用户名: 密码: 验证码:
内蒙古巴彦乌拉铀矿床成矿特征及成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正文:二连盆地不仅是重要的油气成藏区和聚煤区,也是砂岩型铀矿富集成矿区。本论文以外生后成砂岩型铀矿成矿理论为指导,在综合分析岩心、钻孔测井、地震以及其它物探、水文地质与水化学及铀矿床(点)等基础地质资料的基础上,运用层序地层、沉积体系分析等方法,结合实验分析测试结果,多学科综合研究相结合,对巴彦乌拉砂岩型铀矿富集形成的构造环境、赋矿层位的沉积相、砂体特征、氧化带发育特征与铀矿化特征、控矿因素进行了研宄。通过己发现铀矿床成矿条件深入剖析,建立了研究区层间氧化带砂岩型铀矿成矿模式。论文研宄取得了以下创新性成果和认识:
     1、研宄区铀矿体主要赋存在下白垩统赛汉组上段古河谷砂体中,赋矿岩性为多粒级砂岩组合体,包括砂质砾岩、中粗砂岩、中细砂岩、含粉砂质砂岩夹泥岩,但以砂质砾岩为主,非均质性强。目的层段砂岩岩石学特征以及空间分布规律表明,赋矿层位主要沉积微相类型为辨状河河道充填组合以及河道边缘组合,测井响应特征明显。
     2、铀矿体主要受古河谷砂体中发育的潜水-层间氧化带控制,氧化带平面分带性明显。矿体产于前锋线附近的灰色砂体中,矿体在平面上的展布与氧化带前锋线的展布方向基本一致。
     3、主矿体空间分布受古河谷展布形态控制。剖面上,矿体形态受潜水-层间氧化带前锋线控制有板状及卷状两种形态。根据矿石镜下鉴定结果,铀矿石主要有砂岩类和砾岩类两种。矿石矿物成分与围岩成分接近,但含较多黄铁矿、有机炭、粘土质等。主微量元素分析表明,矿石中SiO:、FeO、FeA、A1A、K20、_、TiO:.含量高,CaO、MgO、C02等有害组份含量低,微量元素Rb、Ba相对富集,而Sr相对亏损。
     4、对经铀镭平衡系数校正铀含量样品,应用全岩铀一铅等时线法,计算出巴彦乌拉铀矿床矿石的成矿年龄为44±5Ma,成矿时代约为古近纪始新世(E:)。经放射性照相、电子探针和扫描电镜等分析研宂,初步确认巴彦乌拉铀矿床矿石铀存在形式有三种:吸附态铀、铀矿物及含铀矿物,其中以吸附状态铀为主,六价态的铀比例较高。
     5、矿体及上下围岩中铼、硒、钼、钪、钒等伴生元素有富集现象,其中铼、硒、钪含量达到综合利用指标。铼与铀伴生产出,硒偏氧化一侧沉积,钪偏还原一侧富集。
     6、在氧化带、古水动力等控矿因素分析的基础上,提出了巴彦乌拉地区砂岩型铀矿床成因模式:该区铀矿基本产在早白垩世晚期的古河谷中,成矿贯穿河谷的形成、发展和变化的全过程。主要是后生成矿作用,即:来自补给区的含铀含氧水侧向渗入到河谷中,沿着泥岩隔水层中的透水砂岩径流,经与砂岩中的还原物质反应,使铀还原沉淀富集。此过程受古河谷“补一径一排”水动力条件、还原能力及次造山活动等控制。成矿过程可分为铀的预富集、成矿作用、后期保矿3个阶段。
     上述研宄成果和认识不仅对二连盆地砂岩型铀矿的勘探开发具有重要指导作用,而且对丰富国内砂岩型铀矿的成矿理论研究具有重要意义。
Content: Erlian basin is an important reservoir of not only oil, gas and coal, but alsosandstone type uranium. This thesis is based on mineralization theory of exogenic epigeneticsandstone type uranium. A metallogenic model of interlayer oxidation zone sandstone typeuranium deposits has been established by comprehensive analysis and research such as basicgeological data,sequence stratigraphy, depositional system, test results, especially the studyof characteristics on the tectonic setitng, depositional facies, sand body, oxidation zone,mineralization, ore-controlling factors. The following results and knowledge have beendrawn in this paper:
     1,the uranium ore-bodies lie in ancient valley sandbodies of the upper section of Saihanformation, Lower Cretaceous Seires. The orebody lithology is multi-graded sandstoneassembly with strong inhomogeneity, including sandy conglomerate, medium-coarse grainedsandstone, mid-fine grained sandstone, silty sandstone interbedded mudstone, sandyconglomerate. And the sandy conglomerate is the main composition. Braided irverfilling-combination and channel edge-combination is the main sedimentary microfacies ofthe ore-bearing strata, and it has a distinguished feature of well log.
     2,the uranium deposits are controlled mainly by the phreatic-interlayer oxidation zonedeveloped in sandstone-bodies of ancient Valley. The oxidation zone has an obviouszonation in the plane. The orebodies lie in grey sandstone near the forward line of oxidationzone. And the distirbution of the orebody is consistent with the direction of the front line ofoxidation zone in plane.
     3, in profile, the shapes of the orebodies are tabular and rolling,which controlled byfront line of phreatic-interlayer oxidation zone. And the spatial distirbution of ore-bodies iscontrolled by the development of palaeo valley section. Two main types of uranium ore havebeen determined by the appraisal result of ore in microscope: sandstone-type-ores andconglomerate-type-ores. Composition of ore, which contains more pyrite, organic carbon,clay etc.,is similar to that of wall rock. The content of the major trace-elements, such asSiOa, FeO, Fe2〇3,AI2O3,K2O, Na20,T1O2is high in the ore,and the content of the harmfulcomponent, such as CaO, MgO, CO2is low. Relatively,the trace elements, such as Ba,Rb,Ba is enrichment, however, Sr is loss.
     4,the metallogenic age of Bayanwula uranium deposits is44土5Ma (Paleocene Eocene(E2)),which has been determined by whole rock U-Pb isochron method, and the uraniumcontent of ore sample has been corrected by the uranium-radium equilibrium coeiffcient. Theexisting forms of the uranium in the ore are: adsorbed, minerals, and beairng, which havebeen found by the methods of radiograph, electron probe and scanning electron microscope.Adsorbed uranium is the main form, and the proportion of six-valence uranium is higher.
     5,associated elements in the ore-body and surrounding rock, such as selenium, rhenium,molybdenum, vanadium, scandium, etc., are enrichment, and rhenium, selenium, scandiumcan be utilized comprehensively. Rhenium and uranium are symbiotic relationship, andselenium deposited close to the oxidation side, and scandium enriched close to the reductionside.
     6,the mentallogic model of sandstone type uranium deposits in Bayanwula area hasbeen established based on study of ore controlling factors, such as oxidation zone, ancienthydrodynamics: The uranium deposits lie in ancient valley of the late of the EarlyCretaceous; the epigenesist metallogenic process consisted of3stages, enrichment,mineralization and ore-conservation, ran through the whole process of the generics,development and change of the valley; oxygen-uranium-beairng water coming from rechargearea seeped through the valley from lateral side,and moved along permeablesandstone-bodies caught in mudstone aquicludes, and then, uranium was precipitated andenriched by the reaction on reduction material in sandstone. This process is controlled by hydrodynamics conditions of the ancient Valley, reducing power and orogenic activity.
     The conclusion and understanding of the study have not only significant guiding on theexploration and development of sandstone type uranium deposits in Erlian Basin, but alsogreat significance to perfect metallogenic theory of the sandstone type uranium deposits.
引文
[1]. Adams S.S., Smith R B. Geology and recognition criteria for sandstone uranium deposits in mixedfluvial-shallow marine sedimentary sequences,South Texas[R]. Colorado: U. S. Department ofEnergy Grand Junction Office,1981.
    [2]. Adler,H.H.,Concept of uranium-ore formation in reducing environments in sandstones and othersediments, in Formation of uranium ore deposits: Vienna, Internat. Atomic Energy Agency,1974, p.141-168.
    [3]. Berner R.A.,A new geochemical classification of sedimentary environments. J Sed Petrol.,1981,51:359-365.
    [4]. Bodnar B J, Revised equation and table for determining the freezing point depression ofH2O-NaCl solutions. Geochemica et Cosmochemica Acta,1993,57:683-684
    [5]. Burley S.D., Mullis J., and Matter A., Timing diagenesis in the Tartan reservoir(UK North Sea):Constraints from combined cathodoluminescence microsocopy and fluid inclusion studies. MarPetrol. Geol.,1989,6:98-120.
    [6]. Crawlry Richard A.,Sandstone Uranium Deposits in the United States:A Review of the History,Distribution, Genesis, Mining Areas and Outlook, U. S.Department of Energy AssistantSecretary for Nuclear Energy Grand Junction Area Office, Colorado,March1983.
    [7]. European Commission, Oklo working group. Proc Fist Joint EC-CEA workshop on theOklo-natural analogue Phase II project held in Sitges,Spain,l8-20June l997. Louvat D. Davies C(Eds) Report, EUR l83l4EN, l998, p.328.
    [8]. Finch W. I., Geology of epigenetic uranium deposits in sandstones in United States. Geol. Surv.Prof. Paper.1967, p.538.
    [9]. Finch W. I., Uranium Provinces of North America----Their Definition, Distribution, andModels, U. S. Geol. Surv. Bull.1996,2141, p.18.
    [10].Finch W.I.刘士倜译.关于砂岩型铀矿床的结论[J].国外铀矿地质.1987(2):20-23.
    [11].Giles A D. and Marshall B., Fulid inclusion studies on a multiply deformed metamorphosedvolcanic-associated massive sulfide deposit, Joma Mine, Norway.Econ. Geol.,1994,89:803-819
    [12].Goldhaber M. B. and Reynolds R. L., Experimental study of pyrite oxidation at pH5-9.5;implications for formation of roll-type uranium deposits [abs.]: Am. Assoc. Petroleum Geologists,Rocky Mt. Sec., Denver, Colo., Ann. Mtg.,1977,p.59.
    [13].Goldhaber M. B., Reynolds R. L. And Rye R. O., Origin of a South Texas Roll-Type UraniumDeposit: II. Sulfide Petrology and Sulfur Isotope Studies. Economic Geology,1978, Vol.73,p.1690-1705.
    [14].Goldhaber Martin B.,Reynolds Richard L.and Rye Robert O.,Origin of a South Texas Rol-l TypeUranium Deposit:ò.Sulfide Petrology and Sulfur Isotope Studies,Economic Geology Vol.73,1978
    [15].Granger H.C. and Finch W.I., The Colorado Plateau Uraium Province USA. In Recognition ofUranium Provinces, Proc Tech. Comm. Mtg. on Recognition of Uranium Provinces, London,England, l8-20September l985. IAEA, Vienna,1988, p.l57-l93.
    [16].Harshman E.N. and Adams S.S. Geology And Reognition Criteria for Roll-type Uranium Depositsin Continental Sandstones. U.S. Department of Energy Grand junction Office, Colorado, U.S.A.1981.
    [17].Haszeldine R. S., Samson I. M., and Cornfort C., Dating diagenesis in a petroleum basin, anew fluid inclusion method. Nature,1984a,307:354-357.
    [18].Haszeldine R. S., Samson I. M., and Cornfort C., Quartz diagenesis and convective fluidmovement, Beatrice Oilfield, North Sea. Clay Miner,1984b,19:391-402.
    [19].IAEA, Guidebook to Accompany IAEA Map of World Distribution of Uranium Deposits.IAEA,Vienna. l996.
    [20].IAEA, Proceedings of a Symposium on the Oklo Phenomena. IAEA Technical Report,STI/PUB/405. IAEA, Vienna. l975a.
    [21].IAEA, Proceedings of the Technical Committe Meeting on Natural Fission Reactors.
    [22].IAEA, Technical Report, STI/PUB/475. IAEA, Vienna. l975b.
    [23].K.H.乌尔夫主编.层控矿床与层状矿床(第二卷)[M].北京:地质出版社,1980.64-110.
    [24].Nuclear Energy Agency Organization for Economic Co-operation and Development.Uranium1999,Resources,Production and Demand[M],2000.
    [25].R.H.戴沃特编著.姜利民等译.铀矿地质与勘探[M].北京:原子能出版社,1988.3.
    [26].Thamm John K., Korschak Anthony A. Jr. and Adams Samnel S.,Geology And RecognitionCriteria for Sandstone Uranium Deposits of the Salt Wash Type,Colorado Plateau Province,U.S.Department of Energy.Grand Junction Office,Colorado,U. S. A.,1981.
    [27].Turner-Peterson Christine E., Santos Elmer S. et al.,A Basin Analysis Case Study:The MorrisonFor-mation Grants Uranium Region New Mexico,American Association of Petroleum GeologistsEnergy Minerals Division,Tulsa,Oklahoma,U.S.A.,1986.
    [28].Uranium1999:Resources,Production and Demand, Nuclear Energy Agency.Organization forEconomic Co-operation and Development,2000. Adams Samnal S.and Smith R.B.,Geology AndRecognition Criteria for Sandstone Uranium Deposits in Mixed Fluvia-l shallow MarineSedimentary Sequences,SouthTexas,U.S.Department of Energy, Grand Junction Office,Colorado,U.S.A.,1981.
    [29].艾桂根.柴达木盆地西北部第三系层序地层特征及可地浸砂岩型铀矿找矿方向[J].铀矿地质,2001,17(4):209~215.
    [30].陈戴生.伊犁盆地层间氧化带砂岩型铀矿成矿模式[J].铀矿地质,1997,13(6):327~335.
    [31].陈法正.砂岩型铀矿的成矿地质条件与战略选区-以二连盆地和鄂尔多斯盆地为例[J].铀矿地质,2002,18(3):138~143.
    [32].陈祖伊,陈戴生,古抗衡,等.中国砂岩型铀矿容矿层位、矿化类型和矿化年龄的区域分布规律[J].铀矿地质,2010,26(06):321-330.
    [33].陈祖伊.亚洲砂岩型铀矿区分布规律和中国砂岩型铀矿找矿对策[J].铀矿地质,2002:18(3):129~138.
    [34].陈祖伊.古河道砂岩型铀矿的主要地质特征及有关找矿工作的方针探讨[J].铀矿地质,1999.15(1):1~8.
    [35].董文明,黄贤芳,谢志东,等.吐鲁番-哈密盆地南缘侏罗系层序地层特征及铀成矿规律[J],铀矿地质,1998114(3):129~1321.
    [36].凡秀君,聂逢君,陈益平,王维.二连盆地巴彦乌拉地区砂岩型铀矿含矿地层时代与古地理环境探讨[J].铀矿地质,2008.24(3):150~154.
    [37].郭庆银,陈祖伊,韩淑琴,于金水.层序地层学在砂岩型铀矿勘查中的应用现状与前景展望[J].铀矿地质,2008,24(1):5~11.
    [38].何中波,秦明宽.高分辨率层序地层特征及砂岩型铀矿成矿作用-以二连盆地白音乌拉地区赛汉组为例[J].世界核地质科学,2006123(4):194~198.
    [39].黄净白,黄世杰.2005.中国铀资源区域成矿特征[J],铀矿地质,21(3):129~138.
    [40].黄净白,李胜祥.2007.试论中国古层间氧化带砂岩型铀矿床成矿特点、成矿模式及找矿前景[J].铀矿地质,23(1):8~16.
    [41].黄世杰.层间氧化带砂岩型铀矿的形成条件与找矿判据.铀矿地质,1994.10(1):6~13.
    [42].黄世杰.古河道砂岩型铀矿成矿若干问题探讨[J],铀矿地质,1997.13(4):193~201.
    [43].焦贵浩,王同和,郭绪杰,等.二连裂谷构造演化与油气[M].北京:石油工业出版社,2003:1~2.
    [44].焦养泉,陈安,王敏芳,等.鄂尔多斯盆地东北部直罗组底部砂体成因分析-砂岩型铀矿床预测的空间定位基础[J].沉积学报,2005,23(3):371~379.
    [45].焦养泉,吴立群,等.铀储层沉积学-砂岩型铀矿勘查与开发的基础.地质出版社[M],2006.
    [46].焦养泉,杨生科,王正海,等.层序地层与铀成矿-以吐哈盆地水西沟群为例[J],中国核工业地质局科技工作会议文集,2001.1~11.
    [47].李洪军,申科峰.二连盆地马尼特坳陷砂岩型铀矿体准确定位研究[J].河南理工大学学报(自然科学版),2010,29(1):39~44.
    [48].李巨初.试论砂岩型铀矿成矿机制和成矿作用动力学问题[J].铀矿地质,2009,25(3):129-136.
    [49].李荣林.巴彦乌拉地区找铀目的层地层层序研究[J].河南理工大学学报(自然科学版),2010,29(1):31-36.
    [50].李胜祥,陈肇博,陈祖伊,等.层序地层学在陆相沉积盆地内砂岩型铀矿找矿中的应用前景[J].铀矿地质,2001,17(4):204~208.
    [51].李思田,解习农,王华,焦养泉等.沉积盆地分析与基础应用[M].北京:高等教育出版社,2004.
    [52].李月湘,于金水,秦明宽等.二连盆地可地浸砂岩型铀矿找矿方向[J].铀矿地质,2009,25(6):338~343.
    [53].刘武生,刘金辉,王正邦等.二连盆地含矿建造后生改造作用过程及其演化[J].东华理工学院学报,2005,28(1):52~57.
    [54].马汉峰,罗毅,李子颖,于振清.沉积特征对砂岩型铀成矿类型的制约-以松辽盆地南部姚家组为例[J].世界核地质科学,2010(3):6~10.
    [55].聂逢君,陈安平,等.内蒙古二连盆地早白噩世砂岩型铀矿目的层时代探讨巨[J].地层学杂志,2007131(3):272~279.
    [56].聂逢军.层序地层学的起源及其发展[J].铀矿地质,2001,17(4):193~203.
    [57].牛林,黄树桃,杨贵生.额仁淖尔凹陷努和廷矿床铀矿化特征[R].北京:核工业北京地质研究
    [58].裴承凯,黄贤芳,仉宝聚.日本砂岩型铀矿床成矿地质特征述评[J].世界核地质科学,2006,23(01):27~32.
    [59].彭作林,郑建京,黄华富,等.中国主要沉积盆地分类[J].沉积学报,1995.13(2):150~159.
    [60].秦楚笛.陆相砂岩卷型铀矿床地质学和识别判据[M].北京:原子能出版社,1988.
    [61].秦明宽,赵凤民,何中波等.二连盆地与蒙古沉积盆地砂岩型铀矿成矿条件对比[J].铀矿地质,2009,25(2):78~84.
    [62].权建平,樊太亮,焦养泉,等.层序结构对吐哈盆地SHT砂岩型铀矿成矿的控制作用[J].世界核地质科学,2006,23(3):130~135.
    [63].任建业等.二连断陷盆地群伸展构造系统及其发育的深部背景研究[J].地球科学,1998,23(6):567~572.
    [64].王果.中新生代陆相沉积盆地砂岩型铀矿床流体作用研究[J].高校地质学报,2000.6(3):437~446.
    [65].王仁农,李桂春.中国含煤盆地的聚煤规律[J].地质评论,1995,41(6):487~498.
    [66].王正邦.国外地浸砂岩型铀矿地质发展现状与展望[J].铀矿地质,2002,18(01):9~21.
    [67].吴仁贵,余达淦.辫状沉积砂体与砂岩型铀矿的关系剖析[J].铀矿地质,2005(3):92~96.
    [68].夏毓亮,林锦荣,等中国北方主要产铀盆地砂岩型铀矿成矿年代学研究[J].铀矿地质,2003,119(3):129~136.
    [69].向伟东,陈肇博,陈祖伊.吐哈盆地西南部砂岩型铀矿含矿岩系地层时代与层序地层特征[J].铀矿地质,2000116(5):272~2791.
    [70].肖新建,李子颖,郭华,等.俄罗斯砂岩型铀矿的新近研究进展[J].铀矿地质,2003,19(01):34~41.
    [71].肖新建,李子颖,李胜祥.层序地层学研究与砂岩型铀矿勘探[J].地质找矿论丛.2003,18(2):84~87.
    [72].姚春玲,郭庆银,陈祖伊,等.高分辨率层序地层特征及其对铀矿化的控制作用-以潮水盆地中侏罗统青土井组为例[J].世界核地质科学,2006,23(2):91~99.
    [73].张金带,徐高中,林锦荣,等.中国北方6种新的砂岩型铀矿对铀资源潜力的提示[J].中国地质,2010,37(05):1434~1449.
    [74].张如良.鄂尔多斯深盆气与铀矿化关系初探.铀矿地质,2004,20(4):213~218.
    [75].赵凤民.外乌拉尔和外贝加尔古河道中的铀矿床[M].国外铀金地质,10(1),1993
    [76].赵世勤,田儒,姜晓东,等.额仁淖尔凹陷层间氧化带型砂岩铀矿成矿远景[R].北京:核工业北京地质研究院,1994.
    [77].中国核工业地质局.中国砂岩型铀矿床:地质和勘查技术[M].北京:原子能出版社,2002.
    [78].周文斌,余达淦,刘庆成,等.核资源与环境研究成就与展望[M].北京:原子能出版社,001:63~79.
    [79].朱筱敏,主编.沉积岩石学[M].北京:石油工业出版社,2008,第四版.
    [80].祝玉衡,张文朝,王洪生,等.二连盆地下白垩统沉积相及含油性[M].北京:科学出版社,2000,189~190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700