用户名: 密码: 验证码:
人工湿地植物筛选及其对畜禽养殖废水的净化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜禽养殖废水含有高浓度的有机物、氨氮及悬浮物,其污染具有长期性和不可逆性,是造成我国农村面源污染的主要原因之一。虽然一、二级工艺处理能够去除大部分的有机物、氨氮及悬浮物,但要达到更高一级的废水排放标准,还须经过必要的后续工艺处理,而人工湿地处理系统则是最佳的选择之一。本研究根据人工湿地植物的选择原则与生态系统功能理论,从植物的耐污性、去污效果及其在污水中的生长状况等方面着手研究,选择出了适合亚热带季风气候条件下人工湿地的植物种类,在一定程度上解决了人工湿地植物种类缺乏的现状;同时,将选择的人工湿地植物用于处理畜禽养殖废水,进一步筛选出了适宜净化畜禽养殖废水的人工湿地植物种类,丰富了畜禽养殖废水处理技术的理论内容。
     本研究对雅安市湿地植物资源进行了调查,筛选出黄花美人蕉(Cannaceae indica var. flava)、黄花鸢尾(Iris pseudoacorus)、麦冬(Triglochin palustre),及在人工湿地处理系统中未见报道的扬子毛茛(R. sieboldii Miq.)、碎米荠(Cardamine hirsuta Linn.)、还亮草(Delphinium anthriscifolium Hance)、缬草(Valeriana offeinalisL.)、接骨草(Caprifoliaceae Sambucus chinensis)、石龙芮(Ranunculus sceleratus Linn.)共9种植物,在不同基质(紫色土、河砂、砾石)上进行室内人工种植,模拟人工湿地系统。通过一系列的实验研究和分析,取得了如下研究成果:
     (1)植物床人工湿地系统对畜禽废水的处理效果明显优于无植物床系统,不同植物湿地对畜禽废水的去除率有一定的差异,各植物湿地系统对CODcr、TN、TP、NH4+-N的去除率随处理时间的延长而增大,且植物生长的优劣趋势与其对污染物的去除呈正相关性。在水力停留时间(HRT)为5 d的运行条件下,系统稳定运行后植物对CODCr、TN、TP、NH4+-N、浊度的去除率均达到稳定状态且去除效果较好。
     (2)黄花美人蕉、黄花鸢尾、麦冬、扬子毛莨、碎米荠、还亮草、缬草、接骨草和石龙芮9种植物对畜禽废水都有一定的净化作用,其中扬子毛莨、碎米荠、还亮草、缬草、接骨草和石龙芮6种植物人工湿地系统对各种污染物的去除能力均较强,排放指标基本达到了《中华人民共和国地表水环境标准》(GB3838-2002)Ⅱ、Ⅲ类水质标准。
     (3)磷的去除主要依靠基质的吸附,土壤的吸附量大于河沙,砾石的吸附量最小;且不同床体基质对磷的吸附量无显著性差异。
     (4)通过模拟人工湿地系统,试验后各植物地上部和地下部N、P浓度有所增加,湿地基质含N、P量也有一定的增加,且植物地上部分积累N、P量明显高于地下部分,试验后基质中含P量较试验前的增加幅度较大,这与植物吸收和基质吸附是去除污水中氮磷含量的主要途径相吻合。
     (5)人工湿地中各植物器官氮的含量均高于对照,其中碎米荠、还亮草、扬子毛茛、缬草、麦冬和接骨草在实验前期氮含量的规律为叶>根>茎,而在经过废水处理后氮含量规律为叶>茎>根;从吸收量来看,茎>叶>根。石龙芮、黄花鸢尾和黄花美人蕉在实验前期氮含量的规律为叶>茎>根,而在经过废水处理后氮含量规律为叶>根>茎;从吸收量来看,根>叶>茎。
     (6)人工湿地中各植物器官磷的含量均高于对照,实验前期植物各器官含磷量规律为根>叶>茎,经污水处理后含磷量规律为叶>根>茎;从吸收量来看,叶>茎>根。
     (7) 9种植物在人工湿地中生长近3个月后,各种植物的总生物量在0.4521-0.7072 kg/桶之间,尤以黄花美人蕉最高,达0.7072 kg/桶,且地上生物量和地下生物量也居9种植物中最高,但其地上地下生物量比(A/U)只有0.8228;其次为石龙芮,达0.7047 kg/桶,其地上生物量、地下生物量和地上地下生物量比也仅次于黄花美人蕉。
Wastewater from the livestock and poultry breeding is one of the main causes of non-point pollution in Chinese countryside. The wastewater pollution contained high concentrations of organic matters, ammonia nitrogen and suspended substances is long-term and irreversible. Although the primary and secondary treatments can remove a large amount of organic matters, ammonia nitrogen and suspended substances, the national standard GradeⅡandⅢfor the environmental quality standards of surface water (GB3838-2002) can be achieved only after the succeeding treatments. The constructed wetland is the best one among the succeeding treatments. In this work, stain resistance and decontamination effect of wetland plants in constructed wetland for wastewater treatment, as well as their growth conditions in the wastewater were investigated based on the plant selection principle in constructed wetland and the theory of ecosystem function. The wetland plant species, which are suitable for growing in wetland under the conditions of sub-tropical monsoon, were selected. Moreover, the selected plant species were applied to treat the wastewater from livestock and poultry breeding, and the selectivity and purification effect of the plant species for this kind of wastewater were examined.
     The wetland plant resources in Ya'an was extensively investigated. Nine plant species, Cannaceae indica var. flava, Iris pseudoacorus, Triglochin palustre and those have never been reported in constructed wetland system such as R. sieboldii Miq., Cardamine hirsuta Linn., Delphinium anthriscifolium Hance, Valeriana offeinalis L, Caprifoliaceae Sambucus chinensis, and Ranunculus sceleratus Linn, were selected as the wetland plants. Different substrates, such as the purplish soil, the river sand and the gravel were selected to simulate a constructed wetland system in indoor condition. The test results are listed as follow.
     (1) The constructed wetland systems with the wetland plants had better purification effect for the wastewater from livestock and poultry breeding than that without the wetland plants. The wetlands cultivated by different plant species had different purification effect for the wastewater. The amount of CODcr, TN, TP and NH4+-N removed by the different plant wetland systems increased with the processing time extending. The growth tendency of the plant species had a positive correlation with the removal of the contaminants. Under the conditions that the hydraulic detention time is 5d, the removal rate of CODCr, TN, TP, NH4+-N and turbidity in the wastewater arrived at stable conditions and showed a better effect.
     (2) The selected nine plants, Cannaceae indica var. flava, Iris pseudoacorus, Triglochin palustre, R. sieboldii Miq., Cardamine hirsuta Linn., Delphinium anthriscifolium Hance, Valeriana offeinalis L., Caprifoliaceae Sambucus chinensis and Ranunculus sceleratus Linn., had a certain Processing capacity. Among the plants, the purification effect of six plants, R. sieboldii Miq., Cardamine hirsuta Linn., Delphinium anthriscifolium Hance, Valeriana offeinalis L., Caprifoliaceae Sambucus chinensis and Ranunculus sceleratus Linn., were better than others. After treatment, the water quality reached the classⅡandⅢof 'the environmental quality standards of surface water (GB3838-2002).
     (3) The phosphorus removal was mainly based on the absorption of the substrates. Althongh the absorption capacity of the soil was higher than that of the river sand and the gravel had the lowest capacity, different substrates had no significant difference.
     (4) The concentration of nitrogen and phosphorus increased in the overground and underground parts of plants in the simulated constructed wetland system, and that also raised to some extent in the substrates. The cumulative amount of nitrogen and phosphorus in the overground parts of the plants were obviously higher than that in the underground parts. After the experiments, the amount of phosphorus had a significant increase in the substrates. This results are in accordance to the theory that the physical and chemical reactions of the substrates are the main approaches to remove phosphorus in the constructed wetland.
     (5) The nitrogen concentration in each plant organs in constructed wetland was higher than control group. For Cardamine hirsuta Linn., Delphinium anthriscifolium Hance, R. sieboldii Miq., Valeriana offeinalis L., Triglochin palustre and Caprifoliaceae Sambucus chinensis, the nitrogen concentration distribution in the plant organs was leaves> roots> stalk before the experiments, while which was leaves> stalk>roots after the experiments. The order of the organic nitrogen absorbed in the plant organs was stalk> leaves> roots during the experimental period. For Ranunculus sceleratus Linn., Iris pseudoacorus and Cannaceae indica var. flava, the nitrogen concentration distribution in the plant organs was leaves> stalk> roots before the experiments, while which was leaves> roots> stalk after the experiments. The order of the organic nitrogen absorbed in the plant organs was roots > leaves> stalk during the experimental period.
     (6) The phosphorous concentration in each plant organs in constructed wetland was higher than control group. The concentration distribution in each plant organs was roots> leaves> stalk before the experiments, while which was leaves>roots> stalk after the experiments. The order of the organic phosphorus absorbed in the plant organs was leaves > stalk> roots during the experimental period.
     (7) After the nine plants growing three months in the constructed wetland, the total biomass of each plants were among 0.4521-0.7072 kg per bucket. Cannaceae indica var. flava was the highest among the nine plants regardless of ground and underground biomass, which total biomass reached 0.7072 kg per bucket, but its ratio of A/U was only 0.8228. Next is Ranunculus sceleratus Linn.that total biomass reached 0.7047 kg per bucket, and its ratio of A/U is also secondary than that of Cannaceae indica var. flava.
引文
[1]刘静玲.淡水危机与节水技术[M].北京:化学工业出版社,2003:150.
    [2]蒋跃平.亚热带地区人工湿地植物功能多样性研究[D].浙江:浙江大学,2005.
    [3]Stikker A. Water today and tomorrow[J].Futures,1998,30(1):43-62.
    [4]蒋耀星.水环境状况及水污染防治[J].甘肃环境研究与监测,2003,16(4):454-456.
    [5]关亮炯.我国水污染现状及治理对策[J].科研情报开发与经济,2004,14(6):80-81.
    [6]江珊,孙继朝,张宏达,等.我国水环境有机污染现状与防治对策[J].海洋地质动态,2005,21(10):5-10.
    [7]任南琪,李建政.环境污染防治中的生物技术[M].化学工业出版社,2004:167-189.
    [8]Kivaisi AK.The potential for constructed wetlands for wastewater treatment and reuse in developing countries a review[J].Ecological Engineer ing,2001,16:545-560.
    [9]孙鲁威.畜禽养殖将全面污染[N].农民日报,2002年3月26日第五版.
    [10]李远伟.芦苇、水山姜床人工湿地在畜禽养殖废水处理中的脱氮除磷研究[D].雅安:四川农业大学,2008.
    [11]Robert L,Knight Victor WE,Payne Jr.Constructed wetlands for livestock wastewater management[J]. Ecological Engineering,2000,15:41-55.
    [12]Patrick G,Hunt TA,Matheny.Denitrification in constructed wetlands used for treatment of swine wastewater[J].Journal of Environmental Quality,2003,32(3-4):727-736.
    [13]文乐元,樊国盛.养殖废水草滤带处理系统的研究[J].草业学报,2003,12(3):100-113.
    [14]廖新俤,汪植三,李其谦,等.人工湿地在猪场污水净化中的应用[J].农业工程报,1995,11(4):96-100.
    [15]廖新俤,骆世明,吴银宝,等.人工湿地植物筛选的研究[J].草业学报,2004,13(5):39-45.
    [16]黄朝君.人工湿地技术在中国水处理领域的应用[J].江西科学,2006,24(6):513-516.
    [17]王国生,钟玉书,田敏,等.人工芦苇湿地处理城市污水的研究[J].辽宁农业科学,2006,(2):5-8.
    [18]赵丽娜,丁为民,鲁亚芳,等.几种春季湿地植物对污水中主要污染物去除效果的比较[J].污染防治技术,2007,20(1):25-27.
    [19]Reddy KR,Debusk TA.Nutrient removal potential of selected aquatic macrophytes[J].Journal of Environmental Quality,1985,14:459-462.
    [20]王珺,顾宇飞,朱增银,等.不同营养状态下金鱼藻的生理响应[J].应用生态学报,2005,16(2):337-340.
    [21]王全金.芦苇人工湿地在环境保护中的应用[J].环境污染治理技术与设备,2005,6(8):1-5.
    [22]万波.我国环境污染现状与潜伏污染探讨[J].广东化工,2006,33(3):49-51.
    [23]刘圣勇,袁超,蒋国良,等.全球性大气污染的现状及对策[J].河南农业大学学报,2003,37(1):74-77.
    [24]邹宗堂,孙丰兰,李明文.畜禽养殖业环境污染状况及对策[J].山东畜牧兽医,2006,6:11-12.
    [25]林伟华,蔡昌达.CSTR-SBR工艺在畜禽废水处理中的应用[J].环境工程,2003,21(3):13-15.
    [26]黎强,叶进.近中温厌氧发酵工艺在畜禽养殖场废水治理中的应用[J].可再生能源,2005,120(2):34-36.
    [27]孙仲平,尹卫红,李正明.活性污泥法新技术—卡波菲尔反应器[J].工业甩水与废水,2001,32(2):40-41.
    [28]范建伟,张杰.活性污泥膜分离技术在畜禽废水处理中的应用[J].工业用水与废水,2002,33(3):39-40.
    [29]谢可军,赵素芬,苗香雯,等.富营养化废水胁迫对多年生黑麦草的影响[J].农业环境科学学报,2004,23(3):437-440.
    [30]牛晓君.我国人工湿地植物系统的研究进展[J].四川环境,2005,24(5):45-47.
    [31]Joseph K,Frank K,Lena G, et al.A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate[J].Water Research,2004,38(2):415-485.
    [32]Hristina B,Karin T.Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds[J].Ecological Engineering,2007,29(1):66-76.
    [33]Cristina SCC,Antonio OSSRand Paula MLC.Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater[J].Water Research,2007,41(8):1790-1798.
    [34]袁东海,任全进,高士祥,等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,2004,15(12):2337-2341.
    [35]张雨葵,杨扬,刘淘,等.人工湿地植物的选择及湿地植物对污染河水的净化能力[J].农业环境科学学报,2006,25(5):1218-1323.
    [36]刘春常,黄汉平,简曙光,等.多层次物种配置人工湿地处理生活污水研究[J].生态环境,2006,15(2):229-223.
    [37]王金南.中国水污染防治体制与政策[M].北京:中国环境科学出版社,2003:21-32.
    [38]杨苛,人工湿地植物的筛选及试验研究[D].广西:广西大学,2007.
    [39]余国营.湿地研究进展与展望[J].世界科技研究与进展,2000,22(3):61-66.
    [40]李志炎,唐宇力,杨在娟,等.人工湿地植物研究现状[J].浙江林业科技,2004,24(4):56-59.
    [41]House CH.Combining constructed wetlands and aquatic and soil filter for reclamation and reuse of water[J].Ecological Engineering,1999,12:27-38.
    [42]安树青.湿地生态工程—湿地资源保护与利用的优化模式[M].北京:化学工业出版社,2003:329-330.
    [43]Green MB,Upton J.Constructed reed beds:A cost-effective way to polish wastewater effluents for small communities[J]. Water Environment Research,1994,66(3):188-192.
    [44]岳春雷.亚热带地区人工湿地净化效果与机理研究[D].浙江:浙江大学,2004.
    [45]尹军,崔玉波.人工湿地污水处理技术[M].北京化学工业出版社,2006:6.
    [46]TannerCC,SukiasJ.PS.Status of Wastewater Treatment Wetlands in New Zealand[J]. EcoEngNewsletterl,2002,(3):18-20.
    [47]KadleeRH,KightRL.Treatment wetlands[M].Lewis publishers,Boca Raton,FL,1996:20-25.
    [48]姚芳.人工湿地候选植物对污水的净化作用极其机理研究[D].浙江:浙江大学,2005.
    [49]旷远文,温达志,周国逸,等.有机物及重金属植物修复研究进展[J].生态学杂志,2004,23(1):90-96.
    [50]Sasaki K,Ogino T,Hodo,etal.Chemical transportation of heavy metals in the cnstructed wetland impacted by acid drainage[J].MaterialsTransactions,2003,44(2):305-312.
    [51]Aodern W,Veronika K.Effect of pond shape and vegetation heterogeneity on flow and treatment performance of constructed wetlands[J].Journal ofHydrology,2005,301(1-4):123-138.
    [52]张太平,陈韦丽.人工湿地生态系统提高氮磷去除率的研究进展[J].生态环境,2005,14(4):580-584.
    [53]颜素珠.中国水生高等植物图说[M].北京:科学出版社,1998.
    [54]贺,吴振斌,邱东茹.东湖围隔种范草与藻类生化池他感作用的初步研究[J].水生生物学 报,2002,26(4):421-424.
    [55]缪绅裕,陈桂珠.人工湿地中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,2000,19(2):236-241.
    [56]傅伟军,唐亚.植物在人工湿地中的作用及物种选择[J].四川环境,2005,24(6):45-49.
    [57]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社,2003:30-52.
    [58]吴振斌,陈辉蓉,荷,等.人工湿地系统对污水磷的净化作用[J].水生生物报,2000,25(1):28-35.
    [59]李铁民,马汐平,付宝荣,等.环境生物资源[M].北京:化学工业出版社,2003,101.
    [60]Shalla G.The nutrient assimilative capacity of maeral as a substrate in constructed wetland systems for waste treatment[J]. Water Research,2000,34(8):2183-2190.
    [61]吴振斌,梁威,成水平,等.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报,2001,21(5):622-624.
    [62]Kaseva,M E.Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater-a tropical case study [J]. Water Research,2004,38(3):681-687.
    [63]Drizo A,Frost CA,Grace J.Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow,using shale as a substrate[J].Water Science and Technology,1997,35(5):19-25.
    [64]孙向阳.土壤学[M].北京:中国林业出版社,2004,9:89-90.
    [65]梁威,吴振斌,周巧红,等.构建人工湿地基质微生物与净化效果及相关分析[J].中国环境科学,2002,22(3):283-285.
    [66]吴振斌,周巧红,贺,等.构建湿地中试系统基质剖面微生物活性的研究[J].中国环境科学,2003,23(4):422-426.
    [67]项学敏,宋春霞,李彦生,等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学,2004,30(4):35-38.
    [68]Shackle J.,Freeman C,Reynolds B.Carbon supply and the regulation of enzyme activity in constructed wetlands[J].Soil Biology&Biochemistiy,2000,32:1935-1940.
    [69]吴振斌,梁威,邱东茹,等.复合垂直流构建湿地基质酶活性与污水净化效果[J].生态学报,2002,22(7):1012-1017.
    [70]籍国东,孙铁珩,李顺,等.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2000,13(2):224-228.
    [71]崔保山,刘兴土.湿地生态系统设计的一些基本问题探讨[J].应用生态学报,2001,12(1):145-150.
    [72]张虎成,田卫.人工湿地生态系统污水净化研究进展[J].环境污染治理技术与设备,2004,5(1):11-15.
    [73]黄时达,杨有仪,冷冰,等.人工湿地植物处理污水的试验研究[J].四川环境,1995,14(3):5-7.
    [74]岳春雷,王华胜,高瞻,等.人工湿地循环净化杭州植物园玉泉观鱼池水效果分析[J].浙江林业科技,2002,22(4):1-4.
    [75]王庆安,任勇,钱骏,等.成都市活水公园人工湿地塘床系统的生物群落[J].重庆环境科学,2001,23(2):52-55.
    [76]王圣瑞,年跃刚,侯文华,等.人工湿地植物的选择[J].湖泊科学,2004,3(16):90-95.
    [77]万晓红,李旭东,王雨春,等.不同水生植物对湿地无机氮素去除效果的模拟[J].湖泊科学,2008,20(3):327-333.
    [78]张锡辉.水环境工程学原理与应用[M].北京:化学工业出版社,2002,214.
    [79]成水平,夏宜铮.香蒲、灯心草人工湿地的研究—净化污水的机理[J].湖泊科学,1998,10(2): 66-71.
    [80]张甲耀,崔克辉.潜流型人工湿地污水处理系统中芦苇的生长特性及净化能力[J].水处理技术,1998,24(6):363-367.
    [81]孙文浩,余叔文.相生相克效应及其应用[J].植物生理学通讯,2000,28(2):81-87.
    [82]Sczepanska W.Allelopathy among the aquatic plants[J].Journal of Hydrology,1991,18(1): 17-30.
    [83]Huang J.Nitrogen removal in constructed wetlands employed to treat domestic wastewater[J]. Water Research,2000,34(9):2582-2588.
    [84]岳春雷,常杰,葛滢,等.复合垂直流人工湿地对低浓度养殖废水循环净化功能研究[J].科技通报,2004,20(1):15-17.
    [85]肖恩荣,梁威,吴振斌,等.污水处理中的人工湿地强化技术研究[J].环境污染治理技术与设备,2006,7(7):118-123.
    [86]Brooks AS,Rozenwald MN,Geohring LD.Phosphorus removal by wollastonite:A constructed wetland substrate[J].Ecological Engineering,2000,15(1-2):121-132.
    [87]Cossu R,HaarstadK,Lavabnolo MC.Removal of municipal solid waste COD and NH4+-N by phyto-reduction:A laboratory-scale comparison of terrestrial and aquatic species at different organic loads[S].Ecological Engineering,2001,16(4):459-470.
    [88]PhillipA MB,Home AJ.Denitrification in constructed free-water surface wetlands:Effects of vegetation and temperature[J].Ecological Engineering,2000,14:17-32.
    [89]肖德林.畜禽废水胁迫对芦苇生理特性的影响[D].雅安:四川农业大学,2008.
    [90]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [91]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[S].北京:中国环境科学出版社,2002.
    [92]徐德福,李映雪,方华,等.4种湿地植物的生理性状对人工湿地床设计的影响[J].农业环境科学学报,2009,28(3):587-591.
    [93]冯琳.潜流人工湿地中有机污染物降解机理研究综述[J].生态环境学报,2009,18(5):2006-2010.
    [94]刘春常,夏汉平.人工湿地处理生活污水研究[J].生态环境,2005,14(4):536-539.
    [95]王宜明.人工湿地净化机理和影响因素探讨[J].昆明冶金高等专科学校学报,2000,16(2):1-6.
    [96]Karathanasis AD,Potter CL,Coyne MS.Vegetation effects on fecal bacteria,BOD,and suspended solid removal in constructed wetlands treating domestic wastewater[J].Ecological Engineering,2003,20:157-169.
    [97]成水平,吴振斌,况琪军,等.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700