers,1988.145.
    [15]李彦林.煤粉锅炉结渣的研究现状及进展[J].电力安全技术,2000,(2):8-13
    [16]Bryers R W. Fireside slagging, fouling and high-temperature corrosion of heat transfer surface due to impurities in steam-raising fuels. Prog energy combust Sci, 1996,22:29-120
    [17]何佩敖,张忠孝.我国动力用煤结渣特性的实验研究[J],动力工程,1987(2):1-11
    [18]李永兴,陈春元.动力用煤结渣特性综合判别指数的研究[J].热力发电,1994(3):36-39
    [19]邱建荣,马毓义.用灰色聚类方法评价煤的结渣性能[J].华中理工大学学报,1994(3):52-55
    [20]冯宝安,撒应禄.电站锅炉用煤常规结渣指标的模糊综合评判[J].锅炉技术,1996(5):13-16
    [21]冯宝安.多种模糊综合评判模型在燃煤结渣特性判别上的应用[J].锅炉技术,1997(3):21-25
    [22]刘柏谦,王元,李金凤.元宝山褐煤燃烧特性的模糊分析[J].东北电力学院学报,1998(2):80-84
    [23]饶甦,曹欣玉,兰泽全,等.黑液水煤浆结渣特性灰色聚类分析预测及试验研究[J].电站系统工程,2004(2):14-16
    [24]曹欣玉,兰泽全,黄镇宇,等.辽河油田水煤浆锅炉结渣倾向性模糊综合评判[J].热力发电,2003(2):31-34
    [25]杨圣春.电站燃煤锅炉结渣预测的研究[J].热力发电,2003(1):31-33
    [26]许志华.对煤灰结渣倾向模糊判别法和灰色聚类法中某些缺欠的补正[J].甘肃电力技术,1999(3):25-27
    [27]郭嘉,曾汉才.电站燃煤结渣特性的模糊模式识别[J].热力发电,1994(2):4-6
    [28]赵利敏.电站锅炉结渣的模糊数学预示分析[J].黑龙江电力技术,1996(3):129-132
    [29]兰泽全,曹欣玉,周俊虎,等.模糊模式识别在水煤浆锅炉结渣特性判别上的应用[J].中国电机工程学报,2003(7):216-219
    [30]钱诗智,陆继东,宋锦海.基于模糊神经网络的煤灰结渣预报[J].自然科学进展:国家重点实验室通讯-1997(2):245-249
    [31]刘革辉,郑楚光,刘迎辉.电站用煤结渣预报的自适应模糊神经网络方法[J].华中理工大学学报,2000(3):108-110
    [32]王斌忠,吴占松,许立东,等.用模糊神经网络方法预测煤灰的结渣特性[J].清华大学学报,自然科学版-1999(4):104-107
    [33]肖隽,吕震中,王军,等.基于改进BP算法的煤灰结渣特性诊断模型[J].热能动力工程,2002(3):271-274
    [34]谷俊杰,张小勇,鲁许鳌.粗集模糊神经网络方法在煤灰结渣特性评判中的应用[J].华东电力,2003(7):34-36
    [35]徐传学,张心,唐爱军.基于人工神经网络数据挖掘技术进行煤灰结渣特性分析[J].热力发电,2004(6):27-30
    [36]杨建蒙,鲁许鳌,李广辉.基于一种新方法的煤灰结渣预测[J].华北电力技术,2002(12):29-31
    [37]于敦喜,孙学信,向军.应用MATLAB神经网络工具箱对动力煤特性的研究[J].现代电力,2001(3):1-6
    [38]彭春华,程乾生.基于属性理论的综合预报系统及其应用[J].系统工程理论与实践,1999(5):83-88
    [39]吴福保,撒应禄.煤灰结渣特性的粗集评判[J].动力工程,1999(6):451-454
    [40]朱义吾.油田开发的结垢机理及防治技术[M].西安:陕西科学技术出版社,1995:95-102
    [41]陆柱,郑士忠,钱滇子,等.油田处理技术[M].北京:石油工业出版社,1988:169-170
    [42]徐卫华,俞力,袁萍,等.陈堡油田回注污水CaC03结垢预测及实测[J].油田化学,1999,16(4):326-328
    [43]张光明,尹先清,姚红星.纯2块注入水结垢理论预测与试验研究[J].石油钻采工艺,2004,26(1):52-55
    [44]杨肖曦,赵磊,张丁涌.现河注水井井筒结垢趋势预测及防垢剂评价[J].油田化学,2006,23(4):314-316
    [45]冯国强,俞敦义,金名惠.中原油田水碳酸钙结垢倾向预测软件及应用[J].油田化学,2000,17(3):212-215
    [46]Vetter O J, et al. Calcium carbonate scale in oilfield operations[M]. Petrol Tech-Oct, 1970:1299-1308
    [47]何光中.原油集输系统的结垢及处理[J].油田地面工程,1986,5(5):68-72
    [48]Skillman H F, McDonald J P. A simple accurate fast method for calculating calcium sulfate solubility in oilfield brine, presented at the sping meeting of the southwestern distict [M]. Texas:API, Lubbock,1969:12-14
    [49]舒福昌,余维初,梅平,等.宝浪油田注水结垢趋势预测及试验验证[J].江汉石油学院学报,2000,22(3):87-89
    [50]付美龙,沈燕来.绥中36-1油田CaC03和CaSO4结垢趋势预测[J].中国海上油气(工程),1997,9(6):40-44
    [51]Todd A C, Yuan M D. Prediction of sulphate sealing tendency and investigation of barium and strontium sulphate solid solution formation, SPE18200.1988:102-105
    [52]Jacques D F, Bourland B I. A study of solubility of strontium sulphate[C]. SPE, 1983,123(2):292-300
    [53]Oddo J E, Tomson M B. Why Scale from and How Predict it. SPE 2170,1994: 47-53
    [54]Oddo J E, Tomson M B. Simplified CaCO3 saturation at sigh temperatures and pressure in brine solution. JPT July 1982
    [55]华东化工学院分析化学教研组.分析化学[M].北京:高等教育出版社,1988:225-228
    [56]南开大学分析化学教研组.离子平衡及其数学[M].天津:南开大学出版社,1989:301-303
    [57]罗明良,蒲春生,王得智,等.油水井近井带无机结垢动态预测数学模型[J].石油学报,2002,23(1):61-66
    [58]闫方平,董双波,张红静,等.中原油田文72块注水井结垢趋势预测及实验研究[J].油田化学,2008,25(3):221-223
    [59]张绍广.海上油田原油处理系统腐蚀结垢的预测与评价[J].腐蚀与防护,2009,30(11):818-821
    [60]李农,杨雪刚,缪海燕,等ScaleChem 3.0结垢预测软件在天然气开采中的应用[J].天然气勘探与开发,2004,27(3):57-60
    [61]贾红育.注水开发油藏水驱油机理及油层结垢机理研究[D].西安:西北大学地质系,1997
    [62]贾红育,曲志浩.注水开发油藏油层结垢机理[J].石油勘探与开发,1997,22(3): 71-76
    [63]罗明良,蒲春生,董经武,等.无机结垢趋势预测技术在油田开采中的应用[J].油田化学,2000,17(3):208-211
    [64]冯国强,俞敦义,金名惠.中原油田水碳酸钙结垢倾向预测软件及应用[J].油田化学,2000,17(3):212-214
    [65]陈志刚,舒福昌,梅平.油田水结垢及其预测软件的应用[J].石油仪器,2001,15(2): 25-28
    [66]叶春丽,苟群芳,熊宇.油水系统结盐结垢预测及防护对策软件设计[J].资源环境与工程,2010,24(2):197-202
    [67]McGuire J, Swartzel K R. Influence of solid surface energies on macromolecular adsorption from milk. American institute of chemical engineers national meeting, 1987.31
    [68]Miiller-Steinhagen H, Zhao Q, Helali-Zadeh A, et al. The effect of surface properties on CaSO4 scale formation during convective heat transfer and subcooled flow boiling. Can J Chem Eng,2000,78(1):12-20
    [69]Xu Z M, Yang S R. A new predictive model for particulate fouling. Proc of international conference on understanding heat exchanger fouling and its mitigation, 1997.115-122
    [70]徐志明,杨善让.颗粒污垢剥蚀机制研究.工程热物理学报,1998,19(5):612-615
    [71]Yang C F, Xu D Q, Shen Z Q. Study on the scaling rate model of CaCO3 in saturated water system. Chin J Chem Eng,1995,3(2):139-144
    [72]Yang C F. Mechanisms of calcium carbonate scaling during and post induction period. Fouling mitigation of industrial heat-exchange equipment. New York: begell House Inc,1995,275-286
    [73]Zubair S M, Sheikh A K, Budair M O, et al. Statistical analysis of CaCO3 scaling in heat exchanger tubes. Fouling mitigation of industrial heat-exchange equipment. New York:Begell House Inc,1995,287-297
    [74]Zubair S M, Sheikh A K, Budair M O, et al. Statistical aspects of CaCO3 fouling in AISI 316 stainless steel tubes. Paper submitted for publication in ASME J heat Transfer,1996.
    [75]Zubair S M, Sheikh A K, Sultan K M, et al. A simplified probabilistic cost model for maintenance of heat exchangers subject to fouling. Understanding heat exchanger fouling and its mitigation. New York:Begell House Inc,1997,401-409
    [76]Epstein N. Fouling:Technical aspects (Afterward to fouling in heat exchangers). In: Somerscales E F C, Knudsen J G, eds. Fouling of heat transfer equipment. New York:Hemisphere Publishing Corp,1981.31-53
    [77]Bott T R. Fouling of Heat Exchangers. Amsterdam:Elsevier,1995.72
    [78]Bowen B D, Epstein N. Fine Particle Deposition in Smooth Parallel-Plate Channels. J Colloid Interface Sci,1979,72:81-97
    [79]Vasak F, Bowen B D, Chen C Y, et al. Particle Deposition in Laminar and Turbulent Flows. Can J Chem Eng,1995,73:785-792
    [80]Rodliffe R S, Means F A. Factors Governing Particulate Corrosion Product Adhesion to Surfaces in Water Reactor Coolant Circuits. CEGB Report RD/B/N4525. Berkeley Nuclear Laboratories. UK,1979.
    [81]Epstein N. Particle Deposition and Its Mitigation. Understanding Heat Exchanger Fouling and Its Mitigation. New York:Begell House Inc,1997:3-21
    [82]Yang S R, Zhang H L, Xu Z M. Determination of Fouling Thermal Conductivity of Ash Layer on Heating Surface. IHTC12,2002.
    [83]Yang S R, Xu Z M, Zhao X T. A Fractal Model For Thermal Conductivity in Disperse System of Even Particulates. Heat Transfer Asian Research,2000, 29(7):535-543.
    [84]赵晓彤,杨善让,徐志明.粒径均匀散体热导率的分形描述.工程热物理学报,1999,20(4):477-481
    [85]张海林,杨善让,徐志明,等.提高重整化群精度的一个尝试.工程热物理学报,2003,24(6):992-994
    [86]Yang S R, Zhang H L, Xu Z M, et al. Thermal Conductivity of Ash Layer Including Radiation Heat Transfer.3rd International Symposium on Heat Transfer Enhancement and Energy Conservation, January.15,2004.
    [87]Crittenden B D, Kolaczkowski S T, Philips D Z. Chemical Reaction Fouling. Understanding Heat Exchanger Fouling and Its Mitigation. New York:Begell House Inc,1997.91-103.
    [88]Fernandez-Torres M J, Fitzgerald A M, Paterson W R, et al. A Theoretical Study of Freezing Fouling Limiting Behavior Based on A Heat and Mass Transfer Analysis. Chemical Engineering and Processing,2001,40:335-344
    [89]徐志明,郭淑清,杨善让.基于概率分布的污垢模型[J].工程热物理学报,2003,24(2):322-324
    [90]马学虎,林乐,兰忠,等.低Re下板式换热器性能的实验研究及热力学分析[J].热科学与技术,2007,6(1):38-44
    [91]Kern D Q, Seaton R E. A theoretical analysis of thermal sur-face fouling.[J]. Chem Eng Prog,1959,4(5):258-262.
    [92]Zubair S M, Sheikh A K, Shaik M N. A probabilistic approach to the maintenance of heat transfer equipment subject to fouling[J]. Energy,1992,17(8):769-776.
    [93]Xu Zhiming, Guo Shuqing, Yang Shanrang, Sun Lingfang, Dong Xiangyuan. Analytical fouling model based on probabilistic approach [J].Journal of Engineering Thermophysics (China).2003,24(2):322-324.
    [94]樊绍胜.冷凝器污垢的灰色预测[J].电力科学与技术学报,2007,22(2):12-15
    [95]Fan Shaosheng, Wang Huinan. The prediction of fouling in condenser based on T-S model[J]. Chinese Journal of Sensors and Actuators (China).2005.18(1): 123-128.
    [96]柴海棣,王维航,张连生.基于径向基神经网络的污垢预测方法研究[J].东北电力大学学报,2006,26(4):46-49
    [97]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999
    [98]孟明,牛东晓,孟宁.基于主成分分析的神经网络评价模型研究[J].华北电力大学学报,2004,31(02):53-56
    [99]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-41
    [100]Vapnik V N. Estimation of Dependencies Based on Empirical Data. Berlin: Springer-Verlag,1982
    [101]Vapnik V N. The Nature of Statistical Learning Theory, NY:Springer-Verlag,1995
    [102]Vapnik V, Levin E, Le Cun Y. Measuring the VC-dimension of a learning machine. Neural Computation,1994,6:851-876.
    [103]Cortes C, Vapnik V. Support-vector networks. Machine Learning,1995,:273-297
    [104]Vapnik著,统计学习理论[M].张学工,译.北京:电子工业出版社,2004.
    [105]樊绍胜,王耀南.基于多模型组合的冷凝器中污垢预测[J].传感技术学报,2005,18(2):225-229
    [106]樊绍胜,王耀南.基于模糊建模的冷凝器污脏软测量[J].控制理论与应用, 2005,22(3):434-439
    [107]冯殿义,范佳,孙守仁.废热锅炉污垢热阻实时预测研究[J].热能动力工程,2009,24(2):196-199
    [108]冯殿义,范佳,孙守仁.污垢热阻实时预测模型校正与应用[J].化学工程,2009,37(11):12-15
    [109]衡世权,杨广华,吴立锋,等.神经网络在腐蚀污垢热阻预测中的应用[J].全面腐蚀控制,2004,18(1):11-13
    [110]张莹,王耀南.基于局部加权偏最小二乘法的冷凝器污垢预测[J].仪器仪表学报,2010,31(2):299-304
    [111]赵波,杨善让,刘范.冷却水污垢热阻预测的支持向量机法动态模拟实验研究[J].2010,30(11):92-97
    [112]焦尚彬,刘丁,郑岗,等.基于最小二乘支持向量机的绝缘子等值附盐密度预测[J].中国电机工程学报,2006,26(2):149-153
    [113]朱颢东,钟勇.一种改进的模拟退火算法[J].计算机技术与发展,2009,19(6):32-35.
    [114]Wang Hongkai, Guan Yanyong, Xue Peijun. Simulated annealing algorithm for the optimal translation sequence of the jth agent in rough communication[J]. Journal of Systems Engineering and Electronics,2008,19(3):507-512.
    [115]Geng Xiutang, Zhang Kai. Simulated annealing algorithm for detecting graph isomorphism[J]. Journal of Systems Engineering and Electronics,2008,19(5): 1047-1052.
    [116]刘洪普,侯向丹.模拟退火算法中关键参数的研究[J].计算机工程与科学,2008,30(10):55-58.
    [117]许传华,任青文,周庆华.基于支持向量机和模拟退火算法的位移反分析[J].岩石力学与工程学报,2005,24(22):4134-4137.
    [118]单建魁,赵雪峰.基于模拟退火支持向量机的入侵检测系统[J].计算机工程与设计,2009,30(21):4851-4854.
    [119]燕飞,秦世引.一种基于模拟退火的支持向量机超参数优化算法[J].航天控制,2008,26(5):7-10.
    [120]孙灵芳.新型污垢热阻在线监测装置的研发与应用研究[D].河北:华北电力大学,2003
    [121]黄千钧.以煤灰碱酸比与硅铝比的乘积作为动力用煤结渣指数的探讨[J].动力工程,2004,24(3):340-344
    [122]钱诗智,陆继东,宋锦海.基于模糊神经网络的煤灰结渣预报[J].自然科学进展,1997,7(2);245-249
    [123]丁世飞,靳泰祥.Fuzzy Grey信息集成模式识别算法的研究[J].计算机辅助设计与图形学学报,2004,16(3):275-278
    [124]李兵,张培林,傅建平,等.发动机磨损模式的FGRD识别模型[J].内燃机工程,2006,27(2):71-74
    [125]Zadeh L A. Fuzzy Sets. Information and control,1965,8:338-356
    [126]Gau W L,Buehrer D J. Vague Sets.IEEE Trans on Systems, Man, and Cybernetics,1993,23(2):610-614
    [127]Atanassov K.Intuitionistic Fuzzy Sets.Fuzzy Sets and Systems,1986,20(1):87-96
    [128]Bustine H, Burillo P.Vagues Sets And Intuitionistic Fuzzy Sets.Fuzzy Sets and Systems,1996,79(3):403-405
    [129]Chen S M. Measures of Similarity between Vagues Sets. Fuzzy Sets and Systems, 1995,74(2):217-223
    [130]丁世飞.基于信息理论的数字模式识别及应用研究[D].青岛:山东科技大学,2004
    [131]文孝强,徐志明,孙媛媛,等.一种评判燃煤锅炉结渣特性的新方法[J].动力工程,2009,29(3):223-227
    [132]孙斌.基于小波和混沌理论的气液两相流流型智能识别方法[D].保定:华北电力大学,2005
    [133]戴维葆,邹平华,冯明华.基于动态RBF神经网络的锅炉短期负荷预测研究[J].热能动力工程,2006,21(6):590-593
    [134]王晋权,李磊,唐国瑞.基于RBF神经网络的凝汽器故障诊断研究[J].电力科学与工程,2007,23(4):27-31
    [135]Jin Xing. Using RBF to Enable Circuit Emulation Service over internet[J]. Computer Systems and Applications,2009(6):17-25
    [136]Nan Dong, Long Jinling. Lp(K) Approximation Problems in System Identification with RBF Neural Networks Journal of Mathematical Research&Exposition[J]. 2009,29(1), pp.124-128
    [137]Peng Minfang, Shen Meie, He Yigang. Analog Circuit Diagnosis Using RBF Network and D-S Evidential Reasoning[J]. Transactions of China Electro Technical Society,2009,24(8):7-12
    [138]Niu Jianjun, Qi Xiaoye. Design and Application of Discrete Sliding Mode Control with RBF Network-based Switching Law[J]. Chinese Journal of Aeronautics,2009, 22(3):279-284
    [139]大型煤粉锅炉燃烧设备性能设计方法[M].哈尔滨:哈尔滨工业大学出版社2002
    [140]张德祥,龙永华,高晋生,等.煤灰中矿物的化学组成与灰熔融性的关系[J].华中理工大学学报,2003,29(6):590-594.
    [141]李帆,邱建荣,郑楚光,等.混煤煤灰中矿物行为对煤灰熔融特性的影响[J].华中理工大学学报,1997,25(4):41-43.
    [142]陈文敏,姜宁.煤灰成分和煤灰熔性的关系[J].洁净煤技术,1996,2(2):34-37.
    [143]伍昌鸿,马晓茜.混煤煤灰软化温度的实验研究与预测[J].热能动力工程,2006,21(2):179-182.
    [144]周昊,郑立刚,樊建人,等.广义回归神经网络在煤灰熔点预测中的应用[J].浙江大学学报(工学版),2004,38(11):1479-1481.
    [145]王春林,周昊,李国能,等.基于支持向量机与遗传算法的灰熔点预测[J].中国电机工程学报,2007,27(8):590-594.
    [146]李建中,周昊,王春林,等.支持向量机技术在动力配煤中灰熔点预测的应用[J].煤炭学报,2007,32(1):81-84
    [147]Yin Chungen, Luo Zhongyang, Ni Mingjiang, et al. Predicting coal ash fusion temperature with a back-propagation neural network model [J]. Fuel,1998,77(15): 1777-1782.
    [148]Kalogirou S A. Artificial intelligence for the modeling and control of combustion processes; A review [J]. Progress in energy and combustion science,2003,29(6): 515-566.
    [149]Elman J L. Finding structure in time [J]. Cognitive Science,1990,14(2):179-211.
    [150]闰德勤,迟忠先,李艳红.关于Vague集的相似度量[J].模式识别与人工智能,2004,17(1):22-26
    [151]付亚荣,王开炳,王敬缺.神经网络用于油田地面集输管道结垢预测[J].西南石油学院学报,1999,21(2):68-69
    [152]Enrique Teruel, CristobalCortes, Luis Ignacio Diez. Monitoring and Prediction of Fouling in Coal-Fired Utility Boilers Using Neural Networks [J]. Chemical Engineering Science,2000,60:5053-5048.
    [153]侯迪波,杨丽明,周泽魁.基于模糊神经网络的周期性结垢预测方法研究[J].浙江大学学报(工学版),2004,38(3):307-311.
    [154]樊绍胜,王耀南.基于T-S模型的冷凝器污垢预测[J].传感技术学报,2005,18(1): 123-128
    [155]彭珍,张充,吴立锋,等.基于RBF神经网络的换热管污垢热阻预测[J].煤气与热力,2008,28(6):A26-A28.
    [156]王洪亮,王东风,韩璞.基于模糊神经网络的电站燃煤锅炉结渣预测[J].电力科学与工程,2010,26(6):28-32
    [157]王洪亮.煤种结渣预报的模糊神经网络研究[J].电力科学与工程,2010,26(10): 55-58
    [158]邓喆,李庚生,安连锁,等.基于声学测温与人工神经网络的炉膛结渣在线 监测方法[J].现代电力,2011,28(4):70-72
    [159]刘文胜,赵虹,杨建国,等.三元相图在配煤结渣特性研究中的应用[J].热力发电,2009,38(10):5-10
    [160]叶琳,刘建忠,张保生,等.一种水煤浆燃料结渣综合评判模型及其应用[J].电站系统工程,2007,23(3):27-29
    [161]单衍江,地力木拉提.偏最小二乘回归神经网络模型在燃煤锅炉结渣预测中的应用[J].洁净煤技术,2009,15(4):64-67
    [162]姜建勋,鄢晓忠,孙国超,等.灰色系统在电站锅炉燃煤结渣特性中的应用[J].长沙理工大学学报(自然科学版),2009,6(2):57-61
    [163]谢承利,陆继东,李捷,等.基于激光感生击穿光谱的燃煤结渣特性评估[J].中国电机工程学报,2007,27(23):24-27
    [164]徐志明,黄兴,郭进生,等.冷却水水质参数对板式换热器污垢特性的实验研究[J].工程热物理学报,2011,32(4):645-647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700